xref: /openbmc/linux/fs/xfs/xfs_trans_buf.c (revision 089a49b6)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_trans.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_bmap_btree.h"
27 #include "xfs_alloc_btree.h"
28 #include "xfs_ialloc_btree.h"
29 #include "xfs_dinode.h"
30 #include "xfs_inode.h"
31 #include "xfs_buf_item.h"
32 #include "xfs_trans_priv.h"
33 #include "xfs_error.h"
34 #include "xfs_trace.h"
35 
36 /*
37  * Check to see if a buffer matching the given parameters is already
38  * a part of the given transaction.
39  */
40 STATIC struct xfs_buf *
41 xfs_trans_buf_item_match(
42 	struct xfs_trans	*tp,
43 	struct xfs_buftarg	*target,
44 	struct xfs_buf_map	*map,
45 	int			nmaps)
46 {
47 	struct xfs_log_item_desc *lidp;
48 	struct xfs_buf_log_item	*blip;
49 	int			len = 0;
50 	int			i;
51 
52 	for (i = 0; i < nmaps; i++)
53 		len += map[i].bm_len;
54 
55 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
56 		blip = (struct xfs_buf_log_item *)lidp->lid_item;
57 		if (blip->bli_item.li_type == XFS_LI_BUF &&
58 		    blip->bli_buf->b_target == target &&
59 		    XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
60 		    blip->bli_buf->b_length == len) {
61 			ASSERT(blip->bli_buf->b_map_count == nmaps);
62 			return blip->bli_buf;
63 		}
64 	}
65 
66 	return NULL;
67 }
68 
69 /*
70  * Add the locked buffer to the transaction.
71  *
72  * The buffer must be locked, and it cannot be associated with any
73  * transaction.
74  *
75  * If the buffer does not yet have a buf log item associated with it,
76  * then allocate one for it.  Then add the buf item to the transaction.
77  */
78 STATIC void
79 _xfs_trans_bjoin(
80 	struct xfs_trans	*tp,
81 	struct xfs_buf		*bp,
82 	int			reset_recur)
83 {
84 	struct xfs_buf_log_item	*bip;
85 
86 	ASSERT(bp->b_transp == NULL);
87 
88 	/*
89 	 * The xfs_buf_log_item pointer is stored in b_fsprivate.  If
90 	 * it doesn't have one yet, then allocate one and initialize it.
91 	 * The checks to see if one is there are in xfs_buf_item_init().
92 	 */
93 	xfs_buf_item_init(bp, tp->t_mountp);
94 	bip = bp->b_fspriv;
95 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
96 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
97 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
98 	if (reset_recur)
99 		bip->bli_recur = 0;
100 
101 	/*
102 	 * Take a reference for this transaction on the buf item.
103 	 */
104 	atomic_inc(&bip->bli_refcount);
105 
106 	/*
107 	 * Get a log_item_desc to point at the new item.
108 	 */
109 	xfs_trans_add_item(tp, &bip->bli_item);
110 
111 	/*
112 	 * Initialize b_fsprivate2 so we can find it with incore_match()
113 	 * in xfs_trans_get_buf() and friends above.
114 	 */
115 	bp->b_transp = tp;
116 
117 }
118 
119 void
120 xfs_trans_bjoin(
121 	struct xfs_trans	*tp,
122 	struct xfs_buf		*bp)
123 {
124 	_xfs_trans_bjoin(tp, bp, 0);
125 	trace_xfs_trans_bjoin(bp->b_fspriv);
126 }
127 
128 /*
129  * Get and lock the buffer for the caller if it is not already
130  * locked within the given transaction.  If it is already locked
131  * within the transaction, just increment its lock recursion count
132  * and return a pointer to it.
133  *
134  * If the transaction pointer is NULL, make this just a normal
135  * get_buf() call.
136  */
137 struct xfs_buf *
138 xfs_trans_get_buf_map(
139 	struct xfs_trans	*tp,
140 	struct xfs_buftarg	*target,
141 	struct xfs_buf_map	*map,
142 	int			nmaps,
143 	xfs_buf_flags_t		flags)
144 {
145 	xfs_buf_t		*bp;
146 	xfs_buf_log_item_t	*bip;
147 
148 	if (!tp)
149 		return xfs_buf_get_map(target, map, nmaps, flags);
150 
151 	/*
152 	 * If we find the buffer in the cache with this transaction
153 	 * pointer in its b_fsprivate2 field, then we know we already
154 	 * have it locked.  In this case we just increment the lock
155 	 * recursion count and return the buffer to the caller.
156 	 */
157 	bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
158 	if (bp != NULL) {
159 		ASSERT(xfs_buf_islocked(bp));
160 		if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
161 			xfs_buf_stale(bp);
162 			XFS_BUF_DONE(bp);
163 		}
164 
165 		ASSERT(bp->b_transp == tp);
166 		bip = bp->b_fspriv;
167 		ASSERT(bip != NULL);
168 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
169 		bip->bli_recur++;
170 		trace_xfs_trans_get_buf_recur(bip);
171 		return (bp);
172 	}
173 
174 	bp = xfs_buf_get_map(target, map, nmaps, flags);
175 	if (bp == NULL) {
176 		return NULL;
177 	}
178 
179 	ASSERT(!bp->b_error);
180 
181 	_xfs_trans_bjoin(tp, bp, 1);
182 	trace_xfs_trans_get_buf(bp->b_fspriv);
183 	return (bp);
184 }
185 
186 /*
187  * Get and lock the superblock buffer of this file system for the
188  * given transaction.
189  *
190  * We don't need to use incore_match() here, because the superblock
191  * buffer is a private buffer which we keep a pointer to in the
192  * mount structure.
193  */
194 xfs_buf_t *
195 xfs_trans_getsb(xfs_trans_t	*tp,
196 		struct xfs_mount *mp,
197 		int		flags)
198 {
199 	xfs_buf_t		*bp;
200 	xfs_buf_log_item_t	*bip;
201 
202 	/*
203 	 * Default to just trying to lock the superblock buffer
204 	 * if tp is NULL.
205 	 */
206 	if (tp == NULL) {
207 		return (xfs_getsb(mp, flags));
208 	}
209 
210 	/*
211 	 * If the superblock buffer already has this transaction
212 	 * pointer in its b_fsprivate2 field, then we know we already
213 	 * have it locked.  In this case we just increment the lock
214 	 * recursion count and return the buffer to the caller.
215 	 */
216 	bp = mp->m_sb_bp;
217 	if (bp->b_transp == tp) {
218 		bip = bp->b_fspriv;
219 		ASSERT(bip != NULL);
220 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
221 		bip->bli_recur++;
222 		trace_xfs_trans_getsb_recur(bip);
223 		return (bp);
224 	}
225 
226 	bp = xfs_getsb(mp, flags);
227 	if (bp == NULL)
228 		return NULL;
229 
230 	_xfs_trans_bjoin(tp, bp, 1);
231 	trace_xfs_trans_getsb(bp->b_fspriv);
232 	return (bp);
233 }
234 
235 #ifdef DEBUG
236 xfs_buftarg_t *xfs_error_target;
237 int	xfs_do_error;
238 int	xfs_req_num;
239 int	xfs_error_mod = 33;
240 #endif
241 
242 /*
243  * Get and lock the buffer for the caller if it is not already
244  * locked within the given transaction.  If it has not yet been
245  * read in, read it from disk. If it is already locked
246  * within the transaction and already read in, just increment its
247  * lock recursion count and return a pointer to it.
248  *
249  * If the transaction pointer is NULL, make this just a normal
250  * read_buf() call.
251  */
252 int
253 xfs_trans_read_buf_map(
254 	struct xfs_mount	*mp,
255 	struct xfs_trans	*tp,
256 	struct xfs_buftarg	*target,
257 	struct xfs_buf_map	*map,
258 	int			nmaps,
259 	xfs_buf_flags_t		flags,
260 	struct xfs_buf		**bpp,
261 	const struct xfs_buf_ops *ops)
262 {
263 	xfs_buf_t		*bp;
264 	xfs_buf_log_item_t	*bip;
265 	int			error;
266 
267 	*bpp = NULL;
268 	if (!tp) {
269 		bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
270 		if (!bp)
271 			return (flags & XBF_TRYLOCK) ?
272 					EAGAIN : XFS_ERROR(ENOMEM);
273 
274 		if (bp->b_error) {
275 			error = bp->b_error;
276 			xfs_buf_ioerror_alert(bp, __func__);
277 			XFS_BUF_UNDONE(bp);
278 			xfs_buf_stale(bp);
279 			xfs_buf_relse(bp);
280 			return error;
281 		}
282 #ifdef DEBUG
283 		if (xfs_do_error) {
284 			if (xfs_error_target == target) {
285 				if (((xfs_req_num++) % xfs_error_mod) == 0) {
286 					xfs_buf_relse(bp);
287 					xfs_debug(mp, "Returning error!");
288 					return XFS_ERROR(EIO);
289 				}
290 			}
291 		}
292 #endif
293 		if (XFS_FORCED_SHUTDOWN(mp))
294 			goto shutdown_abort;
295 		*bpp = bp;
296 		return 0;
297 	}
298 
299 	/*
300 	 * If we find the buffer in the cache with this transaction
301 	 * pointer in its b_fsprivate2 field, then we know we already
302 	 * have it locked.  If it is already read in we just increment
303 	 * the lock recursion count and return the buffer to the caller.
304 	 * If the buffer is not yet read in, then we read it in, increment
305 	 * the lock recursion count, and return it to the caller.
306 	 */
307 	bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
308 	if (bp != NULL) {
309 		ASSERT(xfs_buf_islocked(bp));
310 		ASSERT(bp->b_transp == tp);
311 		ASSERT(bp->b_fspriv != NULL);
312 		ASSERT(!bp->b_error);
313 		if (!(XFS_BUF_ISDONE(bp))) {
314 			trace_xfs_trans_read_buf_io(bp, _RET_IP_);
315 			ASSERT(!XFS_BUF_ISASYNC(bp));
316 			ASSERT(bp->b_iodone == NULL);
317 			XFS_BUF_READ(bp);
318 			bp->b_ops = ops;
319 			xfsbdstrat(tp->t_mountp, bp);
320 			error = xfs_buf_iowait(bp);
321 			if (error) {
322 				xfs_buf_ioerror_alert(bp, __func__);
323 				xfs_buf_relse(bp);
324 				/*
325 				 * We can gracefully recover from most read
326 				 * errors. Ones we can't are those that happen
327 				 * after the transaction's already dirty.
328 				 */
329 				if (tp->t_flags & XFS_TRANS_DIRTY)
330 					xfs_force_shutdown(tp->t_mountp,
331 							SHUTDOWN_META_IO_ERROR);
332 				return error;
333 			}
334 		}
335 		/*
336 		 * We never locked this buf ourselves, so we shouldn't
337 		 * brelse it either. Just get out.
338 		 */
339 		if (XFS_FORCED_SHUTDOWN(mp)) {
340 			trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
341 			*bpp = NULL;
342 			return XFS_ERROR(EIO);
343 		}
344 
345 
346 		bip = bp->b_fspriv;
347 		bip->bli_recur++;
348 
349 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
350 		trace_xfs_trans_read_buf_recur(bip);
351 		*bpp = bp;
352 		return 0;
353 	}
354 
355 	bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
356 	if (bp == NULL) {
357 		*bpp = NULL;
358 		return (flags & XBF_TRYLOCK) ?
359 					0 : XFS_ERROR(ENOMEM);
360 	}
361 	if (bp->b_error) {
362 		error = bp->b_error;
363 		xfs_buf_stale(bp);
364 		XFS_BUF_DONE(bp);
365 		xfs_buf_ioerror_alert(bp, __func__);
366 		if (tp->t_flags & XFS_TRANS_DIRTY)
367 			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
368 		xfs_buf_relse(bp);
369 		return error;
370 	}
371 #ifdef DEBUG
372 	if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) {
373 		if (xfs_error_target == target) {
374 			if (((xfs_req_num++) % xfs_error_mod) == 0) {
375 				xfs_force_shutdown(tp->t_mountp,
376 						   SHUTDOWN_META_IO_ERROR);
377 				xfs_buf_relse(bp);
378 				xfs_debug(mp, "Returning trans error!");
379 				return XFS_ERROR(EIO);
380 			}
381 		}
382 	}
383 #endif
384 	if (XFS_FORCED_SHUTDOWN(mp))
385 		goto shutdown_abort;
386 
387 	_xfs_trans_bjoin(tp, bp, 1);
388 	trace_xfs_trans_read_buf(bp->b_fspriv);
389 
390 	*bpp = bp;
391 	return 0;
392 
393 shutdown_abort:
394 	trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
395 	xfs_buf_relse(bp);
396 	*bpp = NULL;
397 	return XFS_ERROR(EIO);
398 }
399 
400 /*
401  * Release the buffer bp which was previously acquired with one of the
402  * xfs_trans_... buffer allocation routines if the buffer has not
403  * been modified within this transaction.  If the buffer is modified
404  * within this transaction, do decrement the recursion count but do
405  * not release the buffer even if the count goes to 0.  If the buffer is not
406  * modified within the transaction, decrement the recursion count and
407  * release the buffer if the recursion count goes to 0.
408  *
409  * If the buffer is to be released and it was not modified before
410  * this transaction began, then free the buf_log_item associated with it.
411  *
412  * If the transaction pointer is NULL, make this just a normal
413  * brelse() call.
414  */
415 void
416 xfs_trans_brelse(xfs_trans_t	*tp,
417 		 xfs_buf_t	*bp)
418 {
419 	xfs_buf_log_item_t	*bip;
420 
421 	/*
422 	 * Default to a normal brelse() call if the tp is NULL.
423 	 */
424 	if (tp == NULL) {
425 		ASSERT(bp->b_transp == NULL);
426 		xfs_buf_relse(bp);
427 		return;
428 	}
429 
430 	ASSERT(bp->b_transp == tp);
431 	bip = bp->b_fspriv;
432 	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
433 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
434 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
435 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
436 
437 	trace_xfs_trans_brelse(bip);
438 
439 	/*
440 	 * If the release is just for a recursive lock,
441 	 * then decrement the count and return.
442 	 */
443 	if (bip->bli_recur > 0) {
444 		bip->bli_recur--;
445 		return;
446 	}
447 
448 	/*
449 	 * If the buffer is dirty within this transaction, we can't
450 	 * release it until we commit.
451 	 */
452 	if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY)
453 		return;
454 
455 	/*
456 	 * If the buffer has been invalidated, then we can't release
457 	 * it until the transaction commits to disk unless it is re-dirtied
458 	 * as part of this transaction.  This prevents us from pulling
459 	 * the item from the AIL before we should.
460 	 */
461 	if (bip->bli_flags & XFS_BLI_STALE)
462 		return;
463 
464 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
465 
466 	/*
467 	 * Free up the log item descriptor tracking the released item.
468 	 */
469 	xfs_trans_del_item(&bip->bli_item);
470 
471 	/*
472 	 * Clear the hold flag in the buf log item if it is set.
473 	 * We wouldn't want the next user of the buffer to
474 	 * get confused.
475 	 */
476 	if (bip->bli_flags & XFS_BLI_HOLD) {
477 		bip->bli_flags &= ~XFS_BLI_HOLD;
478 	}
479 
480 	/*
481 	 * Drop our reference to the buf log item.
482 	 */
483 	atomic_dec(&bip->bli_refcount);
484 
485 	/*
486 	 * If the buf item is not tracking data in the log, then
487 	 * we must free it before releasing the buffer back to the
488 	 * free pool.  Before releasing the buffer to the free pool,
489 	 * clear the transaction pointer in b_fsprivate2 to dissolve
490 	 * its relation to this transaction.
491 	 */
492 	if (!xfs_buf_item_dirty(bip)) {
493 /***
494 		ASSERT(bp->b_pincount == 0);
495 ***/
496 		ASSERT(atomic_read(&bip->bli_refcount) == 0);
497 		ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
498 		ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
499 		xfs_buf_item_relse(bp);
500 	}
501 
502 	bp->b_transp = NULL;
503 	xfs_buf_relse(bp);
504 }
505 
506 /*
507  * Mark the buffer as not needing to be unlocked when the buf item's
508  * iop_unlock() routine is called.  The buffer must already be locked
509  * and associated with the given transaction.
510  */
511 /* ARGSUSED */
512 void
513 xfs_trans_bhold(xfs_trans_t	*tp,
514 		xfs_buf_t	*bp)
515 {
516 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
517 
518 	ASSERT(bp->b_transp == tp);
519 	ASSERT(bip != NULL);
520 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
521 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
522 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
523 
524 	bip->bli_flags |= XFS_BLI_HOLD;
525 	trace_xfs_trans_bhold(bip);
526 }
527 
528 /*
529  * Cancel the previous buffer hold request made on this buffer
530  * for this transaction.
531  */
532 void
533 xfs_trans_bhold_release(xfs_trans_t	*tp,
534 			xfs_buf_t	*bp)
535 {
536 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
537 
538 	ASSERT(bp->b_transp == tp);
539 	ASSERT(bip != NULL);
540 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
541 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
542 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
543 	ASSERT(bip->bli_flags & XFS_BLI_HOLD);
544 
545 	bip->bli_flags &= ~XFS_BLI_HOLD;
546 	trace_xfs_trans_bhold_release(bip);
547 }
548 
549 /*
550  * This is called to mark bytes first through last inclusive of the given
551  * buffer as needing to be logged when the transaction is committed.
552  * The buffer must already be associated with the given transaction.
553  *
554  * First and last are numbers relative to the beginning of this buffer,
555  * so the first byte in the buffer is numbered 0 regardless of the
556  * value of b_blkno.
557  */
558 void
559 xfs_trans_log_buf(xfs_trans_t	*tp,
560 		  xfs_buf_t	*bp,
561 		  uint		first,
562 		  uint		last)
563 {
564 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
565 
566 	ASSERT(bp->b_transp == tp);
567 	ASSERT(bip != NULL);
568 	ASSERT(first <= last && last < BBTOB(bp->b_length));
569 	ASSERT(bp->b_iodone == NULL ||
570 	       bp->b_iodone == xfs_buf_iodone_callbacks);
571 
572 	/*
573 	 * Mark the buffer as needing to be written out eventually,
574 	 * and set its iodone function to remove the buffer's buf log
575 	 * item from the AIL and free it when the buffer is flushed
576 	 * to disk.  See xfs_buf_attach_iodone() for more details
577 	 * on li_cb and xfs_buf_iodone_callbacks().
578 	 * If we end up aborting this transaction, we trap this buffer
579 	 * inside the b_bdstrat callback so that this won't get written to
580 	 * disk.
581 	 */
582 	XFS_BUF_DONE(bp);
583 
584 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
585 	bp->b_iodone = xfs_buf_iodone_callbacks;
586 	bip->bli_item.li_cb = xfs_buf_iodone;
587 
588 	trace_xfs_trans_log_buf(bip);
589 
590 	/*
591 	 * If we invalidated the buffer within this transaction, then
592 	 * cancel the invalidation now that we're dirtying the buffer
593 	 * again.  There are no races with the code in xfs_buf_item_unpin(),
594 	 * because we have a reference to the buffer this entire time.
595 	 */
596 	if (bip->bli_flags & XFS_BLI_STALE) {
597 		bip->bli_flags &= ~XFS_BLI_STALE;
598 		ASSERT(XFS_BUF_ISSTALE(bp));
599 		XFS_BUF_UNSTALE(bp);
600 		bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
601 	}
602 
603 	tp->t_flags |= XFS_TRANS_DIRTY;
604 	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
605 
606 	/*
607 	 * If we have an ordered buffer we are not logging any dirty range but
608 	 * it still needs to be marked dirty and that it has been logged.
609 	 */
610 	bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
611 	if (!(bip->bli_flags & XFS_BLI_ORDERED))
612 		xfs_buf_item_log(bip, first, last);
613 }
614 
615 
616 /*
617  * Invalidate a buffer that is being used within a transaction.
618  *
619  * Typically this is because the blocks in the buffer are being freed, so we
620  * need to prevent it from being written out when we're done.  Allowing it
621  * to be written again might overwrite data in the free blocks if they are
622  * reallocated to a file.
623  *
624  * We prevent the buffer from being written out by marking it stale.  We can't
625  * get rid of the buf log item at this point because the buffer may still be
626  * pinned by another transaction.  If that is the case, then we'll wait until
627  * the buffer is committed to disk for the last time (we can tell by the ref
628  * count) and free it in xfs_buf_item_unpin().  Until that happens we will
629  * keep the buffer locked so that the buffer and buf log item are not reused.
630  *
631  * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
632  * the buf item.  This will be used at recovery time to determine that copies
633  * of the buffer in the log before this should not be replayed.
634  *
635  * We mark the item descriptor and the transaction dirty so that we'll hold
636  * the buffer until after the commit.
637  *
638  * Since we're invalidating the buffer, we also clear the state about which
639  * parts of the buffer have been logged.  We also clear the flag indicating
640  * that this is an inode buffer since the data in the buffer will no longer
641  * be valid.
642  *
643  * We set the stale bit in the buffer as well since we're getting rid of it.
644  */
645 void
646 xfs_trans_binval(
647 	xfs_trans_t	*tp,
648 	xfs_buf_t	*bp)
649 {
650 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
651 	int			i;
652 
653 	ASSERT(bp->b_transp == tp);
654 	ASSERT(bip != NULL);
655 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
656 
657 	trace_xfs_trans_binval(bip);
658 
659 	if (bip->bli_flags & XFS_BLI_STALE) {
660 		/*
661 		 * If the buffer is already invalidated, then
662 		 * just return.
663 		 */
664 		ASSERT(XFS_BUF_ISSTALE(bp));
665 		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
666 		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
667 		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
668 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
669 		ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY);
670 		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
671 		return;
672 	}
673 
674 	xfs_buf_stale(bp);
675 
676 	bip->bli_flags |= XFS_BLI_STALE;
677 	bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
678 	bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
679 	bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
680 	bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
681 	for (i = 0; i < bip->bli_format_count; i++) {
682 		memset(bip->bli_formats[i].blf_data_map, 0,
683 		       (bip->bli_formats[i].blf_map_size * sizeof(uint)));
684 	}
685 	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
686 	tp->t_flags |= XFS_TRANS_DIRTY;
687 }
688 
689 /*
690  * This call is used to indicate that the buffer contains on-disk inodes which
691  * must be handled specially during recovery.  They require special handling
692  * because only the di_next_unlinked from the inodes in the buffer should be
693  * recovered.  The rest of the data in the buffer is logged via the inodes
694  * themselves.
695  *
696  * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
697  * transferred to the buffer's log format structure so that we'll know what to
698  * do at recovery time.
699  */
700 void
701 xfs_trans_inode_buf(
702 	xfs_trans_t	*tp,
703 	xfs_buf_t	*bp)
704 {
705 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
706 
707 	ASSERT(bp->b_transp == tp);
708 	ASSERT(bip != NULL);
709 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
710 
711 	bip->bli_flags |= XFS_BLI_INODE_BUF;
712 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
713 }
714 
715 /*
716  * This call is used to indicate that the buffer is going to
717  * be staled and was an inode buffer. This means it gets
718  * special processing during unpin - where any inodes
719  * associated with the buffer should be removed from ail.
720  * There is also special processing during recovery,
721  * any replay of the inodes in the buffer needs to be
722  * prevented as the buffer may have been reused.
723  */
724 void
725 xfs_trans_stale_inode_buf(
726 	xfs_trans_t	*tp,
727 	xfs_buf_t	*bp)
728 {
729 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
730 
731 	ASSERT(bp->b_transp == tp);
732 	ASSERT(bip != NULL);
733 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
734 
735 	bip->bli_flags |= XFS_BLI_STALE_INODE;
736 	bip->bli_item.li_cb = xfs_buf_iodone;
737 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
738 }
739 
740 /*
741  * Mark the buffer as being one which contains newly allocated
742  * inodes.  We need to make sure that even if this buffer is
743  * relogged as an 'inode buf' we still recover all of the inode
744  * images in the face of a crash.  This works in coordination with
745  * xfs_buf_item_committed() to ensure that the buffer remains in the
746  * AIL at its original location even after it has been relogged.
747  */
748 /* ARGSUSED */
749 void
750 xfs_trans_inode_alloc_buf(
751 	xfs_trans_t	*tp,
752 	xfs_buf_t	*bp)
753 {
754 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
755 
756 	ASSERT(bp->b_transp == tp);
757 	ASSERT(bip != NULL);
758 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
759 
760 	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
761 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
762 }
763 
764 /*
765  * Mark the buffer as ordered for this transaction. This means
766  * that the contents of the buffer are not recorded in the transaction
767  * but it is tracked in the AIL as though it was. This allows us
768  * to record logical changes in transactions rather than the physical
769  * changes we make to the buffer without changing writeback ordering
770  * constraints of metadata buffers.
771  */
772 void
773 xfs_trans_ordered_buf(
774 	struct xfs_trans	*tp,
775 	struct xfs_buf		*bp)
776 {
777 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
778 
779 	ASSERT(bp->b_transp == tp);
780 	ASSERT(bip != NULL);
781 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
782 
783 	bip->bli_flags |= XFS_BLI_ORDERED;
784 	trace_xfs_buf_item_ordered(bip);
785 }
786 
787 /*
788  * Set the type of the buffer for log recovery so that it can correctly identify
789  * and hence attach the correct buffer ops to the buffer after replay.
790  */
791 void
792 xfs_trans_buf_set_type(
793 	struct xfs_trans	*tp,
794 	struct xfs_buf		*bp,
795 	enum xfs_blft		type)
796 {
797 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
798 
799 	if (!tp)
800 		return;
801 
802 	ASSERT(bp->b_transp == tp);
803 	ASSERT(bip != NULL);
804 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
805 
806 	xfs_blft_to_flags(&bip->__bli_format, type);
807 }
808 
809 void
810 xfs_trans_buf_copy_type(
811 	struct xfs_buf		*dst_bp,
812 	struct xfs_buf		*src_bp)
813 {
814 	struct xfs_buf_log_item	*sbip = src_bp->b_fspriv;
815 	struct xfs_buf_log_item	*dbip = dst_bp->b_fspriv;
816 	enum xfs_blft		type;
817 
818 	type = xfs_blft_from_flags(&sbip->__bli_format);
819 	xfs_blft_to_flags(&dbip->__bli_format, type);
820 }
821 
822 /*
823  * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
824  * dquots. However, unlike in inode buffer recovery, dquot buffers get
825  * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
826  * The only thing that makes dquot buffers different from regular
827  * buffers is that we must not replay dquot bufs when recovering
828  * if a _corresponding_ quotaoff has happened. We also have to distinguish
829  * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
830  * can be turned off independently.
831  */
832 /* ARGSUSED */
833 void
834 xfs_trans_dquot_buf(
835 	xfs_trans_t	*tp,
836 	xfs_buf_t	*bp,
837 	uint		type)
838 {
839 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
840 
841 	ASSERT(type == XFS_BLF_UDQUOT_BUF ||
842 	       type == XFS_BLF_PDQUOT_BUF ||
843 	       type == XFS_BLF_GDQUOT_BUF);
844 
845 	bip->__bli_format.blf_flags |= type;
846 
847 	switch (type) {
848 	case XFS_BLF_UDQUOT_BUF:
849 		type = XFS_BLFT_UDQUOT_BUF;
850 		break;
851 	case XFS_BLF_PDQUOT_BUF:
852 		type = XFS_BLFT_PDQUOT_BUF;
853 		break;
854 	case XFS_BLF_GDQUOT_BUF:
855 		type = XFS_BLFT_GDQUOT_BUF;
856 		break;
857 	default:
858 		type = XFS_BLFT_UNKNOWN_BUF;
859 		break;
860 	}
861 
862 	xfs_trans_buf_set_type(tp, bp, type);
863 }
864