1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_sb.h" 25 #include "xfs_ag.h" 26 #include "xfs_mount.h" 27 #include "xfs_inode.h" 28 #include "xfs_trans.h" 29 #include "xfs_buf_item.h" 30 #include "xfs_trans_priv.h" 31 #include "xfs_error.h" 32 #include "xfs_trace.h" 33 34 /* 35 * Check to see if a buffer matching the given parameters is already 36 * a part of the given transaction. 37 */ 38 STATIC struct xfs_buf * 39 xfs_trans_buf_item_match( 40 struct xfs_trans *tp, 41 struct xfs_buftarg *target, 42 struct xfs_buf_map *map, 43 int nmaps) 44 { 45 struct xfs_log_item_desc *lidp; 46 struct xfs_buf_log_item *blip; 47 int len = 0; 48 int i; 49 50 for (i = 0; i < nmaps; i++) 51 len += map[i].bm_len; 52 53 list_for_each_entry(lidp, &tp->t_items, lid_trans) { 54 blip = (struct xfs_buf_log_item *)lidp->lid_item; 55 if (blip->bli_item.li_type == XFS_LI_BUF && 56 blip->bli_buf->b_target == target && 57 XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn && 58 blip->bli_buf->b_length == len) { 59 ASSERT(blip->bli_buf->b_map_count == nmaps); 60 return blip->bli_buf; 61 } 62 } 63 64 return NULL; 65 } 66 67 /* 68 * Add the locked buffer to the transaction. 69 * 70 * The buffer must be locked, and it cannot be associated with any 71 * transaction. 72 * 73 * If the buffer does not yet have a buf log item associated with it, 74 * then allocate one for it. Then add the buf item to the transaction. 75 */ 76 STATIC void 77 _xfs_trans_bjoin( 78 struct xfs_trans *tp, 79 struct xfs_buf *bp, 80 int reset_recur) 81 { 82 struct xfs_buf_log_item *bip; 83 84 ASSERT(bp->b_transp == NULL); 85 86 /* 87 * The xfs_buf_log_item pointer is stored in b_fsprivate. If 88 * it doesn't have one yet, then allocate one and initialize it. 89 * The checks to see if one is there are in xfs_buf_item_init(). 90 */ 91 xfs_buf_item_init(bp, tp->t_mountp); 92 bip = bp->b_fspriv; 93 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 94 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 95 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 96 if (reset_recur) 97 bip->bli_recur = 0; 98 99 /* 100 * Take a reference for this transaction on the buf item. 101 */ 102 atomic_inc(&bip->bli_refcount); 103 104 /* 105 * Get a log_item_desc to point at the new item. 106 */ 107 xfs_trans_add_item(tp, &bip->bli_item); 108 109 /* 110 * Initialize b_fsprivate2 so we can find it with incore_match() 111 * in xfs_trans_get_buf() and friends above. 112 */ 113 bp->b_transp = tp; 114 115 } 116 117 void 118 xfs_trans_bjoin( 119 struct xfs_trans *tp, 120 struct xfs_buf *bp) 121 { 122 _xfs_trans_bjoin(tp, bp, 0); 123 trace_xfs_trans_bjoin(bp->b_fspriv); 124 } 125 126 /* 127 * Get and lock the buffer for the caller if it is not already 128 * locked within the given transaction. If it is already locked 129 * within the transaction, just increment its lock recursion count 130 * and return a pointer to it. 131 * 132 * If the transaction pointer is NULL, make this just a normal 133 * get_buf() call. 134 */ 135 struct xfs_buf * 136 xfs_trans_get_buf_map( 137 struct xfs_trans *tp, 138 struct xfs_buftarg *target, 139 struct xfs_buf_map *map, 140 int nmaps, 141 xfs_buf_flags_t flags) 142 { 143 xfs_buf_t *bp; 144 xfs_buf_log_item_t *bip; 145 146 if (!tp) 147 return xfs_buf_get_map(target, map, nmaps, flags); 148 149 /* 150 * If we find the buffer in the cache with this transaction 151 * pointer in its b_fsprivate2 field, then we know we already 152 * have it locked. In this case we just increment the lock 153 * recursion count and return the buffer to the caller. 154 */ 155 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 156 if (bp != NULL) { 157 ASSERT(xfs_buf_islocked(bp)); 158 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) { 159 xfs_buf_stale(bp); 160 XFS_BUF_DONE(bp); 161 } 162 163 ASSERT(bp->b_transp == tp); 164 bip = bp->b_fspriv; 165 ASSERT(bip != NULL); 166 ASSERT(atomic_read(&bip->bli_refcount) > 0); 167 bip->bli_recur++; 168 trace_xfs_trans_get_buf_recur(bip); 169 return (bp); 170 } 171 172 bp = xfs_buf_get_map(target, map, nmaps, flags); 173 if (bp == NULL) { 174 return NULL; 175 } 176 177 ASSERT(!bp->b_error); 178 179 _xfs_trans_bjoin(tp, bp, 1); 180 trace_xfs_trans_get_buf(bp->b_fspriv); 181 return (bp); 182 } 183 184 /* 185 * Get and lock the superblock buffer of this file system for the 186 * given transaction. 187 * 188 * We don't need to use incore_match() here, because the superblock 189 * buffer is a private buffer which we keep a pointer to in the 190 * mount structure. 191 */ 192 xfs_buf_t * 193 xfs_trans_getsb(xfs_trans_t *tp, 194 struct xfs_mount *mp, 195 int flags) 196 { 197 xfs_buf_t *bp; 198 xfs_buf_log_item_t *bip; 199 200 /* 201 * Default to just trying to lock the superblock buffer 202 * if tp is NULL. 203 */ 204 if (tp == NULL) { 205 return (xfs_getsb(mp, flags)); 206 } 207 208 /* 209 * If the superblock buffer already has this transaction 210 * pointer in its b_fsprivate2 field, then we know we already 211 * have it locked. In this case we just increment the lock 212 * recursion count and return the buffer to the caller. 213 */ 214 bp = mp->m_sb_bp; 215 if (bp->b_transp == tp) { 216 bip = bp->b_fspriv; 217 ASSERT(bip != NULL); 218 ASSERT(atomic_read(&bip->bli_refcount) > 0); 219 bip->bli_recur++; 220 trace_xfs_trans_getsb_recur(bip); 221 return (bp); 222 } 223 224 bp = xfs_getsb(mp, flags); 225 if (bp == NULL) 226 return NULL; 227 228 _xfs_trans_bjoin(tp, bp, 1); 229 trace_xfs_trans_getsb(bp->b_fspriv); 230 return (bp); 231 } 232 233 #ifdef DEBUG 234 xfs_buftarg_t *xfs_error_target; 235 int xfs_do_error; 236 int xfs_req_num; 237 int xfs_error_mod = 33; 238 #endif 239 240 /* 241 * Get and lock the buffer for the caller if it is not already 242 * locked within the given transaction. If it has not yet been 243 * read in, read it from disk. If it is already locked 244 * within the transaction and already read in, just increment its 245 * lock recursion count and return a pointer to it. 246 * 247 * If the transaction pointer is NULL, make this just a normal 248 * read_buf() call. 249 */ 250 int 251 xfs_trans_read_buf_map( 252 struct xfs_mount *mp, 253 struct xfs_trans *tp, 254 struct xfs_buftarg *target, 255 struct xfs_buf_map *map, 256 int nmaps, 257 xfs_buf_flags_t flags, 258 struct xfs_buf **bpp, 259 const struct xfs_buf_ops *ops) 260 { 261 xfs_buf_t *bp; 262 xfs_buf_log_item_t *bip; 263 int error; 264 265 *bpp = NULL; 266 if (!tp) { 267 bp = xfs_buf_read_map(target, map, nmaps, flags, ops); 268 if (!bp) 269 return (flags & XBF_TRYLOCK) ? 270 EAGAIN : XFS_ERROR(ENOMEM); 271 272 if (bp->b_error) { 273 error = bp->b_error; 274 xfs_buf_ioerror_alert(bp, __func__); 275 XFS_BUF_UNDONE(bp); 276 xfs_buf_stale(bp); 277 xfs_buf_relse(bp); 278 279 /* bad CRC means corrupted metadata */ 280 if (error == EFSBADCRC) 281 error = EFSCORRUPTED; 282 return error; 283 } 284 #ifdef DEBUG 285 if (xfs_do_error) { 286 if (xfs_error_target == target) { 287 if (((xfs_req_num++) % xfs_error_mod) == 0) { 288 xfs_buf_relse(bp); 289 xfs_debug(mp, "Returning error!"); 290 return XFS_ERROR(EIO); 291 } 292 } 293 } 294 #endif 295 if (XFS_FORCED_SHUTDOWN(mp)) 296 goto shutdown_abort; 297 *bpp = bp; 298 return 0; 299 } 300 301 /* 302 * If we find the buffer in the cache with this transaction 303 * pointer in its b_fsprivate2 field, then we know we already 304 * have it locked. If it is already read in we just increment 305 * the lock recursion count and return the buffer to the caller. 306 * If the buffer is not yet read in, then we read it in, increment 307 * the lock recursion count, and return it to the caller. 308 */ 309 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 310 if (bp != NULL) { 311 ASSERT(xfs_buf_islocked(bp)); 312 ASSERT(bp->b_transp == tp); 313 ASSERT(bp->b_fspriv != NULL); 314 ASSERT(!bp->b_error); 315 if (!(XFS_BUF_ISDONE(bp))) { 316 trace_xfs_trans_read_buf_io(bp, _RET_IP_); 317 ASSERT(!XFS_BUF_ISASYNC(bp)); 318 ASSERT(bp->b_iodone == NULL); 319 XFS_BUF_READ(bp); 320 bp->b_ops = ops; 321 322 /* 323 * XXX(hch): clean up the error handling here to be less 324 * of a mess.. 325 */ 326 if (XFS_FORCED_SHUTDOWN(mp)) { 327 trace_xfs_bdstrat_shut(bp, _RET_IP_); 328 xfs_bioerror_relse(bp); 329 } else { 330 xfs_buf_iorequest(bp); 331 } 332 333 error = xfs_buf_iowait(bp); 334 if (error) { 335 xfs_buf_ioerror_alert(bp, __func__); 336 xfs_buf_relse(bp); 337 /* 338 * We can gracefully recover from most read 339 * errors. Ones we can't are those that happen 340 * after the transaction's already dirty. 341 */ 342 if (tp->t_flags & XFS_TRANS_DIRTY) 343 xfs_force_shutdown(tp->t_mountp, 344 SHUTDOWN_META_IO_ERROR); 345 /* bad CRC means corrupted metadata */ 346 if (error == EFSBADCRC) 347 error = EFSCORRUPTED; 348 return error; 349 } 350 } 351 /* 352 * We never locked this buf ourselves, so we shouldn't 353 * brelse it either. Just get out. 354 */ 355 if (XFS_FORCED_SHUTDOWN(mp)) { 356 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 357 *bpp = NULL; 358 return XFS_ERROR(EIO); 359 } 360 361 362 bip = bp->b_fspriv; 363 bip->bli_recur++; 364 365 ASSERT(atomic_read(&bip->bli_refcount) > 0); 366 trace_xfs_trans_read_buf_recur(bip); 367 *bpp = bp; 368 return 0; 369 } 370 371 bp = xfs_buf_read_map(target, map, nmaps, flags, ops); 372 if (bp == NULL) { 373 *bpp = NULL; 374 return (flags & XBF_TRYLOCK) ? 375 0 : XFS_ERROR(ENOMEM); 376 } 377 if (bp->b_error) { 378 error = bp->b_error; 379 xfs_buf_stale(bp); 380 XFS_BUF_DONE(bp); 381 xfs_buf_ioerror_alert(bp, __func__); 382 if (tp->t_flags & XFS_TRANS_DIRTY) 383 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR); 384 xfs_buf_relse(bp); 385 386 /* bad CRC means corrupted metadata */ 387 if (error == EFSBADCRC) 388 error = EFSCORRUPTED; 389 return error; 390 } 391 #ifdef DEBUG 392 if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) { 393 if (xfs_error_target == target) { 394 if (((xfs_req_num++) % xfs_error_mod) == 0) { 395 xfs_force_shutdown(tp->t_mountp, 396 SHUTDOWN_META_IO_ERROR); 397 xfs_buf_relse(bp); 398 xfs_debug(mp, "Returning trans error!"); 399 return XFS_ERROR(EIO); 400 } 401 } 402 } 403 #endif 404 if (XFS_FORCED_SHUTDOWN(mp)) 405 goto shutdown_abort; 406 407 _xfs_trans_bjoin(tp, bp, 1); 408 trace_xfs_trans_read_buf(bp->b_fspriv); 409 410 *bpp = bp; 411 return 0; 412 413 shutdown_abort: 414 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 415 xfs_buf_relse(bp); 416 *bpp = NULL; 417 return XFS_ERROR(EIO); 418 } 419 420 /* 421 * Release the buffer bp which was previously acquired with one of the 422 * xfs_trans_... buffer allocation routines if the buffer has not 423 * been modified within this transaction. If the buffer is modified 424 * within this transaction, do decrement the recursion count but do 425 * not release the buffer even if the count goes to 0. If the buffer is not 426 * modified within the transaction, decrement the recursion count and 427 * release the buffer if the recursion count goes to 0. 428 * 429 * If the buffer is to be released and it was not modified before 430 * this transaction began, then free the buf_log_item associated with it. 431 * 432 * If the transaction pointer is NULL, make this just a normal 433 * brelse() call. 434 */ 435 void 436 xfs_trans_brelse(xfs_trans_t *tp, 437 xfs_buf_t *bp) 438 { 439 xfs_buf_log_item_t *bip; 440 441 /* 442 * Default to a normal brelse() call if the tp is NULL. 443 */ 444 if (tp == NULL) { 445 ASSERT(bp->b_transp == NULL); 446 xfs_buf_relse(bp); 447 return; 448 } 449 450 ASSERT(bp->b_transp == tp); 451 bip = bp->b_fspriv; 452 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 453 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 454 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 455 ASSERT(atomic_read(&bip->bli_refcount) > 0); 456 457 trace_xfs_trans_brelse(bip); 458 459 /* 460 * If the release is just for a recursive lock, 461 * then decrement the count and return. 462 */ 463 if (bip->bli_recur > 0) { 464 bip->bli_recur--; 465 return; 466 } 467 468 /* 469 * If the buffer is dirty within this transaction, we can't 470 * release it until we commit. 471 */ 472 if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY) 473 return; 474 475 /* 476 * If the buffer has been invalidated, then we can't release 477 * it until the transaction commits to disk unless it is re-dirtied 478 * as part of this transaction. This prevents us from pulling 479 * the item from the AIL before we should. 480 */ 481 if (bip->bli_flags & XFS_BLI_STALE) 482 return; 483 484 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 485 486 /* 487 * Free up the log item descriptor tracking the released item. 488 */ 489 xfs_trans_del_item(&bip->bli_item); 490 491 /* 492 * Clear the hold flag in the buf log item if it is set. 493 * We wouldn't want the next user of the buffer to 494 * get confused. 495 */ 496 if (bip->bli_flags & XFS_BLI_HOLD) { 497 bip->bli_flags &= ~XFS_BLI_HOLD; 498 } 499 500 /* 501 * Drop our reference to the buf log item. 502 */ 503 atomic_dec(&bip->bli_refcount); 504 505 /* 506 * If the buf item is not tracking data in the log, then 507 * we must free it before releasing the buffer back to the 508 * free pool. Before releasing the buffer to the free pool, 509 * clear the transaction pointer in b_fsprivate2 to dissolve 510 * its relation to this transaction. 511 */ 512 if (!xfs_buf_item_dirty(bip)) { 513 /*** 514 ASSERT(bp->b_pincount == 0); 515 ***/ 516 ASSERT(atomic_read(&bip->bli_refcount) == 0); 517 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL)); 518 ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF)); 519 xfs_buf_item_relse(bp); 520 } 521 522 bp->b_transp = NULL; 523 xfs_buf_relse(bp); 524 } 525 526 /* 527 * Mark the buffer as not needing to be unlocked when the buf item's 528 * iop_unlock() routine is called. The buffer must already be locked 529 * and associated with the given transaction. 530 */ 531 /* ARGSUSED */ 532 void 533 xfs_trans_bhold(xfs_trans_t *tp, 534 xfs_buf_t *bp) 535 { 536 xfs_buf_log_item_t *bip = bp->b_fspriv; 537 538 ASSERT(bp->b_transp == tp); 539 ASSERT(bip != NULL); 540 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 541 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 542 ASSERT(atomic_read(&bip->bli_refcount) > 0); 543 544 bip->bli_flags |= XFS_BLI_HOLD; 545 trace_xfs_trans_bhold(bip); 546 } 547 548 /* 549 * Cancel the previous buffer hold request made on this buffer 550 * for this transaction. 551 */ 552 void 553 xfs_trans_bhold_release(xfs_trans_t *tp, 554 xfs_buf_t *bp) 555 { 556 xfs_buf_log_item_t *bip = bp->b_fspriv; 557 558 ASSERT(bp->b_transp == tp); 559 ASSERT(bip != NULL); 560 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 561 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 562 ASSERT(atomic_read(&bip->bli_refcount) > 0); 563 ASSERT(bip->bli_flags & XFS_BLI_HOLD); 564 565 bip->bli_flags &= ~XFS_BLI_HOLD; 566 trace_xfs_trans_bhold_release(bip); 567 } 568 569 /* 570 * This is called to mark bytes first through last inclusive of the given 571 * buffer as needing to be logged when the transaction is committed. 572 * The buffer must already be associated with the given transaction. 573 * 574 * First and last are numbers relative to the beginning of this buffer, 575 * so the first byte in the buffer is numbered 0 regardless of the 576 * value of b_blkno. 577 */ 578 void 579 xfs_trans_log_buf(xfs_trans_t *tp, 580 xfs_buf_t *bp, 581 uint first, 582 uint last) 583 { 584 xfs_buf_log_item_t *bip = bp->b_fspriv; 585 586 ASSERT(bp->b_transp == tp); 587 ASSERT(bip != NULL); 588 ASSERT(first <= last && last < BBTOB(bp->b_length)); 589 ASSERT(bp->b_iodone == NULL || 590 bp->b_iodone == xfs_buf_iodone_callbacks); 591 592 /* 593 * Mark the buffer as needing to be written out eventually, 594 * and set its iodone function to remove the buffer's buf log 595 * item from the AIL and free it when the buffer is flushed 596 * to disk. See xfs_buf_attach_iodone() for more details 597 * on li_cb and xfs_buf_iodone_callbacks(). 598 * If we end up aborting this transaction, we trap this buffer 599 * inside the b_bdstrat callback so that this won't get written to 600 * disk. 601 */ 602 XFS_BUF_DONE(bp); 603 604 ASSERT(atomic_read(&bip->bli_refcount) > 0); 605 bp->b_iodone = xfs_buf_iodone_callbacks; 606 bip->bli_item.li_cb = xfs_buf_iodone; 607 608 trace_xfs_trans_log_buf(bip); 609 610 /* 611 * If we invalidated the buffer within this transaction, then 612 * cancel the invalidation now that we're dirtying the buffer 613 * again. There are no races with the code in xfs_buf_item_unpin(), 614 * because we have a reference to the buffer this entire time. 615 */ 616 if (bip->bli_flags & XFS_BLI_STALE) { 617 bip->bli_flags &= ~XFS_BLI_STALE; 618 ASSERT(XFS_BUF_ISSTALE(bp)); 619 XFS_BUF_UNSTALE(bp); 620 bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL; 621 } 622 623 tp->t_flags |= XFS_TRANS_DIRTY; 624 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY; 625 626 /* 627 * If we have an ordered buffer we are not logging any dirty range but 628 * it still needs to be marked dirty and that it has been logged. 629 */ 630 bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED; 631 if (!(bip->bli_flags & XFS_BLI_ORDERED)) 632 xfs_buf_item_log(bip, first, last); 633 } 634 635 636 /* 637 * Invalidate a buffer that is being used within a transaction. 638 * 639 * Typically this is because the blocks in the buffer are being freed, so we 640 * need to prevent it from being written out when we're done. Allowing it 641 * to be written again might overwrite data in the free blocks if they are 642 * reallocated to a file. 643 * 644 * We prevent the buffer from being written out by marking it stale. We can't 645 * get rid of the buf log item at this point because the buffer may still be 646 * pinned by another transaction. If that is the case, then we'll wait until 647 * the buffer is committed to disk for the last time (we can tell by the ref 648 * count) and free it in xfs_buf_item_unpin(). Until that happens we will 649 * keep the buffer locked so that the buffer and buf log item are not reused. 650 * 651 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log 652 * the buf item. This will be used at recovery time to determine that copies 653 * of the buffer in the log before this should not be replayed. 654 * 655 * We mark the item descriptor and the transaction dirty so that we'll hold 656 * the buffer until after the commit. 657 * 658 * Since we're invalidating the buffer, we also clear the state about which 659 * parts of the buffer have been logged. We also clear the flag indicating 660 * that this is an inode buffer since the data in the buffer will no longer 661 * be valid. 662 * 663 * We set the stale bit in the buffer as well since we're getting rid of it. 664 */ 665 void 666 xfs_trans_binval( 667 xfs_trans_t *tp, 668 xfs_buf_t *bp) 669 { 670 xfs_buf_log_item_t *bip = bp->b_fspriv; 671 int i; 672 673 ASSERT(bp->b_transp == tp); 674 ASSERT(bip != NULL); 675 ASSERT(atomic_read(&bip->bli_refcount) > 0); 676 677 trace_xfs_trans_binval(bip); 678 679 if (bip->bli_flags & XFS_BLI_STALE) { 680 /* 681 * If the buffer is already invalidated, then 682 * just return. 683 */ 684 ASSERT(XFS_BUF_ISSTALE(bp)); 685 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY))); 686 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF)); 687 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK)); 688 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 689 ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY); 690 ASSERT(tp->t_flags & XFS_TRANS_DIRTY); 691 return; 692 } 693 694 xfs_buf_stale(bp); 695 696 bip->bli_flags |= XFS_BLI_STALE; 697 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY); 698 bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF; 699 bip->__bli_format.blf_flags |= XFS_BLF_CANCEL; 700 bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK; 701 for (i = 0; i < bip->bli_format_count; i++) { 702 memset(bip->bli_formats[i].blf_data_map, 0, 703 (bip->bli_formats[i].blf_map_size * sizeof(uint))); 704 } 705 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY; 706 tp->t_flags |= XFS_TRANS_DIRTY; 707 } 708 709 /* 710 * This call is used to indicate that the buffer contains on-disk inodes which 711 * must be handled specially during recovery. They require special handling 712 * because only the di_next_unlinked from the inodes in the buffer should be 713 * recovered. The rest of the data in the buffer is logged via the inodes 714 * themselves. 715 * 716 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be 717 * transferred to the buffer's log format structure so that we'll know what to 718 * do at recovery time. 719 */ 720 void 721 xfs_trans_inode_buf( 722 xfs_trans_t *tp, 723 xfs_buf_t *bp) 724 { 725 xfs_buf_log_item_t *bip = bp->b_fspriv; 726 727 ASSERT(bp->b_transp == tp); 728 ASSERT(bip != NULL); 729 ASSERT(atomic_read(&bip->bli_refcount) > 0); 730 731 bip->bli_flags |= XFS_BLI_INODE_BUF; 732 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 733 } 734 735 /* 736 * This call is used to indicate that the buffer is going to 737 * be staled and was an inode buffer. This means it gets 738 * special processing during unpin - where any inodes 739 * associated with the buffer should be removed from ail. 740 * There is also special processing during recovery, 741 * any replay of the inodes in the buffer needs to be 742 * prevented as the buffer may have been reused. 743 */ 744 void 745 xfs_trans_stale_inode_buf( 746 xfs_trans_t *tp, 747 xfs_buf_t *bp) 748 { 749 xfs_buf_log_item_t *bip = bp->b_fspriv; 750 751 ASSERT(bp->b_transp == tp); 752 ASSERT(bip != NULL); 753 ASSERT(atomic_read(&bip->bli_refcount) > 0); 754 755 bip->bli_flags |= XFS_BLI_STALE_INODE; 756 bip->bli_item.li_cb = xfs_buf_iodone; 757 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 758 } 759 760 /* 761 * Mark the buffer as being one which contains newly allocated 762 * inodes. We need to make sure that even if this buffer is 763 * relogged as an 'inode buf' we still recover all of the inode 764 * images in the face of a crash. This works in coordination with 765 * xfs_buf_item_committed() to ensure that the buffer remains in the 766 * AIL at its original location even after it has been relogged. 767 */ 768 /* ARGSUSED */ 769 void 770 xfs_trans_inode_alloc_buf( 771 xfs_trans_t *tp, 772 xfs_buf_t *bp) 773 { 774 xfs_buf_log_item_t *bip = bp->b_fspriv; 775 776 ASSERT(bp->b_transp == tp); 777 ASSERT(bip != NULL); 778 ASSERT(atomic_read(&bip->bli_refcount) > 0); 779 780 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF; 781 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 782 } 783 784 /* 785 * Mark the buffer as ordered for this transaction. This means 786 * that the contents of the buffer are not recorded in the transaction 787 * but it is tracked in the AIL as though it was. This allows us 788 * to record logical changes in transactions rather than the physical 789 * changes we make to the buffer without changing writeback ordering 790 * constraints of metadata buffers. 791 */ 792 void 793 xfs_trans_ordered_buf( 794 struct xfs_trans *tp, 795 struct xfs_buf *bp) 796 { 797 struct xfs_buf_log_item *bip = bp->b_fspriv; 798 799 ASSERT(bp->b_transp == tp); 800 ASSERT(bip != NULL); 801 ASSERT(atomic_read(&bip->bli_refcount) > 0); 802 803 bip->bli_flags |= XFS_BLI_ORDERED; 804 trace_xfs_buf_item_ordered(bip); 805 } 806 807 /* 808 * Set the type of the buffer for log recovery so that it can correctly identify 809 * and hence attach the correct buffer ops to the buffer after replay. 810 */ 811 void 812 xfs_trans_buf_set_type( 813 struct xfs_trans *tp, 814 struct xfs_buf *bp, 815 enum xfs_blft type) 816 { 817 struct xfs_buf_log_item *bip = bp->b_fspriv; 818 819 if (!tp) 820 return; 821 822 ASSERT(bp->b_transp == tp); 823 ASSERT(bip != NULL); 824 ASSERT(atomic_read(&bip->bli_refcount) > 0); 825 826 xfs_blft_to_flags(&bip->__bli_format, type); 827 } 828 829 void 830 xfs_trans_buf_copy_type( 831 struct xfs_buf *dst_bp, 832 struct xfs_buf *src_bp) 833 { 834 struct xfs_buf_log_item *sbip = src_bp->b_fspriv; 835 struct xfs_buf_log_item *dbip = dst_bp->b_fspriv; 836 enum xfs_blft type; 837 838 type = xfs_blft_from_flags(&sbip->__bli_format); 839 xfs_blft_to_flags(&dbip->__bli_format, type); 840 } 841 842 /* 843 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of 844 * dquots. However, unlike in inode buffer recovery, dquot buffers get 845 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag). 846 * The only thing that makes dquot buffers different from regular 847 * buffers is that we must not replay dquot bufs when recovering 848 * if a _corresponding_ quotaoff has happened. We also have to distinguish 849 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas 850 * can be turned off independently. 851 */ 852 /* ARGSUSED */ 853 void 854 xfs_trans_dquot_buf( 855 xfs_trans_t *tp, 856 xfs_buf_t *bp, 857 uint type) 858 { 859 struct xfs_buf_log_item *bip = bp->b_fspriv; 860 861 ASSERT(type == XFS_BLF_UDQUOT_BUF || 862 type == XFS_BLF_PDQUOT_BUF || 863 type == XFS_BLF_GDQUOT_BUF); 864 865 bip->__bli_format.blf_flags |= type; 866 867 switch (type) { 868 case XFS_BLF_UDQUOT_BUF: 869 type = XFS_BLFT_UDQUOT_BUF; 870 break; 871 case XFS_BLF_PDQUOT_BUF: 872 type = XFS_BLFT_PDQUOT_BUF; 873 break; 874 case XFS_BLF_GDQUOT_BUF: 875 type = XFS_BLFT_GDQUOT_BUF; 876 break; 877 default: 878 type = XFS_BLFT_UNKNOWN_BUF; 879 break; 880 } 881 882 xfs_trans_buf_set_type(tp, bp, type); 883 } 884