1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_inode.h" 26 #include "xfs_trans.h" 27 #include "xfs_buf_item.h" 28 #include "xfs_trans_priv.h" 29 #include "xfs_error.h" 30 #include "xfs_trace.h" 31 32 /* 33 * Check to see if a buffer matching the given parameters is already 34 * a part of the given transaction. 35 */ 36 STATIC struct xfs_buf * 37 xfs_trans_buf_item_match( 38 struct xfs_trans *tp, 39 struct xfs_buftarg *target, 40 struct xfs_buf_map *map, 41 int nmaps) 42 { 43 struct xfs_log_item_desc *lidp; 44 struct xfs_buf_log_item *blip; 45 int len = 0; 46 int i; 47 48 for (i = 0; i < nmaps; i++) 49 len += map[i].bm_len; 50 51 list_for_each_entry(lidp, &tp->t_items, lid_trans) { 52 blip = (struct xfs_buf_log_item *)lidp->lid_item; 53 if (blip->bli_item.li_type == XFS_LI_BUF && 54 blip->bli_buf->b_target == target && 55 XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn && 56 blip->bli_buf->b_length == len) { 57 ASSERT(blip->bli_buf->b_map_count == nmaps); 58 return blip->bli_buf; 59 } 60 } 61 62 return NULL; 63 } 64 65 /* 66 * Add the locked buffer to the transaction. 67 * 68 * The buffer must be locked, and it cannot be associated with any 69 * transaction. 70 * 71 * If the buffer does not yet have a buf log item associated with it, 72 * then allocate one for it. Then add the buf item to the transaction. 73 */ 74 STATIC void 75 _xfs_trans_bjoin( 76 struct xfs_trans *tp, 77 struct xfs_buf *bp, 78 int reset_recur) 79 { 80 struct xfs_buf_log_item *bip; 81 82 ASSERT(bp->b_transp == NULL); 83 84 /* 85 * The xfs_buf_log_item pointer is stored in b_fsprivate. If 86 * it doesn't have one yet, then allocate one and initialize it. 87 * The checks to see if one is there are in xfs_buf_item_init(). 88 */ 89 xfs_buf_item_init(bp, tp->t_mountp); 90 bip = bp->b_fspriv; 91 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 92 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 93 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 94 if (reset_recur) 95 bip->bli_recur = 0; 96 97 /* 98 * Take a reference for this transaction on the buf item. 99 */ 100 atomic_inc(&bip->bli_refcount); 101 102 /* 103 * Get a log_item_desc to point at the new item. 104 */ 105 xfs_trans_add_item(tp, &bip->bli_item); 106 107 /* 108 * Initialize b_fsprivate2 so we can find it with incore_match() 109 * in xfs_trans_get_buf() and friends above. 110 */ 111 bp->b_transp = tp; 112 113 } 114 115 void 116 xfs_trans_bjoin( 117 struct xfs_trans *tp, 118 struct xfs_buf *bp) 119 { 120 _xfs_trans_bjoin(tp, bp, 0); 121 trace_xfs_trans_bjoin(bp->b_fspriv); 122 } 123 124 /* 125 * Get and lock the buffer for the caller if it is not already 126 * locked within the given transaction. If it is already locked 127 * within the transaction, just increment its lock recursion count 128 * and return a pointer to it. 129 * 130 * If the transaction pointer is NULL, make this just a normal 131 * get_buf() call. 132 */ 133 struct xfs_buf * 134 xfs_trans_get_buf_map( 135 struct xfs_trans *tp, 136 struct xfs_buftarg *target, 137 struct xfs_buf_map *map, 138 int nmaps, 139 xfs_buf_flags_t flags) 140 { 141 xfs_buf_t *bp; 142 xfs_buf_log_item_t *bip; 143 144 if (!tp) 145 return xfs_buf_get_map(target, map, nmaps, flags); 146 147 /* 148 * If we find the buffer in the cache with this transaction 149 * pointer in its b_fsprivate2 field, then we know we already 150 * have it locked. In this case we just increment the lock 151 * recursion count and return the buffer to the caller. 152 */ 153 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 154 if (bp != NULL) { 155 ASSERT(xfs_buf_islocked(bp)); 156 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) { 157 xfs_buf_stale(bp); 158 bp->b_flags |= XBF_DONE; 159 } 160 161 ASSERT(bp->b_transp == tp); 162 bip = bp->b_fspriv; 163 ASSERT(bip != NULL); 164 ASSERT(atomic_read(&bip->bli_refcount) > 0); 165 bip->bli_recur++; 166 trace_xfs_trans_get_buf_recur(bip); 167 return bp; 168 } 169 170 bp = xfs_buf_get_map(target, map, nmaps, flags); 171 if (bp == NULL) { 172 return NULL; 173 } 174 175 ASSERT(!bp->b_error); 176 177 _xfs_trans_bjoin(tp, bp, 1); 178 trace_xfs_trans_get_buf(bp->b_fspriv); 179 return bp; 180 } 181 182 /* 183 * Get and lock the superblock buffer of this file system for the 184 * given transaction. 185 * 186 * We don't need to use incore_match() here, because the superblock 187 * buffer is a private buffer which we keep a pointer to in the 188 * mount structure. 189 */ 190 xfs_buf_t * 191 xfs_trans_getsb(xfs_trans_t *tp, 192 struct xfs_mount *mp, 193 int flags) 194 { 195 xfs_buf_t *bp; 196 xfs_buf_log_item_t *bip; 197 198 /* 199 * Default to just trying to lock the superblock buffer 200 * if tp is NULL. 201 */ 202 if (tp == NULL) 203 return xfs_getsb(mp, flags); 204 205 /* 206 * If the superblock buffer already has this transaction 207 * pointer in its b_fsprivate2 field, then we know we already 208 * have it locked. In this case we just increment the lock 209 * recursion count and return the buffer to the caller. 210 */ 211 bp = mp->m_sb_bp; 212 if (bp->b_transp == tp) { 213 bip = bp->b_fspriv; 214 ASSERT(bip != NULL); 215 ASSERT(atomic_read(&bip->bli_refcount) > 0); 216 bip->bli_recur++; 217 trace_xfs_trans_getsb_recur(bip); 218 return bp; 219 } 220 221 bp = xfs_getsb(mp, flags); 222 if (bp == NULL) 223 return NULL; 224 225 _xfs_trans_bjoin(tp, bp, 1); 226 trace_xfs_trans_getsb(bp->b_fspriv); 227 return bp; 228 } 229 230 /* 231 * Get and lock the buffer for the caller if it is not already 232 * locked within the given transaction. If it has not yet been 233 * read in, read it from disk. If it is already locked 234 * within the transaction and already read in, just increment its 235 * lock recursion count and return a pointer to it. 236 * 237 * If the transaction pointer is NULL, make this just a normal 238 * read_buf() call. 239 */ 240 int 241 xfs_trans_read_buf_map( 242 struct xfs_mount *mp, 243 struct xfs_trans *tp, 244 struct xfs_buftarg *target, 245 struct xfs_buf_map *map, 246 int nmaps, 247 xfs_buf_flags_t flags, 248 struct xfs_buf **bpp, 249 const struct xfs_buf_ops *ops) 250 { 251 struct xfs_buf *bp = NULL; 252 struct xfs_buf_log_item *bip; 253 int error; 254 255 *bpp = NULL; 256 /* 257 * If we find the buffer in the cache with this transaction 258 * pointer in its b_fsprivate2 field, then we know we already 259 * have it locked. If it is already read in we just increment 260 * the lock recursion count and return the buffer to the caller. 261 * If the buffer is not yet read in, then we read it in, increment 262 * the lock recursion count, and return it to the caller. 263 */ 264 if (tp) 265 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 266 if (bp) { 267 ASSERT(xfs_buf_islocked(bp)); 268 ASSERT(bp->b_transp == tp); 269 ASSERT(bp->b_fspriv != NULL); 270 ASSERT(!bp->b_error); 271 ASSERT(bp->b_flags & XBF_DONE); 272 273 /* 274 * We never locked this buf ourselves, so we shouldn't 275 * brelse it either. Just get out. 276 */ 277 if (XFS_FORCED_SHUTDOWN(mp)) { 278 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 279 return -EIO; 280 } 281 282 bip = bp->b_fspriv; 283 bip->bli_recur++; 284 285 ASSERT(atomic_read(&bip->bli_refcount) > 0); 286 trace_xfs_trans_read_buf_recur(bip); 287 *bpp = bp; 288 return 0; 289 } 290 291 bp = xfs_buf_read_map(target, map, nmaps, flags, ops); 292 if (!bp) { 293 if (!(flags & XBF_TRYLOCK)) 294 return -ENOMEM; 295 return tp ? 0 : -EAGAIN; 296 } 297 298 /* 299 * If we've had a read error, then the contents of the buffer are 300 * invalid and should not be used. To ensure that a followup read tries 301 * to pull the buffer from disk again, we clear the XBF_DONE flag and 302 * mark the buffer stale. This ensures that anyone who has a current 303 * reference to the buffer will interpret it's contents correctly and 304 * future cache lookups will also treat it as an empty, uninitialised 305 * buffer. 306 */ 307 if (bp->b_error) { 308 error = bp->b_error; 309 if (!XFS_FORCED_SHUTDOWN(mp)) 310 xfs_buf_ioerror_alert(bp, __func__); 311 bp->b_flags &= ~XBF_DONE; 312 xfs_buf_stale(bp); 313 314 if (tp && (tp->t_flags & XFS_TRANS_DIRTY)) 315 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR); 316 xfs_buf_relse(bp); 317 318 /* bad CRC means corrupted metadata */ 319 if (error == -EFSBADCRC) 320 error = -EFSCORRUPTED; 321 return error; 322 } 323 324 if (XFS_FORCED_SHUTDOWN(mp)) { 325 xfs_buf_relse(bp); 326 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 327 return -EIO; 328 } 329 330 if (tp) { 331 _xfs_trans_bjoin(tp, bp, 1); 332 trace_xfs_trans_read_buf(bp->b_fspriv); 333 } 334 *bpp = bp; 335 return 0; 336 337 } 338 339 /* 340 * Release the buffer bp which was previously acquired with one of the 341 * xfs_trans_... buffer allocation routines if the buffer has not 342 * been modified within this transaction. If the buffer is modified 343 * within this transaction, do decrement the recursion count but do 344 * not release the buffer even if the count goes to 0. If the buffer is not 345 * modified within the transaction, decrement the recursion count and 346 * release the buffer if the recursion count goes to 0. 347 * 348 * If the buffer is to be released and it was not modified before 349 * this transaction began, then free the buf_log_item associated with it. 350 * 351 * If the transaction pointer is NULL, make this just a normal 352 * brelse() call. 353 */ 354 void 355 xfs_trans_brelse(xfs_trans_t *tp, 356 xfs_buf_t *bp) 357 { 358 xfs_buf_log_item_t *bip; 359 int freed; 360 361 /* 362 * Default to a normal brelse() call if the tp is NULL. 363 */ 364 if (tp == NULL) { 365 ASSERT(bp->b_transp == NULL); 366 xfs_buf_relse(bp); 367 return; 368 } 369 370 ASSERT(bp->b_transp == tp); 371 bip = bp->b_fspriv; 372 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 373 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 374 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 375 ASSERT(atomic_read(&bip->bli_refcount) > 0); 376 377 trace_xfs_trans_brelse(bip); 378 379 /* 380 * If the release is just for a recursive lock, 381 * then decrement the count and return. 382 */ 383 if (bip->bli_recur > 0) { 384 bip->bli_recur--; 385 return; 386 } 387 388 /* 389 * If the buffer is dirty within this transaction, we can't 390 * release it until we commit. 391 */ 392 if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY) 393 return; 394 395 /* 396 * If the buffer has been invalidated, then we can't release 397 * it until the transaction commits to disk unless it is re-dirtied 398 * as part of this transaction. This prevents us from pulling 399 * the item from the AIL before we should. 400 */ 401 if (bip->bli_flags & XFS_BLI_STALE) 402 return; 403 404 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 405 406 /* 407 * Free up the log item descriptor tracking the released item. 408 */ 409 xfs_trans_del_item(&bip->bli_item); 410 411 /* 412 * Clear the hold flag in the buf log item if it is set. 413 * We wouldn't want the next user of the buffer to 414 * get confused. 415 */ 416 if (bip->bli_flags & XFS_BLI_HOLD) { 417 bip->bli_flags &= ~XFS_BLI_HOLD; 418 } 419 420 /* 421 * Drop our reference to the buf log item. 422 */ 423 freed = atomic_dec_and_test(&bip->bli_refcount); 424 425 /* 426 * If the buf item is not tracking data in the log, then we must free it 427 * before releasing the buffer back to the free pool. 428 * 429 * If the fs has shutdown and we dropped the last reference, it may fall 430 * on us to release a (possibly dirty) bli if it never made it to the 431 * AIL (e.g., the aborted unpin already happened and didn't release it 432 * due to our reference). Since we're already shutdown and need xa_lock, 433 * just force remove from the AIL and release the bli here. 434 */ 435 if (XFS_FORCED_SHUTDOWN(tp->t_mountp) && freed) { 436 xfs_trans_ail_remove(&bip->bli_item, SHUTDOWN_LOG_IO_ERROR); 437 xfs_buf_item_relse(bp); 438 } else if (!xfs_buf_item_dirty(bip)) { 439 /*** 440 ASSERT(bp->b_pincount == 0); 441 ***/ 442 ASSERT(atomic_read(&bip->bli_refcount) == 0); 443 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL)); 444 ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF)); 445 xfs_buf_item_relse(bp); 446 } 447 448 bp->b_transp = NULL; 449 xfs_buf_relse(bp); 450 } 451 452 /* 453 * Mark the buffer as not needing to be unlocked when the buf item's 454 * iop_unlock() routine is called. The buffer must already be locked 455 * and associated with the given transaction. 456 */ 457 /* ARGSUSED */ 458 void 459 xfs_trans_bhold(xfs_trans_t *tp, 460 xfs_buf_t *bp) 461 { 462 xfs_buf_log_item_t *bip = bp->b_fspriv; 463 464 ASSERT(bp->b_transp == tp); 465 ASSERT(bip != NULL); 466 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 467 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 468 ASSERT(atomic_read(&bip->bli_refcount) > 0); 469 470 bip->bli_flags |= XFS_BLI_HOLD; 471 trace_xfs_trans_bhold(bip); 472 } 473 474 /* 475 * Cancel the previous buffer hold request made on this buffer 476 * for this transaction. 477 */ 478 void 479 xfs_trans_bhold_release(xfs_trans_t *tp, 480 xfs_buf_t *bp) 481 { 482 xfs_buf_log_item_t *bip = bp->b_fspriv; 483 484 ASSERT(bp->b_transp == tp); 485 ASSERT(bip != NULL); 486 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 487 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 488 ASSERT(atomic_read(&bip->bli_refcount) > 0); 489 ASSERT(bip->bli_flags & XFS_BLI_HOLD); 490 491 bip->bli_flags &= ~XFS_BLI_HOLD; 492 trace_xfs_trans_bhold_release(bip); 493 } 494 495 /* 496 * This is called to mark bytes first through last inclusive of the given 497 * buffer as needing to be logged when the transaction is committed. 498 * The buffer must already be associated with the given transaction. 499 * 500 * First and last are numbers relative to the beginning of this buffer, 501 * so the first byte in the buffer is numbered 0 regardless of the 502 * value of b_blkno. 503 */ 504 void 505 xfs_trans_log_buf(xfs_trans_t *tp, 506 xfs_buf_t *bp, 507 uint first, 508 uint last) 509 { 510 xfs_buf_log_item_t *bip = bp->b_fspriv; 511 512 ASSERT(bp->b_transp == tp); 513 ASSERT(bip != NULL); 514 ASSERT(first <= last && last < BBTOB(bp->b_length)); 515 ASSERT(bp->b_iodone == NULL || 516 bp->b_iodone == xfs_buf_iodone_callbacks); 517 518 /* 519 * Mark the buffer as needing to be written out eventually, 520 * and set its iodone function to remove the buffer's buf log 521 * item from the AIL and free it when the buffer is flushed 522 * to disk. See xfs_buf_attach_iodone() for more details 523 * on li_cb and xfs_buf_iodone_callbacks(). 524 * If we end up aborting this transaction, we trap this buffer 525 * inside the b_bdstrat callback so that this won't get written to 526 * disk. 527 */ 528 bp->b_flags |= XBF_DONE; 529 530 ASSERT(atomic_read(&bip->bli_refcount) > 0); 531 bp->b_iodone = xfs_buf_iodone_callbacks; 532 bip->bli_item.li_cb = xfs_buf_iodone; 533 534 trace_xfs_trans_log_buf(bip); 535 536 /* 537 * If we invalidated the buffer within this transaction, then 538 * cancel the invalidation now that we're dirtying the buffer 539 * again. There are no races with the code in xfs_buf_item_unpin(), 540 * because we have a reference to the buffer this entire time. 541 */ 542 if (bip->bli_flags & XFS_BLI_STALE) { 543 bip->bli_flags &= ~XFS_BLI_STALE; 544 ASSERT(bp->b_flags & XBF_STALE); 545 bp->b_flags &= ~XBF_STALE; 546 bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL; 547 } 548 549 tp->t_flags |= XFS_TRANS_DIRTY; 550 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY; 551 552 /* 553 * If we have an ordered buffer we are not logging any dirty range but 554 * it still needs to be marked dirty and that it has been logged. 555 */ 556 bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED; 557 if (!(bip->bli_flags & XFS_BLI_ORDERED)) 558 xfs_buf_item_log(bip, first, last); 559 } 560 561 562 /* 563 * Invalidate a buffer that is being used within a transaction. 564 * 565 * Typically this is because the blocks in the buffer are being freed, so we 566 * need to prevent it from being written out when we're done. Allowing it 567 * to be written again might overwrite data in the free blocks if they are 568 * reallocated to a file. 569 * 570 * We prevent the buffer from being written out by marking it stale. We can't 571 * get rid of the buf log item at this point because the buffer may still be 572 * pinned by another transaction. If that is the case, then we'll wait until 573 * the buffer is committed to disk for the last time (we can tell by the ref 574 * count) and free it in xfs_buf_item_unpin(). Until that happens we will 575 * keep the buffer locked so that the buffer and buf log item are not reused. 576 * 577 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log 578 * the buf item. This will be used at recovery time to determine that copies 579 * of the buffer in the log before this should not be replayed. 580 * 581 * We mark the item descriptor and the transaction dirty so that we'll hold 582 * the buffer until after the commit. 583 * 584 * Since we're invalidating the buffer, we also clear the state about which 585 * parts of the buffer have been logged. We also clear the flag indicating 586 * that this is an inode buffer since the data in the buffer will no longer 587 * be valid. 588 * 589 * We set the stale bit in the buffer as well since we're getting rid of it. 590 */ 591 void 592 xfs_trans_binval( 593 xfs_trans_t *tp, 594 xfs_buf_t *bp) 595 { 596 xfs_buf_log_item_t *bip = bp->b_fspriv; 597 int i; 598 599 ASSERT(bp->b_transp == tp); 600 ASSERT(bip != NULL); 601 ASSERT(atomic_read(&bip->bli_refcount) > 0); 602 603 trace_xfs_trans_binval(bip); 604 605 if (bip->bli_flags & XFS_BLI_STALE) { 606 /* 607 * If the buffer is already invalidated, then 608 * just return. 609 */ 610 ASSERT(bp->b_flags & XBF_STALE); 611 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY))); 612 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF)); 613 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK)); 614 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 615 ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY); 616 ASSERT(tp->t_flags & XFS_TRANS_DIRTY); 617 return; 618 } 619 620 xfs_buf_stale(bp); 621 622 bip->bli_flags |= XFS_BLI_STALE; 623 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY); 624 bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF; 625 bip->__bli_format.blf_flags |= XFS_BLF_CANCEL; 626 bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK; 627 for (i = 0; i < bip->bli_format_count; i++) { 628 memset(bip->bli_formats[i].blf_data_map, 0, 629 (bip->bli_formats[i].blf_map_size * sizeof(uint))); 630 } 631 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY; 632 tp->t_flags |= XFS_TRANS_DIRTY; 633 } 634 635 /* 636 * This call is used to indicate that the buffer contains on-disk inodes which 637 * must be handled specially during recovery. They require special handling 638 * because only the di_next_unlinked from the inodes in the buffer should be 639 * recovered. The rest of the data in the buffer is logged via the inodes 640 * themselves. 641 * 642 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be 643 * transferred to the buffer's log format structure so that we'll know what to 644 * do at recovery time. 645 */ 646 void 647 xfs_trans_inode_buf( 648 xfs_trans_t *tp, 649 xfs_buf_t *bp) 650 { 651 xfs_buf_log_item_t *bip = bp->b_fspriv; 652 653 ASSERT(bp->b_transp == tp); 654 ASSERT(bip != NULL); 655 ASSERT(atomic_read(&bip->bli_refcount) > 0); 656 657 bip->bli_flags |= XFS_BLI_INODE_BUF; 658 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 659 } 660 661 /* 662 * This call is used to indicate that the buffer is going to 663 * be staled and was an inode buffer. This means it gets 664 * special processing during unpin - where any inodes 665 * associated with the buffer should be removed from ail. 666 * There is also special processing during recovery, 667 * any replay of the inodes in the buffer needs to be 668 * prevented as the buffer may have been reused. 669 */ 670 void 671 xfs_trans_stale_inode_buf( 672 xfs_trans_t *tp, 673 xfs_buf_t *bp) 674 { 675 xfs_buf_log_item_t *bip = bp->b_fspriv; 676 677 ASSERT(bp->b_transp == tp); 678 ASSERT(bip != NULL); 679 ASSERT(atomic_read(&bip->bli_refcount) > 0); 680 681 bip->bli_flags |= XFS_BLI_STALE_INODE; 682 bip->bli_item.li_cb = xfs_buf_iodone; 683 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 684 } 685 686 /* 687 * Mark the buffer as being one which contains newly allocated 688 * inodes. We need to make sure that even if this buffer is 689 * relogged as an 'inode buf' we still recover all of the inode 690 * images in the face of a crash. This works in coordination with 691 * xfs_buf_item_committed() to ensure that the buffer remains in the 692 * AIL at its original location even after it has been relogged. 693 */ 694 /* ARGSUSED */ 695 void 696 xfs_trans_inode_alloc_buf( 697 xfs_trans_t *tp, 698 xfs_buf_t *bp) 699 { 700 xfs_buf_log_item_t *bip = bp->b_fspriv; 701 702 ASSERT(bp->b_transp == tp); 703 ASSERT(bip != NULL); 704 ASSERT(atomic_read(&bip->bli_refcount) > 0); 705 706 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF; 707 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 708 } 709 710 /* 711 * Mark the buffer as ordered for this transaction. This means 712 * that the contents of the buffer are not recorded in the transaction 713 * but it is tracked in the AIL as though it was. This allows us 714 * to record logical changes in transactions rather than the physical 715 * changes we make to the buffer without changing writeback ordering 716 * constraints of metadata buffers. 717 */ 718 void 719 xfs_trans_ordered_buf( 720 struct xfs_trans *tp, 721 struct xfs_buf *bp) 722 { 723 struct xfs_buf_log_item *bip = bp->b_fspriv; 724 725 ASSERT(bp->b_transp == tp); 726 ASSERT(bip != NULL); 727 ASSERT(atomic_read(&bip->bli_refcount) > 0); 728 729 bip->bli_flags |= XFS_BLI_ORDERED; 730 trace_xfs_buf_item_ordered(bip); 731 } 732 733 /* 734 * Set the type of the buffer for log recovery so that it can correctly identify 735 * and hence attach the correct buffer ops to the buffer after replay. 736 */ 737 void 738 xfs_trans_buf_set_type( 739 struct xfs_trans *tp, 740 struct xfs_buf *bp, 741 enum xfs_blft type) 742 { 743 struct xfs_buf_log_item *bip = bp->b_fspriv; 744 745 if (!tp) 746 return; 747 748 ASSERT(bp->b_transp == tp); 749 ASSERT(bip != NULL); 750 ASSERT(atomic_read(&bip->bli_refcount) > 0); 751 752 xfs_blft_to_flags(&bip->__bli_format, type); 753 } 754 755 void 756 xfs_trans_buf_copy_type( 757 struct xfs_buf *dst_bp, 758 struct xfs_buf *src_bp) 759 { 760 struct xfs_buf_log_item *sbip = src_bp->b_fspriv; 761 struct xfs_buf_log_item *dbip = dst_bp->b_fspriv; 762 enum xfs_blft type; 763 764 type = xfs_blft_from_flags(&sbip->__bli_format); 765 xfs_blft_to_flags(&dbip->__bli_format, type); 766 } 767 768 /* 769 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of 770 * dquots. However, unlike in inode buffer recovery, dquot buffers get 771 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag). 772 * The only thing that makes dquot buffers different from regular 773 * buffers is that we must not replay dquot bufs when recovering 774 * if a _corresponding_ quotaoff has happened. We also have to distinguish 775 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas 776 * can be turned off independently. 777 */ 778 /* ARGSUSED */ 779 void 780 xfs_trans_dquot_buf( 781 xfs_trans_t *tp, 782 xfs_buf_t *bp, 783 uint type) 784 { 785 struct xfs_buf_log_item *bip = bp->b_fspriv; 786 787 ASSERT(type == XFS_BLF_UDQUOT_BUF || 788 type == XFS_BLF_PDQUOT_BUF || 789 type == XFS_BLF_GDQUOT_BUF); 790 791 bip->__bli_format.blf_flags |= type; 792 793 switch (type) { 794 case XFS_BLF_UDQUOT_BUF: 795 type = XFS_BLFT_UDQUOT_BUF; 796 break; 797 case XFS_BLF_PDQUOT_BUF: 798 type = XFS_BLFT_PDQUOT_BUF; 799 break; 800 case XFS_BLF_GDQUOT_BUF: 801 type = XFS_BLFT_GDQUOT_BUF; 802 break; 803 default: 804 type = XFS_BLFT_UNKNOWN_BUF; 805 break; 806 } 807 808 xfs_trans_buf_set_type(tp, bp, type); 809 } 810