1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_dir2.h" 28 #include "xfs_dmapi.h" 29 #include "xfs_mount.h" 30 #include "xfs_bmap_btree.h" 31 #include "xfs_alloc_btree.h" 32 #include "xfs_ialloc_btree.h" 33 #include "xfs_dir2_sf.h" 34 #include "xfs_attr_sf.h" 35 #include "xfs_dinode.h" 36 #include "xfs_inode.h" 37 #include "xfs_buf_item.h" 38 #include "xfs_trans_priv.h" 39 #include "xfs_error.h" 40 #include "xfs_rw.h" 41 42 43 STATIC xfs_buf_t *xfs_trans_buf_item_match(xfs_trans_t *, xfs_buftarg_t *, 44 xfs_daddr_t, int); 45 STATIC xfs_buf_t *xfs_trans_buf_item_match_all(xfs_trans_t *, xfs_buftarg_t *, 46 xfs_daddr_t, int); 47 48 49 /* 50 * Get and lock the buffer for the caller if it is not already 51 * locked within the given transaction. If it is already locked 52 * within the transaction, just increment its lock recursion count 53 * and return a pointer to it. 54 * 55 * Use the fast path function xfs_trans_buf_item_match() or the buffer 56 * cache routine incore_match() to find the buffer 57 * if it is already owned by this transaction. 58 * 59 * If we don't already own the buffer, use get_buf() to get it. 60 * If it doesn't yet have an associated xfs_buf_log_item structure, 61 * then allocate one and add the item to this transaction. 62 * 63 * If the transaction pointer is NULL, make this just a normal 64 * get_buf() call. 65 */ 66 xfs_buf_t * 67 xfs_trans_get_buf(xfs_trans_t *tp, 68 xfs_buftarg_t *target_dev, 69 xfs_daddr_t blkno, 70 int len, 71 uint flags) 72 { 73 xfs_buf_t *bp; 74 xfs_buf_log_item_t *bip; 75 76 if (flags == 0) 77 flags = XFS_BUF_LOCK | XFS_BUF_MAPPED; 78 79 /* 80 * Default to a normal get_buf() call if the tp is NULL. 81 */ 82 if (tp == NULL) { 83 bp = xfs_buf_get_flags(target_dev, blkno, len, 84 flags | BUF_BUSY); 85 return(bp); 86 } 87 88 /* 89 * If we find the buffer in the cache with this transaction 90 * pointer in its b_fsprivate2 field, then we know we already 91 * have it locked. In this case we just increment the lock 92 * recursion count and return the buffer to the caller. 93 */ 94 if (tp->t_items.lic_next == NULL) { 95 bp = xfs_trans_buf_item_match(tp, target_dev, blkno, len); 96 } else { 97 bp = xfs_trans_buf_item_match_all(tp, target_dev, blkno, len); 98 } 99 if (bp != NULL) { 100 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); 101 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) { 102 xfs_buftrace("TRANS GET RECUR SHUT", bp); 103 XFS_BUF_SUPER_STALE(bp); 104 } 105 /* 106 * If the buffer is stale then it was binval'ed 107 * since last read. This doesn't matter since the 108 * caller isn't allowed to use the data anyway. 109 */ 110 else if (XFS_BUF_ISSTALE(bp)) { 111 xfs_buftrace("TRANS GET RECUR STALE", bp); 112 ASSERT(!XFS_BUF_ISDELAYWRITE(bp)); 113 } 114 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); 115 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); 116 ASSERT(bip != NULL); 117 ASSERT(atomic_read(&bip->bli_refcount) > 0); 118 bip->bli_recur++; 119 xfs_buftrace("TRANS GET RECUR", bp); 120 xfs_buf_item_trace("GET RECUR", bip); 121 return (bp); 122 } 123 124 /* 125 * We always specify the BUF_BUSY flag within a transaction so 126 * that get_buf does not try to push out a delayed write buffer 127 * which might cause another transaction to take place (if the 128 * buffer was delayed alloc). Such recursive transactions can 129 * easily deadlock with our current transaction as well as cause 130 * us to run out of stack space. 131 */ 132 bp = xfs_buf_get_flags(target_dev, blkno, len, flags | BUF_BUSY); 133 if (bp == NULL) { 134 return NULL; 135 } 136 137 ASSERT(!XFS_BUF_GETERROR(bp)); 138 139 /* 140 * The xfs_buf_log_item pointer is stored in b_fsprivate. If 141 * it doesn't have one yet, then allocate one and initialize it. 142 * The checks to see if one is there are in xfs_buf_item_init(). 143 */ 144 xfs_buf_item_init(bp, tp->t_mountp); 145 146 /* 147 * Set the recursion count for the buffer within this transaction 148 * to 0. 149 */ 150 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); 151 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 152 ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); 153 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 154 bip->bli_recur = 0; 155 156 /* 157 * Take a reference for this transaction on the buf item. 158 */ 159 atomic_inc(&bip->bli_refcount); 160 161 /* 162 * Get a log_item_desc to point at the new item. 163 */ 164 (void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip); 165 166 /* 167 * Initialize b_fsprivate2 so we can find it with incore_match() 168 * above. 169 */ 170 XFS_BUF_SET_FSPRIVATE2(bp, tp); 171 172 xfs_buftrace("TRANS GET", bp); 173 xfs_buf_item_trace("GET", bip); 174 return (bp); 175 } 176 177 /* 178 * Get and lock the superblock buffer of this file system for the 179 * given transaction. 180 * 181 * We don't need to use incore_match() here, because the superblock 182 * buffer is a private buffer which we keep a pointer to in the 183 * mount structure. 184 */ 185 xfs_buf_t * 186 xfs_trans_getsb(xfs_trans_t *tp, 187 struct xfs_mount *mp, 188 int flags) 189 { 190 xfs_buf_t *bp; 191 xfs_buf_log_item_t *bip; 192 193 /* 194 * Default to just trying to lock the superblock buffer 195 * if tp is NULL. 196 */ 197 if (tp == NULL) { 198 return (xfs_getsb(mp, flags)); 199 } 200 201 /* 202 * If the superblock buffer already has this transaction 203 * pointer in its b_fsprivate2 field, then we know we already 204 * have it locked. In this case we just increment the lock 205 * recursion count and return the buffer to the caller. 206 */ 207 bp = mp->m_sb_bp; 208 if (XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp) { 209 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); 210 ASSERT(bip != NULL); 211 ASSERT(atomic_read(&bip->bli_refcount) > 0); 212 bip->bli_recur++; 213 xfs_buf_item_trace("GETSB RECUR", bip); 214 return (bp); 215 } 216 217 bp = xfs_getsb(mp, flags); 218 if (bp == NULL) { 219 return NULL; 220 } 221 222 /* 223 * The xfs_buf_log_item pointer is stored in b_fsprivate. If 224 * it doesn't have one yet, then allocate one and initialize it. 225 * The checks to see if one is there are in xfs_buf_item_init(). 226 */ 227 xfs_buf_item_init(bp, mp); 228 229 /* 230 * Set the recursion count for the buffer within this transaction 231 * to 0. 232 */ 233 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); 234 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 235 ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); 236 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 237 bip->bli_recur = 0; 238 239 /* 240 * Take a reference for this transaction on the buf item. 241 */ 242 atomic_inc(&bip->bli_refcount); 243 244 /* 245 * Get a log_item_desc to point at the new item. 246 */ 247 (void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip); 248 249 /* 250 * Initialize b_fsprivate2 so we can find it with incore_match() 251 * above. 252 */ 253 XFS_BUF_SET_FSPRIVATE2(bp, tp); 254 255 xfs_buf_item_trace("GETSB", bip); 256 return (bp); 257 } 258 259 #ifdef DEBUG 260 xfs_buftarg_t *xfs_error_target; 261 int xfs_do_error; 262 int xfs_req_num; 263 int xfs_error_mod = 33; 264 #endif 265 266 /* 267 * Get and lock the buffer for the caller if it is not already 268 * locked within the given transaction. If it has not yet been 269 * read in, read it from disk. If it is already locked 270 * within the transaction and already read in, just increment its 271 * lock recursion count and return a pointer to it. 272 * 273 * Use the fast path function xfs_trans_buf_item_match() or the buffer 274 * cache routine incore_match() to find the buffer 275 * if it is already owned by this transaction. 276 * 277 * If we don't already own the buffer, use read_buf() to get it. 278 * If it doesn't yet have an associated xfs_buf_log_item structure, 279 * then allocate one and add the item to this transaction. 280 * 281 * If the transaction pointer is NULL, make this just a normal 282 * read_buf() call. 283 */ 284 int 285 xfs_trans_read_buf( 286 xfs_mount_t *mp, 287 xfs_trans_t *tp, 288 xfs_buftarg_t *target, 289 xfs_daddr_t blkno, 290 int len, 291 uint flags, 292 xfs_buf_t **bpp) 293 { 294 xfs_buf_t *bp; 295 xfs_buf_log_item_t *bip; 296 int error; 297 298 if (flags == 0) 299 flags = XFS_BUF_LOCK | XFS_BUF_MAPPED; 300 301 /* 302 * Default to a normal get_buf() call if the tp is NULL. 303 */ 304 if (tp == NULL) { 305 bp = xfs_buf_read_flags(target, blkno, len, flags | BUF_BUSY); 306 if (!bp) 307 return (flags & XFS_BUF_TRYLOCK) ? 308 EAGAIN : XFS_ERROR(ENOMEM); 309 310 if ((bp != NULL) && (XFS_BUF_GETERROR(bp) != 0)) { 311 xfs_ioerror_alert("xfs_trans_read_buf", mp, 312 bp, blkno); 313 error = XFS_BUF_GETERROR(bp); 314 xfs_buf_relse(bp); 315 return error; 316 } 317 #ifdef DEBUG 318 if (xfs_do_error && (bp != NULL)) { 319 if (xfs_error_target == target) { 320 if (((xfs_req_num++) % xfs_error_mod) == 0) { 321 xfs_buf_relse(bp); 322 cmn_err(CE_DEBUG, "Returning error!\n"); 323 return XFS_ERROR(EIO); 324 } 325 } 326 } 327 #endif 328 if (XFS_FORCED_SHUTDOWN(mp)) 329 goto shutdown_abort; 330 *bpp = bp; 331 return 0; 332 } 333 334 /* 335 * If we find the buffer in the cache with this transaction 336 * pointer in its b_fsprivate2 field, then we know we already 337 * have it locked. If it is already read in we just increment 338 * the lock recursion count and return the buffer to the caller. 339 * If the buffer is not yet read in, then we read it in, increment 340 * the lock recursion count, and return it to the caller. 341 */ 342 if (tp->t_items.lic_next == NULL) { 343 bp = xfs_trans_buf_item_match(tp, target, blkno, len); 344 } else { 345 bp = xfs_trans_buf_item_match_all(tp, target, blkno, len); 346 } 347 if (bp != NULL) { 348 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); 349 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); 350 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 351 ASSERT((XFS_BUF_ISERROR(bp)) == 0); 352 if (!(XFS_BUF_ISDONE(bp))) { 353 xfs_buftrace("READ_BUF_INCORE !DONE", bp); 354 ASSERT(!XFS_BUF_ISASYNC(bp)); 355 XFS_BUF_READ(bp); 356 xfsbdstrat(tp->t_mountp, bp); 357 error = xfs_iowait(bp); 358 if (error) { 359 xfs_ioerror_alert("xfs_trans_read_buf", mp, 360 bp, blkno); 361 xfs_buf_relse(bp); 362 /* 363 * We can gracefully recover from most read 364 * errors. Ones we can't are those that happen 365 * after the transaction's already dirty. 366 */ 367 if (tp->t_flags & XFS_TRANS_DIRTY) 368 xfs_force_shutdown(tp->t_mountp, 369 SHUTDOWN_META_IO_ERROR); 370 return error; 371 } 372 } 373 /* 374 * We never locked this buf ourselves, so we shouldn't 375 * brelse it either. Just get out. 376 */ 377 if (XFS_FORCED_SHUTDOWN(mp)) { 378 xfs_buftrace("READ_BUF_INCORE XFSSHUTDN", bp); 379 *bpp = NULL; 380 return XFS_ERROR(EIO); 381 } 382 383 384 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); 385 bip->bli_recur++; 386 387 ASSERT(atomic_read(&bip->bli_refcount) > 0); 388 xfs_buf_item_trace("READ RECUR", bip); 389 *bpp = bp; 390 return 0; 391 } 392 393 /* 394 * We always specify the BUF_BUSY flag within a transaction so 395 * that get_buf does not try to push out a delayed write buffer 396 * which might cause another transaction to take place (if the 397 * buffer was delayed alloc). Such recursive transactions can 398 * easily deadlock with our current transaction as well as cause 399 * us to run out of stack space. 400 */ 401 bp = xfs_buf_read_flags(target, blkno, len, flags | BUF_BUSY); 402 if (bp == NULL) { 403 *bpp = NULL; 404 return 0; 405 } 406 if (XFS_BUF_GETERROR(bp) != 0) { 407 XFS_BUF_SUPER_STALE(bp); 408 xfs_buftrace("READ ERROR", bp); 409 error = XFS_BUF_GETERROR(bp); 410 411 xfs_ioerror_alert("xfs_trans_read_buf", mp, 412 bp, blkno); 413 if (tp->t_flags & XFS_TRANS_DIRTY) 414 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR); 415 xfs_buf_relse(bp); 416 return error; 417 } 418 #ifdef DEBUG 419 if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) { 420 if (xfs_error_target == target) { 421 if (((xfs_req_num++) % xfs_error_mod) == 0) { 422 xfs_force_shutdown(tp->t_mountp, 423 SHUTDOWN_META_IO_ERROR); 424 xfs_buf_relse(bp); 425 cmn_err(CE_DEBUG, "Returning trans error!\n"); 426 return XFS_ERROR(EIO); 427 } 428 } 429 } 430 #endif 431 if (XFS_FORCED_SHUTDOWN(mp)) 432 goto shutdown_abort; 433 434 /* 435 * The xfs_buf_log_item pointer is stored in b_fsprivate. If 436 * it doesn't have one yet, then allocate one and initialize it. 437 * The checks to see if one is there are in xfs_buf_item_init(). 438 */ 439 xfs_buf_item_init(bp, tp->t_mountp); 440 441 /* 442 * Set the recursion count for the buffer within this transaction 443 * to 0. 444 */ 445 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); 446 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 447 ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); 448 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 449 bip->bli_recur = 0; 450 451 /* 452 * Take a reference for this transaction on the buf item. 453 */ 454 atomic_inc(&bip->bli_refcount); 455 456 /* 457 * Get a log_item_desc to point at the new item. 458 */ 459 (void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip); 460 461 /* 462 * Initialize b_fsprivate2 so we can find it with incore_match() 463 * above. 464 */ 465 XFS_BUF_SET_FSPRIVATE2(bp, tp); 466 467 xfs_buftrace("TRANS READ", bp); 468 xfs_buf_item_trace("READ", bip); 469 *bpp = bp; 470 return 0; 471 472 shutdown_abort: 473 /* 474 * the theory here is that buffer is good but we're 475 * bailing out because the filesystem is being forcibly 476 * shut down. So we should leave the b_flags alone since 477 * the buffer's not staled and just get out. 478 */ 479 #if defined(DEBUG) 480 if (XFS_BUF_ISSTALE(bp) && XFS_BUF_ISDELAYWRITE(bp)) 481 cmn_err(CE_NOTE, "about to pop assert, bp == 0x%p", bp); 482 #endif 483 ASSERT((XFS_BUF_BFLAGS(bp) & (XFS_B_STALE|XFS_B_DELWRI)) != 484 (XFS_B_STALE|XFS_B_DELWRI)); 485 486 xfs_buftrace("READ_BUF XFSSHUTDN", bp); 487 xfs_buf_relse(bp); 488 *bpp = NULL; 489 return XFS_ERROR(EIO); 490 } 491 492 493 /* 494 * Release the buffer bp which was previously acquired with one of the 495 * xfs_trans_... buffer allocation routines if the buffer has not 496 * been modified within this transaction. If the buffer is modified 497 * within this transaction, do decrement the recursion count but do 498 * not release the buffer even if the count goes to 0. If the buffer is not 499 * modified within the transaction, decrement the recursion count and 500 * release the buffer if the recursion count goes to 0. 501 * 502 * If the buffer is to be released and it was not modified before 503 * this transaction began, then free the buf_log_item associated with it. 504 * 505 * If the transaction pointer is NULL, make this just a normal 506 * brelse() call. 507 */ 508 void 509 xfs_trans_brelse(xfs_trans_t *tp, 510 xfs_buf_t *bp) 511 { 512 xfs_buf_log_item_t *bip; 513 xfs_log_item_t *lip; 514 xfs_log_item_desc_t *lidp; 515 516 /* 517 * Default to a normal brelse() call if the tp is NULL. 518 */ 519 if (tp == NULL) { 520 ASSERT(XFS_BUF_FSPRIVATE2(bp, void *) == NULL); 521 /* 522 * If there's a buf log item attached to the buffer, 523 * then let the AIL know that the buffer is being 524 * unlocked. 525 */ 526 if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) { 527 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); 528 if (lip->li_type == XFS_LI_BUF) { 529 bip = XFS_BUF_FSPRIVATE(bp,xfs_buf_log_item_t*); 530 xfs_trans_unlocked_item( 531 bip->bli_item.li_mountp, 532 lip); 533 } 534 } 535 xfs_buf_relse(bp); 536 return; 537 } 538 539 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); 540 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); 541 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 542 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 543 ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); 544 ASSERT(atomic_read(&bip->bli_refcount) > 0); 545 546 /* 547 * Find the item descriptor pointing to this buffer's 548 * log item. It must be there. 549 */ 550 lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip); 551 ASSERT(lidp != NULL); 552 553 /* 554 * If the release is just for a recursive lock, 555 * then decrement the count and return. 556 */ 557 if (bip->bli_recur > 0) { 558 bip->bli_recur--; 559 xfs_buf_item_trace("RELSE RECUR", bip); 560 return; 561 } 562 563 /* 564 * If the buffer is dirty within this transaction, we can't 565 * release it until we commit. 566 */ 567 if (lidp->lid_flags & XFS_LID_DIRTY) { 568 xfs_buf_item_trace("RELSE DIRTY", bip); 569 return; 570 } 571 572 /* 573 * If the buffer has been invalidated, then we can't release 574 * it until the transaction commits to disk unless it is re-dirtied 575 * as part of this transaction. This prevents us from pulling 576 * the item from the AIL before we should. 577 */ 578 if (bip->bli_flags & XFS_BLI_STALE) { 579 xfs_buf_item_trace("RELSE STALE", bip); 580 return; 581 } 582 583 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 584 xfs_buf_item_trace("RELSE", bip); 585 586 /* 587 * Free up the log item descriptor tracking the released item. 588 */ 589 xfs_trans_free_item(tp, lidp); 590 591 /* 592 * Clear the hold flag in the buf log item if it is set. 593 * We wouldn't want the next user of the buffer to 594 * get confused. 595 */ 596 if (bip->bli_flags & XFS_BLI_HOLD) { 597 bip->bli_flags &= ~XFS_BLI_HOLD; 598 } 599 600 /* 601 * Drop our reference to the buf log item. 602 */ 603 atomic_dec(&bip->bli_refcount); 604 605 /* 606 * If the buf item is not tracking data in the log, then 607 * we must free it before releasing the buffer back to the 608 * free pool. Before releasing the buffer to the free pool, 609 * clear the transaction pointer in b_fsprivate2 to dissolve 610 * its relation to this transaction. 611 */ 612 if (!xfs_buf_item_dirty(bip)) { 613 /*** 614 ASSERT(bp->b_pincount == 0); 615 ***/ 616 ASSERT(atomic_read(&bip->bli_refcount) == 0); 617 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL)); 618 ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF)); 619 xfs_buf_item_relse(bp); 620 bip = NULL; 621 } 622 XFS_BUF_SET_FSPRIVATE2(bp, NULL); 623 624 /* 625 * If we've still got a buf log item on the buffer, then 626 * tell the AIL that the buffer is being unlocked. 627 */ 628 if (bip != NULL) { 629 xfs_trans_unlocked_item(bip->bli_item.li_mountp, 630 (xfs_log_item_t*)bip); 631 } 632 633 xfs_buf_relse(bp); 634 return; 635 } 636 637 /* 638 * Add the locked buffer to the transaction. 639 * The buffer must be locked, and it cannot be associated with any 640 * transaction. 641 * 642 * If the buffer does not yet have a buf log item associated with it, 643 * then allocate one for it. Then add the buf item to the transaction. 644 */ 645 void 646 xfs_trans_bjoin(xfs_trans_t *tp, 647 xfs_buf_t *bp) 648 { 649 xfs_buf_log_item_t *bip; 650 651 ASSERT(XFS_BUF_ISBUSY(bp)); 652 ASSERT(XFS_BUF_FSPRIVATE2(bp, void *) == NULL); 653 654 /* 655 * The xfs_buf_log_item pointer is stored in b_fsprivate. If 656 * it doesn't have one yet, then allocate one and initialize it. 657 * The checks to see if one is there are in xfs_buf_item_init(). 658 */ 659 xfs_buf_item_init(bp, tp->t_mountp); 660 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); 661 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 662 ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); 663 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 664 665 /* 666 * Take a reference for this transaction on the buf item. 667 */ 668 atomic_inc(&bip->bli_refcount); 669 670 /* 671 * Get a log_item_desc to point at the new item. 672 */ 673 (void) xfs_trans_add_item(tp, (xfs_log_item_t *)bip); 674 675 /* 676 * Initialize b_fsprivate2 so we can find it with incore_match() 677 * in xfs_trans_get_buf() and friends above. 678 */ 679 XFS_BUF_SET_FSPRIVATE2(bp, tp); 680 681 xfs_buf_item_trace("BJOIN", bip); 682 } 683 684 /* 685 * Mark the buffer as not needing to be unlocked when the buf item's 686 * IOP_UNLOCK() routine is called. The buffer must already be locked 687 * and associated with the given transaction. 688 */ 689 /* ARGSUSED */ 690 void 691 xfs_trans_bhold(xfs_trans_t *tp, 692 xfs_buf_t *bp) 693 { 694 xfs_buf_log_item_t *bip; 695 696 ASSERT(XFS_BUF_ISBUSY(bp)); 697 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); 698 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 699 700 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); 701 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 702 ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); 703 ASSERT(atomic_read(&bip->bli_refcount) > 0); 704 bip->bli_flags |= XFS_BLI_HOLD; 705 xfs_buf_item_trace("BHOLD", bip); 706 } 707 708 /* 709 * Cancel the previous buffer hold request made on this buffer 710 * for this transaction. 711 */ 712 void 713 xfs_trans_bhold_release(xfs_trans_t *tp, 714 xfs_buf_t *bp) 715 { 716 xfs_buf_log_item_t *bip; 717 718 ASSERT(XFS_BUF_ISBUSY(bp)); 719 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); 720 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 721 722 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); 723 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 724 ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); 725 ASSERT(atomic_read(&bip->bli_refcount) > 0); 726 ASSERT(bip->bli_flags & XFS_BLI_HOLD); 727 bip->bli_flags &= ~XFS_BLI_HOLD; 728 xfs_buf_item_trace("BHOLD RELEASE", bip); 729 } 730 731 /* 732 * This is called to mark bytes first through last inclusive of the given 733 * buffer as needing to be logged when the transaction is committed. 734 * The buffer must already be associated with the given transaction. 735 * 736 * First and last are numbers relative to the beginning of this buffer, 737 * so the first byte in the buffer is numbered 0 regardless of the 738 * value of b_blkno. 739 */ 740 void 741 xfs_trans_log_buf(xfs_trans_t *tp, 742 xfs_buf_t *bp, 743 uint first, 744 uint last) 745 { 746 xfs_buf_log_item_t *bip; 747 xfs_log_item_desc_t *lidp; 748 749 ASSERT(XFS_BUF_ISBUSY(bp)); 750 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); 751 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 752 ASSERT((first <= last) && (last < XFS_BUF_COUNT(bp))); 753 ASSERT((XFS_BUF_IODONE_FUNC(bp) == NULL) || 754 (XFS_BUF_IODONE_FUNC(bp) == xfs_buf_iodone_callbacks)); 755 756 /* 757 * Mark the buffer as needing to be written out eventually, 758 * and set its iodone function to remove the buffer's buf log 759 * item from the AIL and free it when the buffer is flushed 760 * to disk. See xfs_buf_attach_iodone() for more details 761 * on li_cb and xfs_buf_iodone_callbacks(). 762 * If we end up aborting this transaction, we trap this buffer 763 * inside the b_bdstrat callback so that this won't get written to 764 * disk. 765 */ 766 XFS_BUF_DELAYWRITE(bp); 767 XFS_BUF_DONE(bp); 768 769 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); 770 ASSERT(atomic_read(&bip->bli_refcount) > 0); 771 XFS_BUF_SET_IODONE_FUNC(bp, xfs_buf_iodone_callbacks); 772 bip->bli_item.li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*))xfs_buf_iodone; 773 774 /* 775 * If we invalidated the buffer within this transaction, then 776 * cancel the invalidation now that we're dirtying the buffer 777 * again. There are no races with the code in xfs_buf_item_unpin(), 778 * because we have a reference to the buffer this entire time. 779 */ 780 if (bip->bli_flags & XFS_BLI_STALE) { 781 xfs_buf_item_trace("BLOG UNSTALE", bip); 782 bip->bli_flags &= ~XFS_BLI_STALE; 783 ASSERT(XFS_BUF_ISSTALE(bp)); 784 XFS_BUF_UNSTALE(bp); 785 bip->bli_format.blf_flags &= ~XFS_BLI_CANCEL; 786 } 787 788 lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip); 789 ASSERT(lidp != NULL); 790 791 tp->t_flags |= XFS_TRANS_DIRTY; 792 lidp->lid_flags |= XFS_LID_DIRTY; 793 lidp->lid_flags &= ~XFS_LID_BUF_STALE; 794 bip->bli_flags |= XFS_BLI_LOGGED; 795 xfs_buf_item_log(bip, first, last); 796 xfs_buf_item_trace("BLOG", bip); 797 } 798 799 800 /* 801 * This called to invalidate a buffer that is being used within 802 * a transaction. Typically this is because the blocks in the 803 * buffer are being freed, so we need to prevent it from being 804 * written out when we're done. Allowing it to be written again 805 * might overwrite data in the free blocks if they are reallocated 806 * to a file. 807 * 808 * We prevent the buffer from being written out by clearing the 809 * B_DELWRI flag. We can't always 810 * get rid of the buf log item at this point, though, because 811 * the buffer may still be pinned by another transaction. If that 812 * is the case, then we'll wait until the buffer is committed to 813 * disk for the last time (we can tell by the ref count) and 814 * free it in xfs_buf_item_unpin(). Until it is cleaned up we 815 * will keep the buffer locked so that the buffer and buf log item 816 * are not reused. 817 */ 818 void 819 xfs_trans_binval( 820 xfs_trans_t *tp, 821 xfs_buf_t *bp) 822 { 823 xfs_log_item_desc_t *lidp; 824 xfs_buf_log_item_t *bip; 825 826 ASSERT(XFS_BUF_ISBUSY(bp)); 827 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); 828 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 829 830 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); 831 lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip); 832 ASSERT(lidp != NULL); 833 ASSERT(atomic_read(&bip->bli_refcount) > 0); 834 835 if (bip->bli_flags & XFS_BLI_STALE) { 836 /* 837 * If the buffer is already invalidated, then 838 * just return. 839 */ 840 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp))); 841 ASSERT(XFS_BUF_ISSTALE(bp)); 842 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY))); 843 ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_INODE_BUF)); 844 ASSERT(bip->bli_format.blf_flags & XFS_BLI_CANCEL); 845 ASSERT(lidp->lid_flags & XFS_LID_DIRTY); 846 ASSERT(tp->t_flags & XFS_TRANS_DIRTY); 847 xfs_buftrace("XFS_BINVAL RECUR", bp); 848 xfs_buf_item_trace("BINVAL RECUR", bip); 849 return; 850 } 851 852 /* 853 * Clear the dirty bit in the buffer and set the STALE flag 854 * in the buf log item. The STALE flag will be used in 855 * xfs_buf_item_unpin() to determine if it should clean up 856 * when the last reference to the buf item is given up. 857 * We set the XFS_BLI_CANCEL flag in the buf log format structure 858 * and log the buf item. This will be used at recovery time 859 * to determine that copies of the buffer in the log before 860 * this should not be replayed. 861 * We mark the item descriptor and the transaction dirty so 862 * that we'll hold the buffer until after the commit. 863 * 864 * Since we're invalidating the buffer, we also clear the state 865 * about which parts of the buffer have been logged. We also 866 * clear the flag indicating that this is an inode buffer since 867 * the data in the buffer will no longer be valid. 868 * 869 * We set the stale bit in the buffer as well since we're getting 870 * rid of it. 871 */ 872 XFS_BUF_UNDELAYWRITE(bp); 873 XFS_BUF_STALE(bp); 874 bip->bli_flags |= XFS_BLI_STALE; 875 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_DIRTY); 876 bip->bli_format.blf_flags &= ~XFS_BLI_INODE_BUF; 877 bip->bli_format.blf_flags |= XFS_BLI_CANCEL; 878 memset((char *)(bip->bli_format.blf_data_map), 0, 879 (bip->bli_format.blf_map_size * sizeof(uint))); 880 lidp->lid_flags |= XFS_LID_DIRTY|XFS_LID_BUF_STALE; 881 tp->t_flags |= XFS_TRANS_DIRTY; 882 xfs_buftrace("XFS_BINVAL", bp); 883 xfs_buf_item_trace("BINVAL", bip); 884 } 885 886 /* 887 * This call is used to indicate that the buffer contains on-disk 888 * inodes which must be handled specially during recovery. They 889 * require special handling because only the di_next_unlinked from 890 * the inodes in the buffer should be recovered. The rest of the 891 * data in the buffer is logged via the inodes themselves. 892 * 893 * All we do is set the XFS_BLI_INODE_BUF flag in the buffer's log 894 * format structure so that we'll know what to do at recovery time. 895 */ 896 /* ARGSUSED */ 897 void 898 xfs_trans_inode_buf( 899 xfs_trans_t *tp, 900 xfs_buf_t *bp) 901 { 902 xfs_buf_log_item_t *bip; 903 904 ASSERT(XFS_BUF_ISBUSY(bp)); 905 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); 906 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 907 908 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); 909 ASSERT(atomic_read(&bip->bli_refcount) > 0); 910 911 bip->bli_format.blf_flags |= XFS_BLI_INODE_BUF; 912 } 913 914 /* 915 * This call is used to indicate that the buffer is going to 916 * be staled and was an inode buffer. This means it gets 917 * special processing during unpin - where any inodes 918 * associated with the buffer should be removed from ail. 919 * There is also special processing during recovery, 920 * any replay of the inodes in the buffer needs to be 921 * prevented as the buffer may have been reused. 922 */ 923 void 924 xfs_trans_stale_inode_buf( 925 xfs_trans_t *tp, 926 xfs_buf_t *bp) 927 { 928 xfs_buf_log_item_t *bip; 929 930 ASSERT(XFS_BUF_ISBUSY(bp)); 931 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); 932 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 933 934 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); 935 ASSERT(atomic_read(&bip->bli_refcount) > 0); 936 937 bip->bli_flags |= XFS_BLI_STALE_INODE; 938 bip->bli_item.li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) 939 xfs_buf_iodone; 940 } 941 942 943 944 /* 945 * Mark the buffer as being one which contains newly allocated 946 * inodes. We need to make sure that even if this buffer is 947 * relogged as an 'inode buf' we still recover all of the inode 948 * images in the face of a crash. This works in coordination with 949 * xfs_buf_item_committed() to ensure that the buffer remains in the 950 * AIL at its original location even after it has been relogged. 951 */ 952 /* ARGSUSED */ 953 void 954 xfs_trans_inode_alloc_buf( 955 xfs_trans_t *tp, 956 xfs_buf_t *bp) 957 { 958 xfs_buf_log_item_t *bip; 959 960 ASSERT(XFS_BUF_ISBUSY(bp)); 961 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); 962 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 963 964 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); 965 ASSERT(atomic_read(&bip->bli_refcount) > 0); 966 967 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF; 968 } 969 970 971 /* 972 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of 973 * dquots. However, unlike in inode buffer recovery, dquot buffers get 974 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag). 975 * The only thing that makes dquot buffers different from regular 976 * buffers is that we must not replay dquot bufs when recovering 977 * if a _corresponding_ quotaoff has happened. We also have to distinguish 978 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas 979 * can be turned off independently. 980 */ 981 /* ARGSUSED */ 982 void 983 xfs_trans_dquot_buf( 984 xfs_trans_t *tp, 985 xfs_buf_t *bp, 986 uint type) 987 { 988 xfs_buf_log_item_t *bip; 989 990 ASSERT(XFS_BUF_ISBUSY(bp)); 991 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); 992 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 993 ASSERT(type == XFS_BLI_UDQUOT_BUF || 994 type == XFS_BLI_PDQUOT_BUF || 995 type == XFS_BLI_GDQUOT_BUF); 996 997 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); 998 ASSERT(atomic_read(&bip->bli_refcount) > 0); 999 1000 bip->bli_format.blf_flags |= type; 1001 } 1002 1003 /* 1004 * Check to see if a buffer matching the given parameters is already 1005 * a part of the given transaction. Only check the first, embedded 1006 * chunk, since we don't want to spend all day scanning large transactions. 1007 */ 1008 STATIC xfs_buf_t * 1009 xfs_trans_buf_item_match( 1010 xfs_trans_t *tp, 1011 xfs_buftarg_t *target, 1012 xfs_daddr_t blkno, 1013 int len) 1014 { 1015 xfs_log_item_chunk_t *licp; 1016 xfs_log_item_desc_t *lidp; 1017 xfs_buf_log_item_t *blip; 1018 xfs_buf_t *bp; 1019 int i; 1020 1021 bp = NULL; 1022 len = BBTOB(len); 1023 licp = &tp->t_items; 1024 if (!XFS_LIC_ARE_ALL_FREE(licp)) { 1025 for (i = 0; i < licp->lic_unused; i++) { 1026 /* 1027 * Skip unoccupied slots. 1028 */ 1029 if (XFS_LIC_ISFREE(licp, i)) { 1030 continue; 1031 } 1032 1033 lidp = XFS_LIC_SLOT(licp, i); 1034 blip = (xfs_buf_log_item_t *)lidp->lid_item; 1035 if (blip->bli_item.li_type != XFS_LI_BUF) { 1036 continue; 1037 } 1038 1039 bp = blip->bli_buf; 1040 if ((XFS_BUF_TARGET(bp) == target) && 1041 (XFS_BUF_ADDR(bp) == blkno) && 1042 (XFS_BUF_COUNT(bp) == len)) { 1043 /* 1044 * We found it. Break out and 1045 * return the pointer to the buffer. 1046 */ 1047 break; 1048 } else { 1049 bp = NULL; 1050 } 1051 } 1052 } 1053 return bp; 1054 } 1055 1056 /* 1057 * Check to see if a buffer matching the given parameters is already 1058 * a part of the given transaction. Check all the chunks, we 1059 * want to be thorough. 1060 */ 1061 STATIC xfs_buf_t * 1062 xfs_trans_buf_item_match_all( 1063 xfs_trans_t *tp, 1064 xfs_buftarg_t *target, 1065 xfs_daddr_t blkno, 1066 int len) 1067 { 1068 xfs_log_item_chunk_t *licp; 1069 xfs_log_item_desc_t *lidp; 1070 xfs_buf_log_item_t *blip; 1071 xfs_buf_t *bp; 1072 int i; 1073 1074 bp = NULL; 1075 len = BBTOB(len); 1076 for (licp = &tp->t_items; licp != NULL; licp = licp->lic_next) { 1077 if (XFS_LIC_ARE_ALL_FREE(licp)) { 1078 ASSERT(licp == &tp->t_items); 1079 ASSERT(licp->lic_next == NULL); 1080 return NULL; 1081 } 1082 for (i = 0; i < licp->lic_unused; i++) { 1083 /* 1084 * Skip unoccupied slots. 1085 */ 1086 if (XFS_LIC_ISFREE(licp, i)) { 1087 continue; 1088 } 1089 1090 lidp = XFS_LIC_SLOT(licp, i); 1091 blip = (xfs_buf_log_item_t *)lidp->lid_item; 1092 if (blip->bli_item.li_type != XFS_LI_BUF) { 1093 continue; 1094 } 1095 1096 bp = blip->bli_buf; 1097 if ((XFS_BUF_TARGET(bp) == target) && 1098 (XFS_BUF_ADDR(bp) == blkno) && 1099 (XFS_BUF_COUNT(bp) == len)) { 1100 /* 1101 * We found it. Break out and 1102 * return the pointer to the buffer. 1103 */ 1104 return bp; 1105 } 1106 } 1107 } 1108 return NULL; 1109 } 1110