1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_sb.h" 25 #include "xfs_ag.h" 26 #include "xfs_mount.h" 27 #include "xfs_inode.h" 28 #include "xfs_trans.h" 29 #include "xfs_buf_item.h" 30 #include "xfs_trans_priv.h" 31 #include "xfs_error.h" 32 #include "xfs_trace.h" 33 34 /* 35 * Check to see if a buffer matching the given parameters is already 36 * a part of the given transaction. 37 */ 38 STATIC struct xfs_buf * 39 xfs_trans_buf_item_match( 40 struct xfs_trans *tp, 41 struct xfs_buftarg *target, 42 struct xfs_buf_map *map, 43 int nmaps) 44 { 45 struct xfs_log_item_desc *lidp; 46 struct xfs_buf_log_item *blip; 47 int len = 0; 48 int i; 49 50 for (i = 0; i < nmaps; i++) 51 len += map[i].bm_len; 52 53 list_for_each_entry(lidp, &tp->t_items, lid_trans) { 54 blip = (struct xfs_buf_log_item *)lidp->lid_item; 55 if (blip->bli_item.li_type == XFS_LI_BUF && 56 blip->bli_buf->b_target == target && 57 XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn && 58 blip->bli_buf->b_length == len) { 59 ASSERT(blip->bli_buf->b_map_count == nmaps); 60 return blip->bli_buf; 61 } 62 } 63 64 return NULL; 65 } 66 67 /* 68 * Add the locked buffer to the transaction. 69 * 70 * The buffer must be locked, and it cannot be associated with any 71 * transaction. 72 * 73 * If the buffer does not yet have a buf log item associated with it, 74 * then allocate one for it. Then add the buf item to the transaction. 75 */ 76 STATIC void 77 _xfs_trans_bjoin( 78 struct xfs_trans *tp, 79 struct xfs_buf *bp, 80 int reset_recur) 81 { 82 struct xfs_buf_log_item *bip; 83 84 ASSERT(bp->b_transp == NULL); 85 86 /* 87 * The xfs_buf_log_item pointer is stored in b_fsprivate. If 88 * it doesn't have one yet, then allocate one and initialize it. 89 * The checks to see if one is there are in xfs_buf_item_init(). 90 */ 91 xfs_buf_item_init(bp, tp->t_mountp); 92 bip = bp->b_fspriv; 93 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 94 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 95 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 96 if (reset_recur) 97 bip->bli_recur = 0; 98 99 /* 100 * Take a reference for this transaction on the buf item. 101 */ 102 atomic_inc(&bip->bli_refcount); 103 104 /* 105 * Get a log_item_desc to point at the new item. 106 */ 107 xfs_trans_add_item(tp, &bip->bli_item); 108 109 /* 110 * Initialize b_fsprivate2 so we can find it with incore_match() 111 * in xfs_trans_get_buf() and friends above. 112 */ 113 bp->b_transp = tp; 114 115 } 116 117 void 118 xfs_trans_bjoin( 119 struct xfs_trans *tp, 120 struct xfs_buf *bp) 121 { 122 _xfs_trans_bjoin(tp, bp, 0); 123 trace_xfs_trans_bjoin(bp->b_fspriv); 124 } 125 126 /* 127 * Get and lock the buffer for the caller if it is not already 128 * locked within the given transaction. If it is already locked 129 * within the transaction, just increment its lock recursion count 130 * and return a pointer to it. 131 * 132 * If the transaction pointer is NULL, make this just a normal 133 * get_buf() call. 134 */ 135 struct xfs_buf * 136 xfs_trans_get_buf_map( 137 struct xfs_trans *tp, 138 struct xfs_buftarg *target, 139 struct xfs_buf_map *map, 140 int nmaps, 141 xfs_buf_flags_t flags) 142 { 143 xfs_buf_t *bp; 144 xfs_buf_log_item_t *bip; 145 146 if (!tp) 147 return xfs_buf_get_map(target, map, nmaps, flags); 148 149 /* 150 * If we find the buffer in the cache with this transaction 151 * pointer in its b_fsprivate2 field, then we know we already 152 * have it locked. In this case we just increment the lock 153 * recursion count and return the buffer to the caller. 154 */ 155 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 156 if (bp != NULL) { 157 ASSERT(xfs_buf_islocked(bp)); 158 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) { 159 xfs_buf_stale(bp); 160 XFS_BUF_DONE(bp); 161 } 162 163 ASSERT(bp->b_transp == tp); 164 bip = bp->b_fspriv; 165 ASSERT(bip != NULL); 166 ASSERT(atomic_read(&bip->bli_refcount) > 0); 167 bip->bli_recur++; 168 trace_xfs_trans_get_buf_recur(bip); 169 return bp; 170 } 171 172 bp = xfs_buf_get_map(target, map, nmaps, flags); 173 if (bp == NULL) { 174 return NULL; 175 } 176 177 ASSERT(!bp->b_error); 178 179 _xfs_trans_bjoin(tp, bp, 1); 180 trace_xfs_trans_get_buf(bp->b_fspriv); 181 return bp; 182 } 183 184 /* 185 * Get and lock the superblock buffer of this file system for the 186 * given transaction. 187 * 188 * We don't need to use incore_match() here, because the superblock 189 * buffer is a private buffer which we keep a pointer to in the 190 * mount structure. 191 */ 192 xfs_buf_t * 193 xfs_trans_getsb(xfs_trans_t *tp, 194 struct xfs_mount *mp, 195 int flags) 196 { 197 xfs_buf_t *bp; 198 xfs_buf_log_item_t *bip; 199 200 /* 201 * Default to just trying to lock the superblock buffer 202 * if tp is NULL. 203 */ 204 if (tp == NULL) 205 return xfs_getsb(mp, flags); 206 207 /* 208 * If the superblock buffer already has this transaction 209 * pointer in its b_fsprivate2 field, then we know we already 210 * have it locked. In this case we just increment the lock 211 * recursion count and return the buffer to the caller. 212 */ 213 bp = mp->m_sb_bp; 214 if (bp->b_transp == tp) { 215 bip = bp->b_fspriv; 216 ASSERT(bip != NULL); 217 ASSERT(atomic_read(&bip->bli_refcount) > 0); 218 bip->bli_recur++; 219 trace_xfs_trans_getsb_recur(bip); 220 return bp; 221 } 222 223 bp = xfs_getsb(mp, flags); 224 if (bp == NULL) 225 return NULL; 226 227 _xfs_trans_bjoin(tp, bp, 1); 228 trace_xfs_trans_getsb(bp->b_fspriv); 229 return bp; 230 } 231 232 #ifdef DEBUG 233 xfs_buftarg_t *xfs_error_target; 234 int xfs_do_error; 235 int xfs_req_num; 236 int xfs_error_mod = 33; 237 #endif 238 239 /* 240 * Get and lock the buffer for the caller if it is not already 241 * locked within the given transaction. If it has not yet been 242 * read in, read it from disk. If it is already locked 243 * within the transaction and already read in, just increment its 244 * lock recursion count and return a pointer to it. 245 * 246 * If the transaction pointer is NULL, make this just a normal 247 * read_buf() call. 248 */ 249 int 250 xfs_trans_read_buf_map( 251 struct xfs_mount *mp, 252 struct xfs_trans *tp, 253 struct xfs_buftarg *target, 254 struct xfs_buf_map *map, 255 int nmaps, 256 xfs_buf_flags_t flags, 257 struct xfs_buf **bpp, 258 const struct xfs_buf_ops *ops) 259 { 260 xfs_buf_t *bp; 261 xfs_buf_log_item_t *bip; 262 int error; 263 264 *bpp = NULL; 265 if (!tp) { 266 bp = xfs_buf_read_map(target, map, nmaps, flags, ops); 267 if (!bp) 268 return (flags & XBF_TRYLOCK) ? 269 -EAGAIN : -ENOMEM; 270 271 if (bp->b_error) { 272 error = bp->b_error; 273 xfs_buf_ioerror_alert(bp, __func__); 274 XFS_BUF_UNDONE(bp); 275 xfs_buf_stale(bp); 276 xfs_buf_relse(bp); 277 278 /* bad CRC means corrupted metadata */ 279 if (error == -EFSBADCRC) 280 error = -EFSCORRUPTED; 281 return error; 282 } 283 #ifdef DEBUG 284 if (xfs_do_error) { 285 if (xfs_error_target == target) { 286 if (((xfs_req_num++) % xfs_error_mod) == 0) { 287 xfs_buf_relse(bp); 288 xfs_debug(mp, "Returning error!"); 289 return -EIO; 290 } 291 } 292 } 293 #endif 294 if (XFS_FORCED_SHUTDOWN(mp)) 295 goto shutdown_abort; 296 *bpp = bp; 297 return 0; 298 } 299 300 /* 301 * If we find the buffer in the cache with this transaction 302 * pointer in its b_fsprivate2 field, then we know we already 303 * have it locked. If it is already read in we just increment 304 * the lock recursion count and return the buffer to the caller. 305 * If the buffer is not yet read in, then we read it in, increment 306 * the lock recursion count, and return it to the caller. 307 */ 308 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 309 if (bp != NULL) { 310 ASSERT(xfs_buf_islocked(bp)); 311 ASSERT(bp->b_transp == tp); 312 ASSERT(bp->b_fspriv != NULL); 313 ASSERT(!bp->b_error); 314 if (!(XFS_BUF_ISDONE(bp))) { 315 trace_xfs_trans_read_buf_io(bp, _RET_IP_); 316 ASSERT(!XFS_BUF_ISASYNC(bp)); 317 ASSERT(bp->b_iodone == NULL); 318 XFS_BUF_READ(bp); 319 bp->b_ops = ops; 320 321 /* 322 * XXX(hch): clean up the error handling here to be less 323 * of a mess.. 324 */ 325 if (XFS_FORCED_SHUTDOWN(mp)) { 326 trace_xfs_bdstrat_shut(bp, _RET_IP_); 327 xfs_bioerror_relse(bp); 328 } else { 329 xfs_buf_iorequest(bp); 330 } 331 332 error = xfs_buf_iowait(bp); 333 if (error) { 334 xfs_buf_ioerror_alert(bp, __func__); 335 xfs_buf_relse(bp); 336 /* 337 * We can gracefully recover from most read 338 * errors. Ones we can't are those that happen 339 * after the transaction's already dirty. 340 */ 341 if (tp->t_flags & XFS_TRANS_DIRTY) 342 xfs_force_shutdown(tp->t_mountp, 343 SHUTDOWN_META_IO_ERROR); 344 /* bad CRC means corrupted metadata */ 345 if (error == -EFSBADCRC) 346 error = -EFSCORRUPTED; 347 return error; 348 } 349 } 350 /* 351 * We never locked this buf ourselves, so we shouldn't 352 * brelse it either. Just get out. 353 */ 354 if (XFS_FORCED_SHUTDOWN(mp)) { 355 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 356 *bpp = NULL; 357 return -EIO; 358 } 359 360 361 bip = bp->b_fspriv; 362 bip->bli_recur++; 363 364 ASSERT(atomic_read(&bip->bli_refcount) > 0); 365 trace_xfs_trans_read_buf_recur(bip); 366 *bpp = bp; 367 return 0; 368 } 369 370 bp = xfs_buf_read_map(target, map, nmaps, flags, ops); 371 if (bp == NULL) { 372 *bpp = NULL; 373 return (flags & XBF_TRYLOCK) ? 374 0 : -ENOMEM; 375 } 376 if (bp->b_error) { 377 error = bp->b_error; 378 xfs_buf_stale(bp); 379 XFS_BUF_DONE(bp); 380 xfs_buf_ioerror_alert(bp, __func__); 381 if (tp->t_flags & XFS_TRANS_DIRTY) 382 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR); 383 xfs_buf_relse(bp); 384 385 /* bad CRC means corrupted metadata */ 386 if (error == -EFSBADCRC) 387 error = -EFSCORRUPTED; 388 return error; 389 } 390 #ifdef DEBUG 391 if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) { 392 if (xfs_error_target == target) { 393 if (((xfs_req_num++) % xfs_error_mod) == 0) { 394 xfs_force_shutdown(tp->t_mountp, 395 SHUTDOWN_META_IO_ERROR); 396 xfs_buf_relse(bp); 397 xfs_debug(mp, "Returning trans error!"); 398 return -EIO; 399 } 400 } 401 } 402 #endif 403 if (XFS_FORCED_SHUTDOWN(mp)) 404 goto shutdown_abort; 405 406 _xfs_trans_bjoin(tp, bp, 1); 407 trace_xfs_trans_read_buf(bp->b_fspriv); 408 409 *bpp = bp; 410 return 0; 411 412 shutdown_abort: 413 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 414 xfs_buf_relse(bp); 415 *bpp = NULL; 416 return -EIO; 417 } 418 419 /* 420 * Release the buffer bp which was previously acquired with one of the 421 * xfs_trans_... buffer allocation routines if the buffer has not 422 * been modified within this transaction. If the buffer is modified 423 * within this transaction, do decrement the recursion count but do 424 * not release the buffer even if the count goes to 0. If the buffer is not 425 * modified within the transaction, decrement the recursion count and 426 * release the buffer if the recursion count goes to 0. 427 * 428 * If the buffer is to be released and it was not modified before 429 * this transaction began, then free the buf_log_item associated with it. 430 * 431 * If the transaction pointer is NULL, make this just a normal 432 * brelse() call. 433 */ 434 void 435 xfs_trans_brelse(xfs_trans_t *tp, 436 xfs_buf_t *bp) 437 { 438 xfs_buf_log_item_t *bip; 439 440 /* 441 * Default to a normal brelse() call if the tp is NULL. 442 */ 443 if (tp == NULL) { 444 ASSERT(bp->b_transp == NULL); 445 xfs_buf_relse(bp); 446 return; 447 } 448 449 ASSERT(bp->b_transp == tp); 450 bip = bp->b_fspriv; 451 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 452 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 453 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 454 ASSERT(atomic_read(&bip->bli_refcount) > 0); 455 456 trace_xfs_trans_brelse(bip); 457 458 /* 459 * If the release is just for a recursive lock, 460 * then decrement the count and return. 461 */ 462 if (bip->bli_recur > 0) { 463 bip->bli_recur--; 464 return; 465 } 466 467 /* 468 * If the buffer is dirty within this transaction, we can't 469 * release it until we commit. 470 */ 471 if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY) 472 return; 473 474 /* 475 * If the buffer has been invalidated, then we can't release 476 * it until the transaction commits to disk unless it is re-dirtied 477 * as part of this transaction. This prevents us from pulling 478 * the item from the AIL before we should. 479 */ 480 if (bip->bli_flags & XFS_BLI_STALE) 481 return; 482 483 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 484 485 /* 486 * Free up the log item descriptor tracking the released item. 487 */ 488 xfs_trans_del_item(&bip->bli_item); 489 490 /* 491 * Clear the hold flag in the buf log item if it is set. 492 * We wouldn't want the next user of the buffer to 493 * get confused. 494 */ 495 if (bip->bli_flags & XFS_BLI_HOLD) { 496 bip->bli_flags &= ~XFS_BLI_HOLD; 497 } 498 499 /* 500 * Drop our reference to the buf log item. 501 */ 502 atomic_dec(&bip->bli_refcount); 503 504 /* 505 * If the buf item is not tracking data in the log, then 506 * we must free it before releasing the buffer back to the 507 * free pool. Before releasing the buffer to the free pool, 508 * clear the transaction pointer in b_fsprivate2 to dissolve 509 * its relation to this transaction. 510 */ 511 if (!xfs_buf_item_dirty(bip)) { 512 /*** 513 ASSERT(bp->b_pincount == 0); 514 ***/ 515 ASSERT(atomic_read(&bip->bli_refcount) == 0); 516 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL)); 517 ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF)); 518 xfs_buf_item_relse(bp); 519 } 520 521 bp->b_transp = NULL; 522 xfs_buf_relse(bp); 523 } 524 525 /* 526 * Mark the buffer as not needing to be unlocked when the buf item's 527 * iop_unlock() routine is called. The buffer must already be locked 528 * and associated with the given transaction. 529 */ 530 /* ARGSUSED */ 531 void 532 xfs_trans_bhold(xfs_trans_t *tp, 533 xfs_buf_t *bp) 534 { 535 xfs_buf_log_item_t *bip = bp->b_fspriv; 536 537 ASSERT(bp->b_transp == tp); 538 ASSERT(bip != NULL); 539 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 540 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 541 ASSERT(atomic_read(&bip->bli_refcount) > 0); 542 543 bip->bli_flags |= XFS_BLI_HOLD; 544 trace_xfs_trans_bhold(bip); 545 } 546 547 /* 548 * Cancel the previous buffer hold request made on this buffer 549 * for this transaction. 550 */ 551 void 552 xfs_trans_bhold_release(xfs_trans_t *tp, 553 xfs_buf_t *bp) 554 { 555 xfs_buf_log_item_t *bip = bp->b_fspriv; 556 557 ASSERT(bp->b_transp == tp); 558 ASSERT(bip != NULL); 559 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 560 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 561 ASSERT(atomic_read(&bip->bli_refcount) > 0); 562 ASSERT(bip->bli_flags & XFS_BLI_HOLD); 563 564 bip->bli_flags &= ~XFS_BLI_HOLD; 565 trace_xfs_trans_bhold_release(bip); 566 } 567 568 /* 569 * This is called to mark bytes first through last inclusive of the given 570 * buffer as needing to be logged when the transaction is committed. 571 * The buffer must already be associated with the given transaction. 572 * 573 * First and last are numbers relative to the beginning of this buffer, 574 * so the first byte in the buffer is numbered 0 regardless of the 575 * value of b_blkno. 576 */ 577 void 578 xfs_trans_log_buf(xfs_trans_t *tp, 579 xfs_buf_t *bp, 580 uint first, 581 uint last) 582 { 583 xfs_buf_log_item_t *bip = bp->b_fspriv; 584 585 ASSERT(bp->b_transp == tp); 586 ASSERT(bip != NULL); 587 ASSERT(first <= last && last < BBTOB(bp->b_length)); 588 ASSERT(bp->b_iodone == NULL || 589 bp->b_iodone == xfs_buf_iodone_callbacks); 590 591 /* 592 * Mark the buffer as needing to be written out eventually, 593 * and set its iodone function to remove the buffer's buf log 594 * item from the AIL and free it when the buffer is flushed 595 * to disk. See xfs_buf_attach_iodone() for more details 596 * on li_cb and xfs_buf_iodone_callbacks(). 597 * If we end up aborting this transaction, we trap this buffer 598 * inside the b_bdstrat callback so that this won't get written to 599 * disk. 600 */ 601 XFS_BUF_DONE(bp); 602 603 ASSERT(atomic_read(&bip->bli_refcount) > 0); 604 bp->b_iodone = xfs_buf_iodone_callbacks; 605 bip->bli_item.li_cb = xfs_buf_iodone; 606 607 trace_xfs_trans_log_buf(bip); 608 609 /* 610 * If we invalidated the buffer within this transaction, then 611 * cancel the invalidation now that we're dirtying the buffer 612 * again. There are no races with the code in xfs_buf_item_unpin(), 613 * because we have a reference to the buffer this entire time. 614 */ 615 if (bip->bli_flags & XFS_BLI_STALE) { 616 bip->bli_flags &= ~XFS_BLI_STALE; 617 ASSERT(XFS_BUF_ISSTALE(bp)); 618 XFS_BUF_UNSTALE(bp); 619 bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL; 620 } 621 622 tp->t_flags |= XFS_TRANS_DIRTY; 623 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY; 624 625 /* 626 * If we have an ordered buffer we are not logging any dirty range but 627 * it still needs to be marked dirty and that it has been logged. 628 */ 629 bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED; 630 if (!(bip->bli_flags & XFS_BLI_ORDERED)) 631 xfs_buf_item_log(bip, first, last); 632 } 633 634 635 /* 636 * Invalidate a buffer that is being used within a transaction. 637 * 638 * Typically this is because the blocks in the buffer are being freed, so we 639 * need to prevent it from being written out when we're done. Allowing it 640 * to be written again might overwrite data in the free blocks if they are 641 * reallocated to a file. 642 * 643 * We prevent the buffer from being written out by marking it stale. We can't 644 * get rid of the buf log item at this point because the buffer may still be 645 * pinned by another transaction. If that is the case, then we'll wait until 646 * the buffer is committed to disk for the last time (we can tell by the ref 647 * count) and free it in xfs_buf_item_unpin(). Until that happens we will 648 * keep the buffer locked so that the buffer and buf log item are not reused. 649 * 650 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log 651 * the buf item. This will be used at recovery time to determine that copies 652 * of the buffer in the log before this should not be replayed. 653 * 654 * We mark the item descriptor and the transaction dirty so that we'll hold 655 * the buffer until after the commit. 656 * 657 * Since we're invalidating the buffer, we also clear the state about which 658 * parts of the buffer have been logged. We also clear the flag indicating 659 * that this is an inode buffer since the data in the buffer will no longer 660 * be valid. 661 * 662 * We set the stale bit in the buffer as well since we're getting rid of it. 663 */ 664 void 665 xfs_trans_binval( 666 xfs_trans_t *tp, 667 xfs_buf_t *bp) 668 { 669 xfs_buf_log_item_t *bip = bp->b_fspriv; 670 int i; 671 672 ASSERT(bp->b_transp == tp); 673 ASSERT(bip != NULL); 674 ASSERT(atomic_read(&bip->bli_refcount) > 0); 675 676 trace_xfs_trans_binval(bip); 677 678 if (bip->bli_flags & XFS_BLI_STALE) { 679 /* 680 * If the buffer is already invalidated, then 681 * just return. 682 */ 683 ASSERT(XFS_BUF_ISSTALE(bp)); 684 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY))); 685 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF)); 686 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK)); 687 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 688 ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY); 689 ASSERT(tp->t_flags & XFS_TRANS_DIRTY); 690 return; 691 } 692 693 xfs_buf_stale(bp); 694 695 bip->bli_flags |= XFS_BLI_STALE; 696 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY); 697 bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF; 698 bip->__bli_format.blf_flags |= XFS_BLF_CANCEL; 699 bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK; 700 for (i = 0; i < bip->bli_format_count; i++) { 701 memset(bip->bli_formats[i].blf_data_map, 0, 702 (bip->bli_formats[i].blf_map_size * sizeof(uint))); 703 } 704 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY; 705 tp->t_flags |= XFS_TRANS_DIRTY; 706 } 707 708 /* 709 * This call is used to indicate that the buffer contains on-disk inodes which 710 * must be handled specially during recovery. They require special handling 711 * because only the di_next_unlinked from the inodes in the buffer should be 712 * recovered. The rest of the data in the buffer is logged via the inodes 713 * themselves. 714 * 715 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be 716 * transferred to the buffer's log format structure so that we'll know what to 717 * do at recovery time. 718 */ 719 void 720 xfs_trans_inode_buf( 721 xfs_trans_t *tp, 722 xfs_buf_t *bp) 723 { 724 xfs_buf_log_item_t *bip = bp->b_fspriv; 725 726 ASSERT(bp->b_transp == tp); 727 ASSERT(bip != NULL); 728 ASSERT(atomic_read(&bip->bli_refcount) > 0); 729 730 bip->bli_flags |= XFS_BLI_INODE_BUF; 731 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 732 } 733 734 /* 735 * This call is used to indicate that the buffer is going to 736 * be staled and was an inode buffer. This means it gets 737 * special processing during unpin - where any inodes 738 * associated with the buffer should be removed from ail. 739 * There is also special processing during recovery, 740 * any replay of the inodes in the buffer needs to be 741 * prevented as the buffer may have been reused. 742 */ 743 void 744 xfs_trans_stale_inode_buf( 745 xfs_trans_t *tp, 746 xfs_buf_t *bp) 747 { 748 xfs_buf_log_item_t *bip = bp->b_fspriv; 749 750 ASSERT(bp->b_transp == tp); 751 ASSERT(bip != NULL); 752 ASSERT(atomic_read(&bip->bli_refcount) > 0); 753 754 bip->bli_flags |= XFS_BLI_STALE_INODE; 755 bip->bli_item.li_cb = xfs_buf_iodone; 756 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 757 } 758 759 /* 760 * Mark the buffer as being one which contains newly allocated 761 * inodes. We need to make sure that even if this buffer is 762 * relogged as an 'inode buf' we still recover all of the inode 763 * images in the face of a crash. This works in coordination with 764 * xfs_buf_item_committed() to ensure that the buffer remains in the 765 * AIL at its original location even after it has been relogged. 766 */ 767 /* ARGSUSED */ 768 void 769 xfs_trans_inode_alloc_buf( 770 xfs_trans_t *tp, 771 xfs_buf_t *bp) 772 { 773 xfs_buf_log_item_t *bip = bp->b_fspriv; 774 775 ASSERT(bp->b_transp == tp); 776 ASSERT(bip != NULL); 777 ASSERT(atomic_read(&bip->bli_refcount) > 0); 778 779 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF; 780 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 781 } 782 783 /* 784 * Mark the buffer as ordered for this transaction. This means 785 * that the contents of the buffer are not recorded in the transaction 786 * but it is tracked in the AIL as though it was. This allows us 787 * to record logical changes in transactions rather than the physical 788 * changes we make to the buffer without changing writeback ordering 789 * constraints of metadata buffers. 790 */ 791 void 792 xfs_trans_ordered_buf( 793 struct xfs_trans *tp, 794 struct xfs_buf *bp) 795 { 796 struct xfs_buf_log_item *bip = bp->b_fspriv; 797 798 ASSERT(bp->b_transp == tp); 799 ASSERT(bip != NULL); 800 ASSERT(atomic_read(&bip->bli_refcount) > 0); 801 802 bip->bli_flags |= XFS_BLI_ORDERED; 803 trace_xfs_buf_item_ordered(bip); 804 } 805 806 /* 807 * Set the type of the buffer for log recovery so that it can correctly identify 808 * and hence attach the correct buffer ops to the buffer after replay. 809 */ 810 void 811 xfs_trans_buf_set_type( 812 struct xfs_trans *tp, 813 struct xfs_buf *bp, 814 enum xfs_blft type) 815 { 816 struct xfs_buf_log_item *bip = bp->b_fspriv; 817 818 if (!tp) 819 return; 820 821 ASSERT(bp->b_transp == tp); 822 ASSERT(bip != NULL); 823 ASSERT(atomic_read(&bip->bli_refcount) > 0); 824 825 xfs_blft_to_flags(&bip->__bli_format, type); 826 } 827 828 void 829 xfs_trans_buf_copy_type( 830 struct xfs_buf *dst_bp, 831 struct xfs_buf *src_bp) 832 { 833 struct xfs_buf_log_item *sbip = src_bp->b_fspriv; 834 struct xfs_buf_log_item *dbip = dst_bp->b_fspriv; 835 enum xfs_blft type; 836 837 type = xfs_blft_from_flags(&sbip->__bli_format); 838 xfs_blft_to_flags(&dbip->__bli_format, type); 839 } 840 841 /* 842 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of 843 * dquots. However, unlike in inode buffer recovery, dquot buffers get 844 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag). 845 * The only thing that makes dquot buffers different from regular 846 * buffers is that we must not replay dquot bufs when recovering 847 * if a _corresponding_ quotaoff has happened. We also have to distinguish 848 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas 849 * can be turned off independently. 850 */ 851 /* ARGSUSED */ 852 void 853 xfs_trans_dquot_buf( 854 xfs_trans_t *tp, 855 xfs_buf_t *bp, 856 uint type) 857 { 858 struct xfs_buf_log_item *bip = bp->b_fspriv; 859 860 ASSERT(type == XFS_BLF_UDQUOT_BUF || 861 type == XFS_BLF_PDQUOT_BUF || 862 type == XFS_BLF_GDQUOT_BUF); 863 864 bip->__bli_format.blf_flags |= type; 865 866 switch (type) { 867 case XFS_BLF_UDQUOT_BUF: 868 type = XFS_BLFT_UDQUOT_BUF; 869 break; 870 case XFS_BLF_PDQUOT_BUF: 871 type = XFS_BLFT_PDQUOT_BUF; 872 break; 873 case XFS_BLF_GDQUOT_BUF: 874 type = XFS_BLFT_GDQUOT_BUF; 875 break; 876 default: 877 type = XFS_BLFT_UNKNOWN_BUF; 878 break; 879 } 880 881 xfs_trans_buf_set_type(tp, bp, type); 882 } 883