1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_trans.h" 14 #include "xfs_buf_item.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_trace.h" 17 18 /* 19 * Check to see if a buffer matching the given parameters is already 20 * a part of the given transaction. 21 */ 22 STATIC struct xfs_buf * 23 xfs_trans_buf_item_match( 24 struct xfs_trans *tp, 25 struct xfs_buftarg *target, 26 struct xfs_buf_map *map, 27 int nmaps) 28 { 29 struct xfs_log_item *lip; 30 struct xfs_buf_log_item *blip; 31 int len = 0; 32 int i; 33 34 for (i = 0; i < nmaps; i++) 35 len += map[i].bm_len; 36 37 list_for_each_entry(lip, &tp->t_items, li_trans) { 38 blip = (struct xfs_buf_log_item *)lip; 39 if (blip->bli_item.li_type == XFS_LI_BUF && 40 blip->bli_buf->b_target == target && 41 XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn && 42 blip->bli_buf->b_length == len) { 43 ASSERT(blip->bli_buf->b_map_count == nmaps); 44 return blip->bli_buf; 45 } 46 } 47 48 return NULL; 49 } 50 51 /* 52 * Add the locked buffer to the transaction. 53 * 54 * The buffer must be locked, and it cannot be associated with any 55 * transaction. 56 * 57 * If the buffer does not yet have a buf log item associated with it, 58 * then allocate one for it. Then add the buf item to the transaction. 59 */ 60 STATIC void 61 _xfs_trans_bjoin( 62 struct xfs_trans *tp, 63 struct xfs_buf *bp, 64 int reset_recur) 65 { 66 struct xfs_buf_log_item *bip; 67 68 ASSERT(bp->b_transp == NULL); 69 70 /* 71 * The xfs_buf_log_item pointer is stored in b_log_item. If 72 * it doesn't have one yet, then allocate one and initialize it. 73 * The checks to see if one is there are in xfs_buf_item_init(). 74 */ 75 xfs_buf_item_init(bp, tp->t_mountp); 76 bip = bp->b_log_item; 77 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 78 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 79 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 80 if (reset_recur) 81 bip->bli_recur = 0; 82 83 /* 84 * Take a reference for this transaction on the buf item. 85 */ 86 atomic_inc(&bip->bli_refcount); 87 88 /* 89 * Attach the item to the transaction so we can find it in 90 * xfs_trans_get_buf() and friends. 91 */ 92 xfs_trans_add_item(tp, &bip->bli_item); 93 bp->b_transp = tp; 94 95 } 96 97 void 98 xfs_trans_bjoin( 99 struct xfs_trans *tp, 100 struct xfs_buf *bp) 101 { 102 _xfs_trans_bjoin(tp, bp, 0); 103 trace_xfs_trans_bjoin(bp->b_log_item); 104 } 105 106 /* 107 * Get and lock the buffer for the caller if it is not already 108 * locked within the given transaction. If it is already locked 109 * within the transaction, just increment its lock recursion count 110 * and return a pointer to it. 111 * 112 * If the transaction pointer is NULL, make this just a normal 113 * get_buf() call. 114 */ 115 int 116 xfs_trans_get_buf_map( 117 struct xfs_trans *tp, 118 struct xfs_buftarg *target, 119 struct xfs_buf_map *map, 120 int nmaps, 121 xfs_buf_flags_t flags, 122 struct xfs_buf **bpp) 123 { 124 xfs_buf_t *bp; 125 struct xfs_buf_log_item *bip; 126 int error; 127 128 *bpp = NULL; 129 if (!tp) 130 return xfs_buf_get_map(target, map, nmaps, flags, bpp); 131 132 /* 133 * If we find the buffer in the cache with this transaction 134 * pointer in its b_fsprivate2 field, then we know we already 135 * have it locked. In this case we just increment the lock 136 * recursion count and return the buffer to the caller. 137 */ 138 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 139 if (bp != NULL) { 140 ASSERT(xfs_buf_islocked(bp)); 141 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) { 142 xfs_buf_stale(bp); 143 bp->b_flags |= XBF_DONE; 144 } 145 146 ASSERT(bp->b_transp == tp); 147 bip = bp->b_log_item; 148 ASSERT(bip != NULL); 149 ASSERT(atomic_read(&bip->bli_refcount) > 0); 150 bip->bli_recur++; 151 trace_xfs_trans_get_buf_recur(bip); 152 *bpp = bp; 153 return 0; 154 } 155 156 error = xfs_buf_get_map(target, map, nmaps, flags, &bp); 157 if (error) 158 return error; 159 160 ASSERT(!bp->b_error); 161 162 _xfs_trans_bjoin(tp, bp, 1); 163 trace_xfs_trans_get_buf(bp->b_log_item); 164 *bpp = bp; 165 return 0; 166 } 167 168 /* 169 * Get and lock the superblock buffer of this file system for the 170 * given transaction. 171 * 172 * We don't need to use incore_match() here, because the superblock 173 * buffer is a private buffer which we keep a pointer to in the 174 * mount structure. 175 */ 176 xfs_buf_t * 177 xfs_trans_getsb( 178 xfs_trans_t *tp, 179 struct xfs_mount *mp) 180 { 181 xfs_buf_t *bp; 182 struct xfs_buf_log_item *bip; 183 184 /* 185 * Default to just trying to lock the superblock buffer 186 * if tp is NULL. 187 */ 188 if (tp == NULL) 189 return xfs_getsb(mp); 190 191 /* 192 * If the superblock buffer already has this transaction 193 * pointer in its b_fsprivate2 field, then we know we already 194 * have it locked. In this case we just increment the lock 195 * recursion count and return the buffer to the caller. 196 */ 197 bp = mp->m_sb_bp; 198 if (bp->b_transp == tp) { 199 bip = bp->b_log_item; 200 ASSERT(bip != NULL); 201 ASSERT(atomic_read(&bip->bli_refcount) > 0); 202 bip->bli_recur++; 203 trace_xfs_trans_getsb_recur(bip); 204 return bp; 205 } 206 207 bp = xfs_getsb(mp); 208 if (bp == NULL) 209 return NULL; 210 211 _xfs_trans_bjoin(tp, bp, 1); 212 trace_xfs_trans_getsb(bp->b_log_item); 213 return bp; 214 } 215 216 /* 217 * Get and lock the buffer for the caller if it is not already 218 * locked within the given transaction. If it has not yet been 219 * read in, read it from disk. If it is already locked 220 * within the transaction and already read in, just increment its 221 * lock recursion count and return a pointer to it. 222 * 223 * If the transaction pointer is NULL, make this just a normal 224 * read_buf() call. 225 */ 226 int 227 xfs_trans_read_buf_map( 228 struct xfs_mount *mp, 229 struct xfs_trans *tp, 230 struct xfs_buftarg *target, 231 struct xfs_buf_map *map, 232 int nmaps, 233 xfs_buf_flags_t flags, 234 struct xfs_buf **bpp, 235 const struct xfs_buf_ops *ops) 236 { 237 struct xfs_buf *bp = NULL; 238 struct xfs_buf_log_item *bip; 239 int error; 240 241 *bpp = NULL; 242 /* 243 * If we find the buffer in the cache with this transaction 244 * pointer in its b_fsprivate2 field, then we know we already 245 * have it locked. If it is already read in we just increment 246 * the lock recursion count and return the buffer to the caller. 247 * If the buffer is not yet read in, then we read it in, increment 248 * the lock recursion count, and return it to the caller. 249 */ 250 if (tp) 251 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 252 if (bp) { 253 ASSERT(xfs_buf_islocked(bp)); 254 ASSERT(bp->b_transp == tp); 255 ASSERT(bp->b_log_item != NULL); 256 ASSERT(!bp->b_error); 257 ASSERT(bp->b_flags & XBF_DONE); 258 259 /* 260 * We never locked this buf ourselves, so we shouldn't 261 * brelse it either. Just get out. 262 */ 263 if (XFS_FORCED_SHUTDOWN(mp)) { 264 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 265 return -EIO; 266 } 267 268 /* 269 * Check if the caller is trying to read a buffer that is 270 * already attached to the transaction yet has no buffer ops 271 * assigned. Ops are usually attached when the buffer is 272 * attached to the transaction, or by the read caller if 273 * special circumstances. That didn't happen, which is not 274 * how this is supposed to go. 275 * 276 * If the buffer passes verification we'll let this go, but if 277 * not we have to shut down. Let the transaction cleanup code 278 * release this buffer when it kills the tranaction. 279 */ 280 ASSERT(bp->b_ops != NULL); 281 error = xfs_buf_reverify(bp, ops); 282 if (error) { 283 xfs_buf_ioerror_alert(bp, __return_address); 284 285 if (tp->t_flags & XFS_TRANS_DIRTY) 286 xfs_force_shutdown(tp->t_mountp, 287 SHUTDOWN_META_IO_ERROR); 288 289 /* bad CRC means corrupted metadata */ 290 if (error == -EFSBADCRC) 291 error = -EFSCORRUPTED; 292 return error; 293 } 294 295 bip = bp->b_log_item; 296 bip->bli_recur++; 297 298 ASSERT(atomic_read(&bip->bli_refcount) > 0); 299 trace_xfs_trans_read_buf_recur(bip); 300 ASSERT(bp->b_ops != NULL || ops == NULL); 301 *bpp = bp; 302 return 0; 303 } 304 305 error = xfs_buf_read_map(target, map, nmaps, flags, &bp, ops, 306 __return_address); 307 switch (error) { 308 case 0: 309 break; 310 default: 311 if (tp && (tp->t_flags & XFS_TRANS_DIRTY)) 312 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR); 313 /* fall through */ 314 case -ENOMEM: 315 case -EAGAIN: 316 return error; 317 } 318 319 if (XFS_FORCED_SHUTDOWN(mp)) { 320 xfs_buf_relse(bp); 321 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 322 return -EIO; 323 } 324 325 if (tp) { 326 _xfs_trans_bjoin(tp, bp, 1); 327 trace_xfs_trans_read_buf(bp->b_log_item); 328 } 329 ASSERT(bp->b_ops != NULL || ops == NULL); 330 *bpp = bp; 331 return 0; 332 333 } 334 335 /* Has this buffer been dirtied by anyone? */ 336 bool 337 xfs_trans_buf_is_dirty( 338 struct xfs_buf *bp) 339 { 340 struct xfs_buf_log_item *bip = bp->b_log_item; 341 342 if (!bip) 343 return false; 344 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 345 return test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags); 346 } 347 348 /* 349 * Release a buffer previously joined to the transaction. If the buffer is 350 * modified within this transaction, decrement the recursion count but do not 351 * release the buffer even if the count goes to 0. If the buffer is not modified 352 * within the transaction, decrement the recursion count and release the buffer 353 * if the recursion count goes to 0. 354 * 355 * If the buffer is to be released and it was not already dirty before this 356 * transaction began, then also free the buf_log_item associated with it. 357 * 358 * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call. 359 */ 360 void 361 xfs_trans_brelse( 362 struct xfs_trans *tp, 363 struct xfs_buf *bp) 364 { 365 struct xfs_buf_log_item *bip = bp->b_log_item; 366 367 ASSERT(bp->b_transp == tp); 368 369 if (!tp) { 370 xfs_buf_relse(bp); 371 return; 372 } 373 374 trace_xfs_trans_brelse(bip); 375 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 376 ASSERT(atomic_read(&bip->bli_refcount) > 0); 377 378 /* 379 * If the release is for a recursive lookup, then decrement the count 380 * and return. 381 */ 382 if (bip->bli_recur > 0) { 383 bip->bli_recur--; 384 return; 385 } 386 387 /* 388 * If the buffer is invalidated or dirty in this transaction, we can't 389 * release it until we commit. 390 */ 391 if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags)) 392 return; 393 if (bip->bli_flags & XFS_BLI_STALE) 394 return; 395 396 /* 397 * Unlink the log item from the transaction and clear the hold flag, if 398 * set. We wouldn't want the next user of the buffer to get confused. 399 */ 400 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 401 xfs_trans_del_item(&bip->bli_item); 402 bip->bli_flags &= ~XFS_BLI_HOLD; 403 404 /* drop the reference to the bli */ 405 xfs_buf_item_put(bip); 406 407 bp->b_transp = NULL; 408 xfs_buf_relse(bp); 409 } 410 411 /* 412 * Mark the buffer as not needing to be unlocked when the buf item's 413 * iop_committing() routine is called. The buffer must already be locked 414 * and associated with the given transaction. 415 */ 416 /* ARGSUSED */ 417 void 418 xfs_trans_bhold( 419 xfs_trans_t *tp, 420 xfs_buf_t *bp) 421 { 422 struct xfs_buf_log_item *bip = bp->b_log_item; 423 424 ASSERT(bp->b_transp == tp); 425 ASSERT(bip != NULL); 426 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 427 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 428 ASSERT(atomic_read(&bip->bli_refcount) > 0); 429 430 bip->bli_flags |= XFS_BLI_HOLD; 431 trace_xfs_trans_bhold(bip); 432 } 433 434 /* 435 * Cancel the previous buffer hold request made on this buffer 436 * for this transaction. 437 */ 438 void 439 xfs_trans_bhold_release( 440 xfs_trans_t *tp, 441 xfs_buf_t *bp) 442 { 443 struct xfs_buf_log_item *bip = bp->b_log_item; 444 445 ASSERT(bp->b_transp == tp); 446 ASSERT(bip != NULL); 447 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 448 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 449 ASSERT(atomic_read(&bip->bli_refcount) > 0); 450 ASSERT(bip->bli_flags & XFS_BLI_HOLD); 451 452 bip->bli_flags &= ~XFS_BLI_HOLD; 453 trace_xfs_trans_bhold_release(bip); 454 } 455 456 /* 457 * Mark a buffer dirty in the transaction. 458 */ 459 void 460 xfs_trans_dirty_buf( 461 struct xfs_trans *tp, 462 struct xfs_buf *bp) 463 { 464 struct xfs_buf_log_item *bip = bp->b_log_item; 465 466 ASSERT(bp->b_transp == tp); 467 ASSERT(bip != NULL); 468 ASSERT(bp->b_iodone == NULL || 469 bp->b_iodone == xfs_buf_iodone_callbacks); 470 471 /* 472 * Mark the buffer as needing to be written out eventually, 473 * and set its iodone function to remove the buffer's buf log 474 * item from the AIL and free it when the buffer is flushed 475 * to disk. See xfs_buf_attach_iodone() for more details 476 * on li_cb and xfs_buf_iodone_callbacks(). 477 * If we end up aborting this transaction, we trap this buffer 478 * inside the b_bdstrat callback so that this won't get written to 479 * disk. 480 */ 481 bp->b_flags |= XBF_DONE; 482 483 ASSERT(atomic_read(&bip->bli_refcount) > 0); 484 bp->b_iodone = xfs_buf_iodone_callbacks; 485 bip->bli_item.li_cb = xfs_buf_iodone; 486 487 /* 488 * If we invalidated the buffer within this transaction, then 489 * cancel the invalidation now that we're dirtying the buffer 490 * again. There are no races with the code in xfs_buf_item_unpin(), 491 * because we have a reference to the buffer this entire time. 492 */ 493 if (bip->bli_flags & XFS_BLI_STALE) { 494 bip->bli_flags &= ~XFS_BLI_STALE; 495 ASSERT(bp->b_flags & XBF_STALE); 496 bp->b_flags &= ~XBF_STALE; 497 bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL; 498 } 499 bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED; 500 501 tp->t_flags |= XFS_TRANS_DIRTY; 502 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags); 503 } 504 505 /* 506 * This is called to mark bytes first through last inclusive of the given 507 * buffer as needing to be logged when the transaction is committed. 508 * The buffer must already be associated with the given transaction. 509 * 510 * First and last are numbers relative to the beginning of this buffer, 511 * so the first byte in the buffer is numbered 0 regardless of the 512 * value of b_blkno. 513 */ 514 void 515 xfs_trans_log_buf( 516 struct xfs_trans *tp, 517 struct xfs_buf *bp, 518 uint first, 519 uint last) 520 { 521 struct xfs_buf_log_item *bip = bp->b_log_item; 522 523 ASSERT(first <= last && last < BBTOB(bp->b_length)); 524 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED)); 525 526 xfs_trans_dirty_buf(tp, bp); 527 528 trace_xfs_trans_log_buf(bip); 529 xfs_buf_item_log(bip, first, last); 530 } 531 532 533 /* 534 * Invalidate a buffer that is being used within a transaction. 535 * 536 * Typically this is because the blocks in the buffer are being freed, so we 537 * need to prevent it from being written out when we're done. Allowing it 538 * to be written again might overwrite data in the free blocks if they are 539 * reallocated to a file. 540 * 541 * We prevent the buffer from being written out by marking it stale. We can't 542 * get rid of the buf log item at this point because the buffer may still be 543 * pinned by another transaction. If that is the case, then we'll wait until 544 * the buffer is committed to disk for the last time (we can tell by the ref 545 * count) and free it in xfs_buf_item_unpin(). Until that happens we will 546 * keep the buffer locked so that the buffer and buf log item are not reused. 547 * 548 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log 549 * the buf item. This will be used at recovery time to determine that copies 550 * of the buffer in the log before this should not be replayed. 551 * 552 * We mark the item descriptor and the transaction dirty so that we'll hold 553 * the buffer until after the commit. 554 * 555 * Since we're invalidating the buffer, we also clear the state about which 556 * parts of the buffer have been logged. We also clear the flag indicating 557 * that this is an inode buffer since the data in the buffer will no longer 558 * be valid. 559 * 560 * We set the stale bit in the buffer as well since we're getting rid of it. 561 */ 562 void 563 xfs_trans_binval( 564 xfs_trans_t *tp, 565 xfs_buf_t *bp) 566 { 567 struct xfs_buf_log_item *bip = bp->b_log_item; 568 int i; 569 570 ASSERT(bp->b_transp == tp); 571 ASSERT(bip != NULL); 572 ASSERT(atomic_read(&bip->bli_refcount) > 0); 573 574 trace_xfs_trans_binval(bip); 575 576 if (bip->bli_flags & XFS_BLI_STALE) { 577 /* 578 * If the buffer is already invalidated, then 579 * just return. 580 */ 581 ASSERT(bp->b_flags & XBF_STALE); 582 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY))); 583 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF)); 584 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK)); 585 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 586 ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags)); 587 ASSERT(tp->t_flags & XFS_TRANS_DIRTY); 588 return; 589 } 590 591 xfs_buf_stale(bp); 592 593 bip->bli_flags |= XFS_BLI_STALE; 594 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY); 595 bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF; 596 bip->__bli_format.blf_flags |= XFS_BLF_CANCEL; 597 bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK; 598 for (i = 0; i < bip->bli_format_count; i++) { 599 memset(bip->bli_formats[i].blf_data_map, 0, 600 (bip->bli_formats[i].blf_map_size * sizeof(uint))); 601 } 602 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags); 603 tp->t_flags |= XFS_TRANS_DIRTY; 604 } 605 606 /* 607 * This call is used to indicate that the buffer contains on-disk inodes which 608 * must be handled specially during recovery. They require special handling 609 * because only the di_next_unlinked from the inodes in the buffer should be 610 * recovered. The rest of the data in the buffer is logged via the inodes 611 * themselves. 612 * 613 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be 614 * transferred to the buffer's log format structure so that we'll know what to 615 * do at recovery time. 616 */ 617 void 618 xfs_trans_inode_buf( 619 xfs_trans_t *tp, 620 xfs_buf_t *bp) 621 { 622 struct xfs_buf_log_item *bip = bp->b_log_item; 623 624 ASSERT(bp->b_transp == tp); 625 ASSERT(bip != NULL); 626 ASSERT(atomic_read(&bip->bli_refcount) > 0); 627 628 bip->bli_flags |= XFS_BLI_INODE_BUF; 629 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 630 } 631 632 /* 633 * This call is used to indicate that the buffer is going to 634 * be staled and was an inode buffer. This means it gets 635 * special processing during unpin - where any inodes 636 * associated with the buffer should be removed from ail. 637 * There is also special processing during recovery, 638 * any replay of the inodes in the buffer needs to be 639 * prevented as the buffer may have been reused. 640 */ 641 void 642 xfs_trans_stale_inode_buf( 643 xfs_trans_t *tp, 644 xfs_buf_t *bp) 645 { 646 struct xfs_buf_log_item *bip = bp->b_log_item; 647 648 ASSERT(bp->b_transp == tp); 649 ASSERT(bip != NULL); 650 ASSERT(atomic_read(&bip->bli_refcount) > 0); 651 652 bip->bli_flags |= XFS_BLI_STALE_INODE; 653 bip->bli_item.li_cb = xfs_buf_iodone; 654 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 655 } 656 657 /* 658 * Mark the buffer as being one which contains newly allocated 659 * inodes. We need to make sure that even if this buffer is 660 * relogged as an 'inode buf' we still recover all of the inode 661 * images in the face of a crash. This works in coordination with 662 * xfs_buf_item_committed() to ensure that the buffer remains in the 663 * AIL at its original location even after it has been relogged. 664 */ 665 /* ARGSUSED */ 666 void 667 xfs_trans_inode_alloc_buf( 668 xfs_trans_t *tp, 669 xfs_buf_t *bp) 670 { 671 struct xfs_buf_log_item *bip = bp->b_log_item; 672 673 ASSERT(bp->b_transp == tp); 674 ASSERT(bip != NULL); 675 ASSERT(atomic_read(&bip->bli_refcount) > 0); 676 677 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF; 678 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 679 } 680 681 /* 682 * Mark the buffer as ordered for this transaction. This means that the contents 683 * of the buffer are not recorded in the transaction but it is tracked in the 684 * AIL as though it was. This allows us to record logical changes in 685 * transactions rather than the physical changes we make to the buffer without 686 * changing writeback ordering constraints of metadata buffers. 687 */ 688 bool 689 xfs_trans_ordered_buf( 690 struct xfs_trans *tp, 691 struct xfs_buf *bp) 692 { 693 struct xfs_buf_log_item *bip = bp->b_log_item; 694 695 ASSERT(bp->b_transp == tp); 696 ASSERT(bip != NULL); 697 ASSERT(atomic_read(&bip->bli_refcount) > 0); 698 699 if (xfs_buf_item_dirty_format(bip)) 700 return false; 701 702 bip->bli_flags |= XFS_BLI_ORDERED; 703 trace_xfs_buf_item_ordered(bip); 704 705 /* 706 * We don't log a dirty range of an ordered buffer but it still needs 707 * to be marked dirty and that it has been logged. 708 */ 709 xfs_trans_dirty_buf(tp, bp); 710 return true; 711 } 712 713 /* 714 * Set the type of the buffer for log recovery so that it can correctly identify 715 * and hence attach the correct buffer ops to the buffer after replay. 716 */ 717 void 718 xfs_trans_buf_set_type( 719 struct xfs_trans *tp, 720 struct xfs_buf *bp, 721 enum xfs_blft type) 722 { 723 struct xfs_buf_log_item *bip = bp->b_log_item; 724 725 if (!tp) 726 return; 727 728 ASSERT(bp->b_transp == tp); 729 ASSERT(bip != NULL); 730 ASSERT(atomic_read(&bip->bli_refcount) > 0); 731 732 xfs_blft_to_flags(&bip->__bli_format, type); 733 } 734 735 void 736 xfs_trans_buf_copy_type( 737 struct xfs_buf *dst_bp, 738 struct xfs_buf *src_bp) 739 { 740 struct xfs_buf_log_item *sbip = src_bp->b_log_item; 741 struct xfs_buf_log_item *dbip = dst_bp->b_log_item; 742 enum xfs_blft type; 743 744 type = xfs_blft_from_flags(&sbip->__bli_format); 745 xfs_blft_to_flags(&dbip->__bli_format, type); 746 } 747 748 /* 749 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of 750 * dquots. However, unlike in inode buffer recovery, dquot buffers get 751 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag). 752 * The only thing that makes dquot buffers different from regular 753 * buffers is that we must not replay dquot bufs when recovering 754 * if a _corresponding_ quotaoff has happened. We also have to distinguish 755 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas 756 * can be turned off independently. 757 */ 758 /* ARGSUSED */ 759 void 760 xfs_trans_dquot_buf( 761 xfs_trans_t *tp, 762 xfs_buf_t *bp, 763 uint type) 764 { 765 struct xfs_buf_log_item *bip = bp->b_log_item; 766 767 ASSERT(type == XFS_BLF_UDQUOT_BUF || 768 type == XFS_BLF_PDQUOT_BUF || 769 type == XFS_BLF_GDQUOT_BUF); 770 771 bip->__bli_format.blf_flags |= type; 772 773 switch (type) { 774 case XFS_BLF_UDQUOT_BUF: 775 type = XFS_BLFT_UDQUOT_BUF; 776 break; 777 case XFS_BLF_PDQUOT_BUF: 778 type = XFS_BLFT_PDQUOT_BUF; 779 break; 780 case XFS_BLF_GDQUOT_BUF: 781 type = XFS_BLFT_GDQUOT_BUF; 782 break; 783 default: 784 type = XFS_BLFT_UNKNOWN_BUF; 785 break; 786 } 787 788 xfs_trans_buf_set_type(tp, bp, type); 789 } 790