xref: /openbmc/linux/fs/xfs/xfs_trans_buf.c (revision 455f9726)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_buf_item.h"
30 #include "xfs_trans_priv.h"
31 #include "xfs_error.h"
32 #include "xfs_trace.h"
33 
34 /*
35  * Check to see if a buffer matching the given parameters is already
36  * a part of the given transaction.
37  */
38 STATIC struct xfs_buf *
39 xfs_trans_buf_item_match(
40 	struct xfs_trans	*tp,
41 	struct xfs_buftarg	*target,
42 	struct xfs_buf_map	*map,
43 	int			nmaps)
44 {
45 	struct xfs_log_item_desc *lidp;
46 	struct xfs_buf_log_item	*blip;
47 	int			len = 0;
48 	int			i;
49 
50 	for (i = 0; i < nmaps; i++)
51 		len += map[i].bm_len;
52 
53 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
54 		blip = (struct xfs_buf_log_item *)lidp->lid_item;
55 		if (blip->bli_item.li_type == XFS_LI_BUF &&
56 		    blip->bli_buf->b_target == target &&
57 		    XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
58 		    blip->bli_buf->b_length == len) {
59 			ASSERT(blip->bli_buf->b_map_count == nmaps);
60 			return blip->bli_buf;
61 		}
62 	}
63 
64 	return NULL;
65 }
66 
67 /*
68  * Add the locked buffer to the transaction.
69  *
70  * The buffer must be locked, and it cannot be associated with any
71  * transaction.
72  *
73  * If the buffer does not yet have a buf log item associated with it,
74  * then allocate one for it.  Then add the buf item to the transaction.
75  */
76 STATIC void
77 _xfs_trans_bjoin(
78 	struct xfs_trans	*tp,
79 	struct xfs_buf		*bp,
80 	int			reset_recur)
81 {
82 	struct xfs_buf_log_item	*bip;
83 
84 	ASSERT(bp->b_transp == NULL);
85 
86 	/*
87 	 * The xfs_buf_log_item pointer is stored in b_fsprivate.  If
88 	 * it doesn't have one yet, then allocate one and initialize it.
89 	 * The checks to see if one is there are in xfs_buf_item_init().
90 	 */
91 	xfs_buf_item_init(bp, tp->t_mountp);
92 	bip = bp->b_fspriv;
93 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
94 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
95 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
96 	if (reset_recur)
97 		bip->bli_recur = 0;
98 
99 	/*
100 	 * Take a reference for this transaction on the buf item.
101 	 */
102 	atomic_inc(&bip->bli_refcount);
103 
104 	/*
105 	 * Get a log_item_desc to point at the new item.
106 	 */
107 	xfs_trans_add_item(tp, &bip->bli_item);
108 
109 	/*
110 	 * Initialize b_fsprivate2 so we can find it with incore_match()
111 	 * in xfs_trans_get_buf() and friends above.
112 	 */
113 	bp->b_transp = tp;
114 
115 }
116 
117 void
118 xfs_trans_bjoin(
119 	struct xfs_trans	*tp,
120 	struct xfs_buf		*bp)
121 {
122 	_xfs_trans_bjoin(tp, bp, 0);
123 	trace_xfs_trans_bjoin(bp->b_fspriv);
124 }
125 
126 /*
127  * Get and lock the buffer for the caller if it is not already
128  * locked within the given transaction.  If it is already locked
129  * within the transaction, just increment its lock recursion count
130  * and return a pointer to it.
131  *
132  * If the transaction pointer is NULL, make this just a normal
133  * get_buf() call.
134  */
135 struct xfs_buf *
136 xfs_trans_get_buf_map(
137 	struct xfs_trans	*tp,
138 	struct xfs_buftarg	*target,
139 	struct xfs_buf_map	*map,
140 	int			nmaps,
141 	xfs_buf_flags_t		flags)
142 {
143 	xfs_buf_t		*bp;
144 	xfs_buf_log_item_t	*bip;
145 
146 	if (!tp)
147 		return xfs_buf_get_map(target, map, nmaps, flags);
148 
149 	/*
150 	 * If we find the buffer in the cache with this transaction
151 	 * pointer in its b_fsprivate2 field, then we know we already
152 	 * have it locked.  In this case we just increment the lock
153 	 * recursion count and return the buffer to the caller.
154 	 */
155 	bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
156 	if (bp != NULL) {
157 		ASSERT(xfs_buf_islocked(bp));
158 		if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
159 			xfs_buf_stale(bp);
160 			XFS_BUF_DONE(bp);
161 		}
162 
163 		ASSERT(bp->b_transp == tp);
164 		bip = bp->b_fspriv;
165 		ASSERT(bip != NULL);
166 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
167 		bip->bli_recur++;
168 		trace_xfs_trans_get_buf_recur(bip);
169 		return (bp);
170 	}
171 
172 	bp = xfs_buf_get_map(target, map, nmaps, flags);
173 	if (bp == NULL) {
174 		return NULL;
175 	}
176 
177 	ASSERT(!bp->b_error);
178 
179 	_xfs_trans_bjoin(tp, bp, 1);
180 	trace_xfs_trans_get_buf(bp->b_fspriv);
181 	return (bp);
182 }
183 
184 /*
185  * Get and lock the superblock buffer of this file system for the
186  * given transaction.
187  *
188  * We don't need to use incore_match() here, because the superblock
189  * buffer is a private buffer which we keep a pointer to in the
190  * mount structure.
191  */
192 xfs_buf_t *
193 xfs_trans_getsb(xfs_trans_t	*tp,
194 		struct xfs_mount *mp,
195 		int		flags)
196 {
197 	xfs_buf_t		*bp;
198 	xfs_buf_log_item_t	*bip;
199 
200 	/*
201 	 * Default to just trying to lock the superblock buffer
202 	 * if tp is NULL.
203 	 */
204 	if (tp == NULL) {
205 		return (xfs_getsb(mp, flags));
206 	}
207 
208 	/*
209 	 * If the superblock buffer already has this transaction
210 	 * pointer in its b_fsprivate2 field, then we know we already
211 	 * have it locked.  In this case we just increment the lock
212 	 * recursion count and return the buffer to the caller.
213 	 */
214 	bp = mp->m_sb_bp;
215 	if (bp->b_transp == tp) {
216 		bip = bp->b_fspriv;
217 		ASSERT(bip != NULL);
218 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
219 		bip->bli_recur++;
220 		trace_xfs_trans_getsb_recur(bip);
221 		return (bp);
222 	}
223 
224 	bp = xfs_getsb(mp, flags);
225 	if (bp == NULL)
226 		return NULL;
227 
228 	_xfs_trans_bjoin(tp, bp, 1);
229 	trace_xfs_trans_getsb(bp->b_fspriv);
230 	return (bp);
231 }
232 
233 #ifdef DEBUG
234 xfs_buftarg_t *xfs_error_target;
235 int	xfs_do_error;
236 int	xfs_req_num;
237 int	xfs_error_mod = 33;
238 #endif
239 
240 /*
241  * Get and lock the buffer for the caller if it is not already
242  * locked within the given transaction.  If it has not yet been
243  * read in, read it from disk. If it is already locked
244  * within the transaction and already read in, just increment its
245  * lock recursion count and return a pointer to it.
246  *
247  * If the transaction pointer is NULL, make this just a normal
248  * read_buf() call.
249  */
250 int
251 xfs_trans_read_buf_map(
252 	struct xfs_mount	*mp,
253 	struct xfs_trans	*tp,
254 	struct xfs_buftarg	*target,
255 	struct xfs_buf_map	*map,
256 	int			nmaps,
257 	xfs_buf_flags_t		flags,
258 	struct xfs_buf		**bpp,
259 	const struct xfs_buf_ops *ops)
260 {
261 	xfs_buf_t		*bp;
262 	xfs_buf_log_item_t	*bip;
263 	int			error;
264 
265 	*bpp = NULL;
266 	if (!tp) {
267 		bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
268 		if (!bp)
269 			return (flags & XBF_TRYLOCK) ?
270 					EAGAIN : XFS_ERROR(ENOMEM);
271 
272 		if (bp->b_error) {
273 			error = bp->b_error;
274 			xfs_buf_ioerror_alert(bp, __func__);
275 			XFS_BUF_UNDONE(bp);
276 			xfs_buf_stale(bp);
277 			xfs_buf_relse(bp);
278 
279 			/* bad CRC means corrupted metadata */
280 			if (error == EFSBADCRC)
281 				error = EFSCORRUPTED;
282 			return error;
283 		}
284 #ifdef DEBUG
285 		if (xfs_do_error) {
286 			if (xfs_error_target == target) {
287 				if (((xfs_req_num++) % xfs_error_mod) == 0) {
288 					xfs_buf_relse(bp);
289 					xfs_debug(mp, "Returning error!");
290 					return XFS_ERROR(EIO);
291 				}
292 			}
293 		}
294 #endif
295 		if (XFS_FORCED_SHUTDOWN(mp))
296 			goto shutdown_abort;
297 		*bpp = bp;
298 		return 0;
299 	}
300 
301 	/*
302 	 * If we find the buffer in the cache with this transaction
303 	 * pointer in its b_fsprivate2 field, then we know we already
304 	 * have it locked.  If it is already read in we just increment
305 	 * the lock recursion count and return the buffer to the caller.
306 	 * If the buffer is not yet read in, then we read it in, increment
307 	 * the lock recursion count, and return it to the caller.
308 	 */
309 	bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
310 	if (bp != NULL) {
311 		ASSERT(xfs_buf_islocked(bp));
312 		ASSERT(bp->b_transp == tp);
313 		ASSERT(bp->b_fspriv != NULL);
314 		ASSERT(!bp->b_error);
315 		if (!(XFS_BUF_ISDONE(bp))) {
316 			trace_xfs_trans_read_buf_io(bp, _RET_IP_);
317 			ASSERT(!XFS_BUF_ISASYNC(bp));
318 			ASSERT(bp->b_iodone == NULL);
319 			XFS_BUF_READ(bp);
320 			bp->b_ops = ops;
321 
322 			/*
323 			 * XXX(hch): clean up the error handling here to be less
324 			 * of a mess..
325 			 */
326 			if (XFS_FORCED_SHUTDOWN(mp)) {
327 				trace_xfs_bdstrat_shut(bp, _RET_IP_);
328 				xfs_bioerror_relse(bp);
329 			} else {
330 				xfs_buf_iorequest(bp);
331 			}
332 
333 			error = xfs_buf_iowait(bp);
334 			if (error) {
335 				xfs_buf_ioerror_alert(bp, __func__);
336 				xfs_buf_relse(bp);
337 				/*
338 				 * We can gracefully recover from most read
339 				 * errors. Ones we can't are those that happen
340 				 * after the transaction's already dirty.
341 				 */
342 				if (tp->t_flags & XFS_TRANS_DIRTY)
343 					xfs_force_shutdown(tp->t_mountp,
344 							SHUTDOWN_META_IO_ERROR);
345 				/* bad CRC means corrupted metadata */
346 				if (error == EFSBADCRC)
347 					error = EFSCORRUPTED;
348 				return error;
349 			}
350 		}
351 		/*
352 		 * We never locked this buf ourselves, so we shouldn't
353 		 * brelse it either. Just get out.
354 		 */
355 		if (XFS_FORCED_SHUTDOWN(mp)) {
356 			trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
357 			*bpp = NULL;
358 			return XFS_ERROR(EIO);
359 		}
360 
361 
362 		bip = bp->b_fspriv;
363 		bip->bli_recur++;
364 
365 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
366 		trace_xfs_trans_read_buf_recur(bip);
367 		*bpp = bp;
368 		return 0;
369 	}
370 
371 	bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
372 	if (bp == NULL) {
373 		*bpp = NULL;
374 		return (flags & XBF_TRYLOCK) ?
375 					0 : XFS_ERROR(ENOMEM);
376 	}
377 	if (bp->b_error) {
378 		error = bp->b_error;
379 		xfs_buf_stale(bp);
380 		XFS_BUF_DONE(bp);
381 		xfs_buf_ioerror_alert(bp, __func__);
382 		if (tp->t_flags & XFS_TRANS_DIRTY)
383 			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
384 		xfs_buf_relse(bp);
385 
386 		/* bad CRC means corrupted metadata */
387 		if (error == EFSBADCRC)
388 			error = EFSCORRUPTED;
389 		return error;
390 	}
391 #ifdef DEBUG
392 	if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) {
393 		if (xfs_error_target == target) {
394 			if (((xfs_req_num++) % xfs_error_mod) == 0) {
395 				xfs_force_shutdown(tp->t_mountp,
396 						   SHUTDOWN_META_IO_ERROR);
397 				xfs_buf_relse(bp);
398 				xfs_debug(mp, "Returning trans error!");
399 				return XFS_ERROR(EIO);
400 			}
401 		}
402 	}
403 #endif
404 	if (XFS_FORCED_SHUTDOWN(mp))
405 		goto shutdown_abort;
406 
407 	_xfs_trans_bjoin(tp, bp, 1);
408 	trace_xfs_trans_read_buf(bp->b_fspriv);
409 
410 	*bpp = bp;
411 	return 0;
412 
413 shutdown_abort:
414 	trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
415 	xfs_buf_relse(bp);
416 	*bpp = NULL;
417 	return XFS_ERROR(EIO);
418 }
419 
420 /*
421  * Release the buffer bp which was previously acquired with one of the
422  * xfs_trans_... buffer allocation routines if the buffer has not
423  * been modified within this transaction.  If the buffer is modified
424  * within this transaction, do decrement the recursion count but do
425  * not release the buffer even if the count goes to 0.  If the buffer is not
426  * modified within the transaction, decrement the recursion count and
427  * release the buffer if the recursion count goes to 0.
428  *
429  * If the buffer is to be released and it was not modified before
430  * this transaction began, then free the buf_log_item associated with it.
431  *
432  * If the transaction pointer is NULL, make this just a normal
433  * brelse() call.
434  */
435 void
436 xfs_trans_brelse(xfs_trans_t	*tp,
437 		 xfs_buf_t	*bp)
438 {
439 	xfs_buf_log_item_t	*bip;
440 
441 	/*
442 	 * Default to a normal brelse() call if the tp is NULL.
443 	 */
444 	if (tp == NULL) {
445 		ASSERT(bp->b_transp == NULL);
446 		xfs_buf_relse(bp);
447 		return;
448 	}
449 
450 	ASSERT(bp->b_transp == tp);
451 	bip = bp->b_fspriv;
452 	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
453 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
454 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
455 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
456 
457 	trace_xfs_trans_brelse(bip);
458 
459 	/*
460 	 * If the release is just for a recursive lock,
461 	 * then decrement the count and return.
462 	 */
463 	if (bip->bli_recur > 0) {
464 		bip->bli_recur--;
465 		return;
466 	}
467 
468 	/*
469 	 * If the buffer is dirty within this transaction, we can't
470 	 * release it until we commit.
471 	 */
472 	if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY)
473 		return;
474 
475 	/*
476 	 * If the buffer has been invalidated, then we can't release
477 	 * it until the transaction commits to disk unless it is re-dirtied
478 	 * as part of this transaction.  This prevents us from pulling
479 	 * the item from the AIL before we should.
480 	 */
481 	if (bip->bli_flags & XFS_BLI_STALE)
482 		return;
483 
484 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
485 
486 	/*
487 	 * Free up the log item descriptor tracking the released item.
488 	 */
489 	xfs_trans_del_item(&bip->bli_item);
490 
491 	/*
492 	 * Clear the hold flag in the buf log item if it is set.
493 	 * We wouldn't want the next user of the buffer to
494 	 * get confused.
495 	 */
496 	if (bip->bli_flags & XFS_BLI_HOLD) {
497 		bip->bli_flags &= ~XFS_BLI_HOLD;
498 	}
499 
500 	/*
501 	 * Drop our reference to the buf log item.
502 	 */
503 	atomic_dec(&bip->bli_refcount);
504 
505 	/*
506 	 * If the buf item is not tracking data in the log, then
507 	 * we must free it before releasing the buffer back to the
508 	 * free pool.  Before releasing the buffer to the free pool,
509 	 * clear the transaction pointer in b_fsprivate2 to dissolve
510 	 * its relation to this transaction.
511 	 */
512 	if (!xfs_buf_item_dirty(bip)) {
513 /***
514 		ASSERT(bp->b_pincount == 0);
515 ***/
516 		ASSERT(atomic_read(&bip->bli_refcount) == 0);
517 		ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
518 		ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
519 		xfs_buf_item_relse(bp);
520 	}
521 
522 	bp->b_transp = NULL;
523 	xfs_buf_relse(bp);
524 }
525 
526 /*
527  * Mark the buffer as not needing to be unlocked when the buf item's
528  * iop_unlock() routine is called.  The buffer must already be locked
529  * and associated with the given transaction.
530  */
531 /* ARGSUSED */
532 void
533 xfs_trans_bhold(xfs_trans_t	*tp,
534 		xfs_buf_t	*bp)
535 {
536 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
537 
538 	ASSERT(bp->b_transp == tp);
539 	ASSERT(bip != NULL);
540 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
541 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
542 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
543 
544 	bip->bli_flags |= XFS_BLI_HOLD;
545 	trace_xfs_trans_bhold(bip);
546 }
547 
548 /*
549  * Cancel the previous buffer hold request made on this buffer
550  * for this transaction.
551  */
552 void
553 xfs_trans_bhold_release(xfs_trans_t	*tp,
554 			xfs_buf_t	*bp)
555 {
556 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
557 
558 	ASSERT(bp->b_transp == tp);
559 	ASSERT(bip != NULL);
560 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
561 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
562 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
563 	ASSERT(bip->bli_flags & XFS_BLI_HOLD);
564 
565 	bip->bli_flags &= ~XFS_BLI_HOLD;
566 	trace_xfs_trans_bhold_release(bip);
567 }
568 
569 /*
570  * This is called to mark bytes first through last inclusive of the given
571  * buffer as needing to be logged when the transaction is committed.
572  * The buffer must already be associated with the given transaction.
573  *
574  * First and last are numbers relative to the beginning of this buffer,
575  * so the first byte in the buffer is numbered 0 regardless of the
576  * value of b_blkno.
577  */
578 void
579 xfs_trans_log_buf(xfs_trans_t	*tp,
580 		  xfs_buf_t	*bp,
581 		  uint		first,
582 		  uint		last)
583 {
584 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
585 
586 	ASSERT(bp->b_transp == tp);
587 	ASSERT(bip != NULL);
588 	ASSERT(first <= last && last < BBTOB(bp->b_length));
589 	ASSERT(bp->b_iodone == NULL ||
590 	       bp->b_iodone == xfs_buf_iodone_callbacks);
591 
592 	/*
593 	 * Mark the buffer as needing to be written out eventually,
594 	 * and set its iodone function to remove the buffer's buf log
595 	 * item from the AIL and free it when the buffer is flushed
596 	 * to disk.  See xfs_buf_attach_iodone() for more details
597 	 * on li_cb and xfs_buf_iodone_callbacks().
598 	 * If we end up aborting this transaction, we trap this buffer
599 	 * inside the b_bdstrat callback so that this won't get written to
600 	 * disk.
601 	 */
602 	XFS_BUF_DONE(bp);
603 
604 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
605 	bp->b_iodone = xfs_buf_iodone_callbacks;
606 	bip->bli_item.li_cb = xfs_buf_iodone;
607 
608 	trace_xfs_trans_log_buf(bip);
609 
610 	/*
611 	 * If we invalidated the buffer within this transaction, then
612 	 * cancel the invalidation now that we're dirtying the buffer
613 	 * again.  There are no races with the code in xfs_buf_item_unpin(),
614 	 * because we have a reference to the buffer this entire time.
615 	 */
616 	if (bip->bli_flags & XFS_BLI_STALE) {
617 		bip->bli_flags &= ~XFS_BLI_STALE;
618 		ASSERT(XFS_BUF_ISSTALE(bp));
619 		XFS_BUF_UNSTALE(bp);
620 		bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
621 	}
622 
623 	tp->t_flags |= XFS_TRANS_DIRTY;
624 	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
625 
626 	/*
627 	 * If we have an ordered buffer we are not logging any dirty range but
628 	 * it still needs to be marked dirty and that it has been logged.
629 	 */
630 	bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
631 	if (!(bip->bli_flags & XFS_BLI_ORDERED))
632 		xfs_buf_item_log(bip, first, last);
633 }
634 
635 
636 /*
637  * Invalidate a buffer that is being used within a transaction.
638  *
639  * Typically this is because the blocks in the buffer are being freed, so we
640  * need to prevent it from being written out when we're done.  Allowing it
641  * to be written again might overwrite data in the free blocks if they are
642  * reallocated to a file.
643  *
644  * We prevent the buffer from being written out by marking it stale.  We can't
645  * get rid of the buf log item at this point because the buffer may still be
646  * pinned by another transaction.  If that is the case, then we'll wait until
647  * the buffer is committed to disk for the last time (we can tell by the ref
648  * count) and free it in xfs_buf_item_unpin().  Until that happens we will
649  * keep the buffer locked so that the buffer and buf log item are not reused.
650  *
651  * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
652  * the buf item.  This will be used at recovery time to determine that copies
653  * of the buffer in the log before this should not be replayed.
654  *
655  * We mark the item descriptor and the transaction dirty so that we'll hold
656  * the buffer until after the commit.
657  *
658  * Since we're invalidating the buffer, we also clear the state about which
659  * parts of the buffer have been logged.  We also clear the flag indicating
660  * that this is an inode buffer since the data in the buffer will no longer
661  * be valid.
662  *
663  * We set the stale bit in the buffer as well since we're getting rid of it.
664  */
665 void
666 xfs_trans_binval(
667 	xfs_trans_t	*tp,
668 	xfs_buf_t	*bp)
669 {
670 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
671 	int			i;
672 
673 	ASSERT(bp->b_transp == tp);
674 	ASSERT(bip != NULL);
675 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
676 
677 	trace_xfs_trans_binval(bip);
678 
679 	if (bip->bli_flags & XFS_BLI_STALE) {
680 		/*
681 		 * If the buffer is already invalidated, then
682 		 * just return.
683 		 */
684 		ASSERT(XFS_BUF_ISSTALE(bp));
685 		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
686 		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
687 		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
688 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
689 		ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY);
690 		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
691 		return;
692 	}
693 
694 	xfs_buf_stale(bp);
695 
696 	bip->bli_flags |= XFS_BLI_STALE;
697 	bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
698 	bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
699 	bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
700 	bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
701 	for (i = 0; i < bip->bli_format_count; i++) {
702 		memset(bip->bli_formats[i].blf_data_map, 0,
703 		       (bip->bli_formats[i].blf_map_size * sizeof(uint)));
704 	}
705 	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
706 	tp->t_flags |= XFS_TRANS_DIRTY;
707 }
708 
709 /*
710  * This call is used to indicate that the buffer contains on-disk inodes which
711  * must be handled specially during recovery.  They require special handling
712  * because only the di_next_unlinked from the inodes in the buffer should be
713  * recovered.  The rest of the data in the buffer is logged via the inodes
714  * themselves.
715  *
716  * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
717  * transferred to the buffer's log format structure so that we'll know what to
718  * do at recovery time.
719  */
720 void
721 xfs_trans_inode_buf(
722 	xfs_trans_t	*tp,
723 	xfs_buf_t	*bp)
724 {
725 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
726 
727 	ASSERT(bp->b_transp == tp);
728 	ASSERT(bip != NULL);
729 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
730 
731 	bip->bli_flags |= XFS_BLI_INODE_BUF;
732 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
733 }
734 
735 /*
736  * This call is used to indicate that the buffer is going to
737  * be staled and was an inode buffer. This means it gets
738  * special processing during unpin - where any inodes
739  * associated with the buffer should be removed from ail.
740  * There is also special processing during recovery,
741  * any replay of the inodes in the buffer needs to be
742  * prevented as the buffer may have been reused.
743  */
744 void
745 xfs_trans_stale_inode_buf(
746 	xfs_trans_t	*tp,
747 	xfs_buf_t	*bp)
748 {
749 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
750 
751 	ASSERT(bp->b_transp == tp);
752 	ASSERT(bip != NULL);
753 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
754 
755 	bip->bli_flags |= XFS_BLI_STALE_INODE;
756 	bip->bli_item.li_cb = xfs_buf_iodone;
757 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
758 }
759 
760 /*
761  * Mark the buffer as being one which contains newly allocated
762  * inodes.  We need to make sure that even if this buffer is
763  * relogged as an 'inode buf' we still recover all of the inode
764  * images in the face of a crash.  This works in coordination with
765  * xfs_buf_item_committed() to ensure that the buffer remains in the
766  * AIL at its original location even after it has been relogged.
767  */
768 /* ARGSUSED */
769 void
770 xfs_trans_inode_alloc_buf(
771 	xfs_trans_t	*tp,
772 	xfs_buf_t	*bp)
773 {
774 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
775 
776 	ASSERT(bp->b_transp == tp);
777 	ASSERT(bip != NULL);
778 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
779 
780 	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
781 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
782 }
783 
784 /*
785  * Mark the buffer as ordered for this transaction. This means
786  * that the contents of the buffer are not recorded in the transaction
787  * but it is tracked in the AIL as though it was. This allows us
788  * to record logical changes in transactions rather than the physical
789  * changes we make to the buffer without changing writeback ordering
790  * constraints of metadata buffers.
791  */
792 void
793 xfs_trans_ordered_buf(
794 	struct xfs_trans	*tp,
795 	struct xfs_buf		*bp)
796 {
797 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
798 
799 	ASSERT(bp->b_transp == tp);
800 	ASSERT(bip != NULL);
801 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
802 
803 	bip->bli_flags |= XFS_BLI_ORDERED;
804 	trace_xfs_buf_item_ordered(bip);
805 }
806 
807 /*
808  * Set the type of the buffer for log recovery so that it can correctly identify
809  * and hence attach the correct buffer ops to the buffer after replay.
810  */
811 void
812 xfs_trans_buf_set_type(
813 	struct xfs_trans	*tp,
814 	struct xfs_buf		*bp,
815 	enum xfs_blft		type)
816 {
817 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
818 
819 	if (!tp)
820 		return;
821 
822 	ASSERT(bp->b_transp == tp);
823 	ASSERT(bip != NULL);
824 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
825 
826 	xfs_blft_to_flags(&bip->__bli_format, type);
827 }
828 
829 void
830 xfs_trans_buf_copy_type(
831 	struct xfs_buf		*dst_bp,
832 	struct xfs_buf		*src_bp)
833 {
834 	struct xfs_buf_log_item	*sbip = src_bp->b_fspriv;
835 	struct xfs_buf_log_item	*dbip = dst_bp->b_fspriv;
836 	enum xfs_blft		type;
837 
838 	type = xfs_blft_from_flags(&sbip->__bli_format);
839 	xfs_blft_to_flags(&dbip->__bli_format, type);
840 }
841 
842 /*
843  * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
844  * dquots. However, unlike in inode buffer recovery, dquot buffers get
845  * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
846  * The only thing that makes dquot buffers different from regular
847  * buffers is that we must not replay dquot bufs when recovering
848  * if a _corresponding_ quotaoff has happened. We also have to distinguish
849  * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
850  * can be turned off independently.
851  */
852 /* ARGSUSED */
853 void
854 xfs_trans_dquot_buf(
855 	xfs_trans_t	*tp,
856 	xfs_buf_t	*bp,
857 	uint		type)
858 {
859 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
860 
861 	ASSERT(type == XFS_BLF_UDQUOT_BUF ||
862 	       type == XFS_BLF_PDQUOT_BUF ||
863 	       type == XFS_BLF_GDQUOT_BUF);
864 
865 	bip->__bli_format.blf_flags |= type;
866 
867 	switch (type) {
868 	case XFS_BLF_UDQUOT_BUF:
869 		type = XFS_BLFT_UDQUOT_BUF;
870 		break;
871 	case XFS_BLF_PDQUOT_BUF:
872 		type = XFS_BLFT_PDQUOT_BUF;
873 		break;
874 	case XFS_BLF_GDQUOT_BUF:
875 		type = XFS_BLFT_GDQUOT_BUF;
876 		break;
877 	default:
878 		type = XFS_BLFT_UNKNOWN_BUF;
879 		break;
880 	}
881 
882 	xfs_trans_buf_set_type(tp, bp, type);
883 }
884