xref: /openbmc/linux/fs/xfs/xfs_trans_ail.c (revision f3d7c2cd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * Copyright (c) 2008 Dave Chinner
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_trace.h"
17 #include "xfs_errortag.h"
18 #include "xfs_error.h"
19 #include "xfs_log.h"
20 #include "xfs_log_priv.h"
21 
22 #ifdef DEBUG
23 /*
24  * Check that the list is sorted as it should be.
25  *
26  * Called with the ail lock held, but we don't want to assert fail with it
27  * held otherwise we'll lock everything up and won't be able to debug the
28  * cause. Hence we sample and check the state under the AIL lock and return if
29  * everything is fine, otherwise we drop the lock and run the ASSERT checks.
30  * Asserts may not be fatal, so pick the lock back up and continue onwards.
31  */
32 STATIC void
33 xfs_ail_check(
34 	struct xfs_ail		*ailp,
35 	struct xfs_log_item	*lip)
36 	__must_hold(&ailp->ail_lock)
37 {
38 	struct xfs_log_item	*prev_lip;
39 	struct xfs_log_item	*next_lip;
40 	xfs_lsn_t		prev_lsn = NULLCOMMITLSN;
41 	xfs_lsn_t		next_lsn = NULLCOMMITLSN;
42 	xfs_lsn_t		lsn;
43 	bool			in_ail;
44 
45 
46 	if (list_empty(&ailp->ail_head))
47 		return;
48 
49 	/*
50 	 * Sample then check the next and previous entries are valid.
51 	 */
52 	in_ail = test_bit(XFS_LI_IN_AIL, &lip->li_flags);
53 	prev_lip = list_entry(lip->li_ail.prev, struct xfs_log_item, li_ail);
54 	if (&prev_lip->li_ail != &ailp->ail_head)
55 		prev_lsn = prev_lip->li_lsn;
56 	next_lip = list_entry(lip->li_ail.next, struct xfs_log_item, li_ail);
57 	if (&next_lip->li_ail != &ailp->ail_head)
58 		next_lsn = next_lip->li_lsn;
59 	lsn = lip->li_lsn;
60 
61 	if (in_ail &&
62 	    (prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0) &&
63 	    (next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0))
64 		return;
65 
66 	spin_unlock(&ailp->ail_lock);
67 	ASSERT(in_ail);
68 	ASSERT(prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0);
69 	ASSERT(next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0);
70 	spin_lock(&ailp->ail_lock);
71 }
72 #else /* !DEBUG */
73 #define	xfs_ail_check(a,l)
74 #endif /* DEBUG */
75 
76 /*
77  * Return a pointer to the last item in the AIL.  If the AIL is empty, then
78  * return NULL.
79  */
80 static struct xfs_log_item *
81 xfs_ail_max(
82 	struct xfs_ail  *ailp)
83 {
84 	if (list_empty(&ailp->ail_head))
85 		return NULL;
86 
87 	return list_entry(ailp->ail_head.prev, struct xfs_log_item, li_ail);
88 }
89 
90 /*
91  * Return a pointer to the item which follows the given item in the AIL.  If
92  * the given item is the last item in the list, then return NULL.
93  */
94 static struct xfs_log_item *
95 xfs_ail_next(
96 	struct xfs_ail		*ailp,
97 	struct xfs_log_item	*lip)
98 {
99 	if (lip->li_ail.next == &ailp->ail_head)
100 		return NULL;
101 
102 	return list_first_entry(&lip->li_ail, struct xfs_log_item, li_ail);
103 }
104 
105 /*
106  * This is called by the log manager code to determine the LSN of the tail of
107  * the log.  This is exactly the LSN of the first item in the AIL.  If the AIL
108  * is empty, then this function returns 0.
109  *
110  * We need the AIL lock in order to get a coherent read of the lsn of the last
111  * item in the AIL.
112  */
113 static xfs_lsn_t
114 __xfs_ail_min_lsn(
115 	struct xfs_ail		*ailp)
116 {
117 	struct xfs_log_item	*lip = xfs_ail_min(ailp);
118 
119 	if (lip)
120 		return lip->li_lsn;
121 	return 0;
122 }
123 
124 xfs_lsn_t
125 xfs_ail_min_lsn(
126 	struct xfs_ail		*ailp)
127 {
128 	xfs_lsn_t		lsn;
129 
130 	spin_lock(&ailp->ail_lock);
131 	lsn = __xfs_ail_min_lsn(ailp);
132 	spin_unlock(&ailp->ail_lock);
133 
134 	return lsn;
135 }
136 
137 /*
138  * Return the maximum lsn held in the AIL, or zero if the AIL is empty.
139  */
140 static xfs_lsn_t
141 xfs_ail_max_lsn(
142 	struct xfs_ail		*ailp)
143 {
144 	xfs_lsn_t       	lsn = 0;
145 	struct xfs_log_item	*lip;
146 
147 	spin_lock(&ailp->ail_lock);
148 	lip = xfs_ail_max(ailp);
149 	if (lip)
150 		lsn = lip->li_lsn;
151 	spin_unlock(&ailp->ail_lock);
152 
153 	return lsn;
154 }
155 
156 /*
157  * The cursor keeps track of where our current traversal is up to by tracking
158  * the next item in the list for us. However, for this to be safe, removing an
159  * object from the AIL needs to invalidate any cursor that points to it. hence
160  * the traversal cursor needs to be linked to the struct xfs_ail so that
161  * deletion can search all the active cursors for invalidation.
162  */
163 STATIC void
164 xfs_trans_ail_cursor_init(
165 	struct xfs_ail		*ailp,
166 	struct xfs_ail_cursor	*cur)
167 {
168 	cur->item = NULL;
169 	list_add_tail(&cur->list, &ailp->ail_cursors);
170 }
171 
172 /*
173  * Get the next item in the traversal and advance the cursor.  If the cursor
174  * was invalidated (indicated by a lip of 1), restart the traversal.
175  */
176 struct xfs_log_item *
177 xfs_trans_ail_cursor_next(
178 	struct xfs_ail		*ailp,
179 	struct xfs_ail_cursor	*cur)
180 {
181 	struct xfs_log_item	*lip = cur->item;
182 
183 	if ((uintptr_t)lip & 1)
184 		lip = xfs_ail_min(ailp);
185 	if (lip)
186 		cur->item = xfs_ail_next(ailp, lip);
187 	return lip;
188 }
189 
190 /*
191  * When the traversal is complete, we need to remove the cursor from the list
192  * of traversing cursors.
193  */
194 void
195 xfs_trans_ail_cursor_done(
196 	struct xfs_ail_cursor	*cur)
197 {
198 	cur->item = NULL;
199 	list_del_init(&cur->list);
200 }
201 
202 /*
203  * Invalidate any cursor that is pointing to this item. This is called when an
204  * item is removed from the AIL. Any cursor pointing to this object is now
205  * invalid and the traversal needs to be terminated so it doesn't reference a
206  * freed object. We set the low bit of the cursor item pointer so we can
207  * distinguish between an invalidation and the end of the list when getting the
208  * next item from the cursor.
209  */
210 STATIC void
211 xfs_trans_ail_cursor_clear(
212 	struct xfs_ail		*ailp,
213 	struct xfs_log_item	*lip)
214 {
215 	struct xfs_ail_cursor	*cur;
216 
217 	list_for_each_entry(cur, &ailp->ail_cursors, list) {
218 		if (cur->item == lip)
219 			cur->item = (struct xfs_log_item *)
220 					((uintptr_t)cur->item | 1);
221 	}
222 }
223 
224 /*
225  * Find the first item in the AIL with the given @lsn by searching in ascending
226  * LSN order and initialise the cursor to point to the next item for a
227  * ascending traversal.  Pass a @lsn of zero to initialise the cursor to the
228  * first item in the AIL. Returns NULL if the list is empty.
229  */
230 struct xfs_log_item *
231 xfs_trans_ail_cursor_first(
232 	struct xfs_ail		*ailp,
233 	struct xfs_ail_cursor	*cur,
234 	xfs_lsn_t		lsn)
235 {
236 	struct xfs_log_item	*lip;
237 
238 	xfs_trans_ail_cursor_init(ailp, cur);
239 
240 	if (lsn == 0) {
241 		lip = xfs_ail_min(ailp);
242 		goto out;
243 	}
244 
245 	list_for_each_entry(lip, &ailp->ail_head, li_ail) {
246 		if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
247 			goto out;
248 	}
249 	return NULL;
250 
251 out:
252 	if (lip)
253 		cur->item = xfs_ail_next(ailp, lip);
254 	return lip;
255 }
256 
257 static struct xfs_log_item *
258 __xfs_trans_ail_cursor_last(
259 	struct xfs_ail		*ailp,
260 	xfs_lsn_t		lsn)
261 {
262 	struct xfs_log_item	*lip;
263 
264 	list_for_each_entry_reverse(lip, &ailp->ail_head, li_ail) {
265 		if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
266 			return lip;
267 	}
268 	return NULL;
269 }
270 
271 /*
272  * Find the last item in the AIL with the given @lsn by searching in descending
273  * LSN order and initialise the cursor to point to that item.  If there is no
274  * item with the value of @lsn, then it sets the cursor to the last item with an
275  * LSN lower than @lsn.  Returns NULL if the list is empty.
276  */
277 struct xfs_log_item *
278 xfs_trans_ail_cursor_last(
279 	struct xfs_ail		*ailp,
280 	struct xfs_ail_cursor	*cur,
281 	xfs_lsn_t		lsn)
282 {
283 	xfs_trans_ail_cursor_init(ailp, cur);
284 	cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
285 	return cur->item;
286 }
287 
288 /*
289  * Splice the log item list into the AIL at the given LSN. We splice to the
290  * tail of the given LSN to maintain insert order for push traversals. The
291  * cursor is optional, allowing repeated updates to the same LSN to avoid
292  * repeated traversals.  This should not be called with an empty list.
293  */
294 static void
295 xfs_ail_splice(
296 	struct xfs_ail		*ailp,
297 	struct xfs_ail_cursor	*cur,
298 	struct list_head	*list,
299 	xfs_lsn_t		lsn)
300 {
301 	struct xfs_log_item	*lip;
302 
303 	ASSERT(!list_empty(list));
304 
305 	/*
306 	 * Use the cursor to determine the insertion point if one is
307 	 * provided.  If not, or if the one we got is not valid,
308 	 * find the place in the AIL where the items belong.
309 	 */
310 	lip = cur ? cur->item : NULL;
311 	if (!lip || (uintptr_t)lip & 1)
312 		lip = __xfs_trans_ail_cursor_last(ailp, lsn);
313 
314 	/*
315 	 * If a cursor is provided, we know we're processing the AIL
316 	 * in lsn order, and future items to be spliced in will
317 	 * follow the last one being inserted now.  Update the
318 	 * cursor to point to that last item, now while we have a
319 	 * reliable pointer to it.
320 	 */
321 	if (cur)
322 		cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);
323 
324 	/*
325 	 * Finally perform the splice.  Unless the AIL was empty,
326 	 * lip points to the item in the AIL _after_ which the new
327 	 * items should go.  If lip is null the AIL was empty, so
328 	 * the new items go at the head of the AIL.
329 	 */
330 	if (lip)
331 		list_splice(list, &lip->li_ail);
332 	else
333 		list_splice(list, &ailp->ail_head);
334 }
335 
336 /*
337  * Delete the given item from the AIL.  Return a pointer to the item.
338  */
339 static void
340 xfs_ail_delete(
341 	struct xfs_ail		*ailp,
342 	struct xfs_log_item	*lip)
343 {
344 	xfs_ail_check(ailp, lip);
345 	list_del(&lip->li_ail);
346 	xfs_trans_ail_cursor_clear(ailp, lip);
347 }
348 
349 /*
350  * Requeue a failed buffer for writeback.
351  *
352  * We clear the log item failed state here as well, but we have to be careful
353  * about reference counts because the only active reference counts on the buffer
354  * may be the failed log items. Hence if we clear the log item failed state
355  * before queuing the buffer for IO we can release all active references to
356  * the buffer and free it, leading to use after free problems in
357  * xfs_buf_delwri_queue. It makes no difference to the buffer or log items which
358  * order we process them in - the buffer is locked, and we own the buffer list
359  * so nothing on them is going to change while we are performing this action.
360  *
361  * Hence we can safely queue the buffer for IO before we clear the failed log
362  * item state, therefore  always having an active reference to the buffer and
363  * avoiding the transient zero-reference state that leads to use-after-free.
364  */
365 static inline int
366 xfsaild_resubmit_item(
367 	struct xfs_log_item	*lip,
368 	struct list_head	*buffer_list)
369 {
370 	struct xfs_buf		*bp = lip->li_buf;
371 
372 	if (!xfs_buf_trylock(bp))
373 		return XFS_ITEM_LOCKED;
374 
375 	if (!xfs_buf_delwri_queue(bp, buffer_list)) {
376 		xfs_buf_unlock(bp);
377 		return XFS_ITEM_FLUSHING;
378 	}
379 
380 	/* protected by ail_lock */
381 	list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
382 		if (bp->b_flags & _XBF_INODES)
383 			clear_bit(XFS_LI_FAILED, &lip->li_flags);
384 		else
385 			xfs_clear_li_failed(lip);
386 	}
387 
388 	xfs_buf_unlock(bp);
389 	return XFS_ITEM_SUCCESS;
390 }
391 
392 static inline uint
393 xfsaild_push_item(
394 	struct xfs_ail		*ailp,
395 	struct xfs_log_item	*lip)
396 {
397 	/*
398 	 * If log item pinning is enabled, skip the push and track the item as
399 	 * pinned. This can help induce head-behind-tail conditions.
400 	 */
401 	if (XFS_TEST_ERROR(false, ailp->ail_mount, XFS_ERRTAG_LOG_ITEM_PIN))
402 		return XFS_ITEM_PINNED;
403 
404 	/*
405 	 * Consider the item pinned if a push callback is not defined so the
406 	 * caller will force the log. This should only happen for intent items
407 	 * as they are unpinned once the associated done item is committed to
408 	 * the on-disk log.
409 	 */
410 	if (!lip->li_ops->iop_push)
411 		return XFS_ITEM_PINNED;
412 	if (test_bit(XFS_LI_FAILED, &lip->li_flags))
413 		return xfsaild_resubmit_item(lip, &ailp->ail_buf_list);
414 	return lip->li_ops->iop_push(lip, &ailp->ail_buf_list);
415 }
416 
417 static long
418 xfsaild_push(
419 	struct xfs_ail		*ailp)
420 {
421 	xfs_mount_t		*mp = ailp->ail_mount;
422 	struct xfs_ail_cursor	cur;
423 	struct xfs_log_item	*lip;
424 	xfs_lsn_t		lsn;
425 	xfs_lsn_t		target;
426 	long			tout;
427 	int			stuck = 0;
428 	int			flushing = 0;
429 	int			count = 0;
430 
431 	/*
432 	 * If we encountered pinned items or did not finish writing out all
433 	 * buffers the last time we ran, force a background CIL push to get the
434 	 * items unpinned in the near future. We do not wait on the CIL push as
435 	 * that could stall us for seconds if there is enough background IO
436 	 * load. Stalling for that long when the tail of the log is pinned and
437 	 * needs flushing will hard stop the transaction subsystem when log
438 	 * space runs out.
439 	 */
440 	if (ailp->ail_log_flush && ailp->ail_last_pushed_lsn == 0 &&
441 	    (!list_empty_careful(&ailp->ail_buf_list) ||
442 	     xfs_ail_min_lsn(ailp))) {
443 		ailp->ail_log_flush = 0;
444 
445 		XFS_STATS_INC(mp, xs_push_ail_flush);
446 		xlog_cil_flush(mp->m_log);
447 	}
448 
449 	spin_lock(&ailp->ail_lock);
450 
451 	/* barrier matches the ail_target update in xfs_ail_push() */
452 	smp_rmb();
453 	target = ailp->ail_target;
454 	ailp->ail_target_prev = target;
455 
456 	/* we're done if the AIL is empty or our push has reached the end */
457 	lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->ail_last_pushed_lsn);
458 	if (!lip)
459 		goto out_done;
460 
461 	XFS_STATS_INC(mp, xs_push_ail);
462 
463 	lsn = lip->li_lsn;
464 	while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) {
465 		int	lock_result;
466 
467 		/*
468 		 * Note that iop_push may unlock and reacquire the AIL lock.  We
469 		 * rely on the AIL cursor implementation to be able to deal with
470 		 * the dropped lock.
471 		 */
472 		lock_result = xfsaild_push_item(ailp, lip);
473 		switch (lock_result) {
474 		case XFS_ITEM_SUCCESS:
475 			XFS_STATS_INC(mp, xs_push_ail_success);
476 			trace_xfs_ail_push(lip);
477 
478 			ailp->ail_last_pushed_lsn = lsn;
479 			break;
480 
481 		case XFS_ITEM_FLUSHING:
482 			/*
483 			 * The item or its backing buffer is already being
484 			 * flushed.  The typical reason for that is that an
485 			 * inode buffer is locked because we already pushed the
486 			 * updates to it as part of inode clustering.
487 			 *
488 			 * We do not want to stop flushing just because lots
489 			 * of items are already being flushed, but we need to
490 			 * re-try the flushing relatively soon if most of the
491 			 * AIL is being flushed.
492 			 */
493 			XFS_STATS_INC(mp, xs_push_ail_flushing);
494 			trace_xfs_ail_flushing(lip);
495 
496 			flushing++;
497 			ailp->ail_last_pushed_lsn = lsn;
498 			break;
499 
500 		case XFS_ITEM_PINNED:
501 			XFS_STATS_INC(mp, xs_push_ail_pinned);
502 			trace_xfs_ail_pinned(lip);
503 
504 			stuck++;
505 			ailp->ail_log_flush++;
506 			break;
507 		case XFS_ITEM_LOCKED:
508 			XFS_STATS_INC(mp, xs_push_ail_locked);
509 			trace_xfs_ail_locked(lip);
510 
511 			stuck++;
512 			break;
513 		default:
514 			ASSERT(0);
515 			break;
516 		}
517 
518 		count++;
519 
520 		/*
521 		 * Are there too many items we can't do anything with?
522 		 *
523 		 * If we are skipping too many items because we can't flush
524 		 * them or they are already being flushed, we back off and
525 		 * given them time to complete whatever operation is being
526 		 * done. i.e. remove pressure from the AIL while we can't make
527 		 * progress so traversals don't slow down further inserts and
528 		 * removals to/from the AIL.
529 		 *
530 		 * The value of 100 is an arbitrary magic number based on
531 		 * observation.
532 		 */
533 		if (stuck > 100)
534 			break;
535 
536 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
537 		if (lip == NULL)
538 			break;
539 		lsn = lip->li_lsn;
540 	}
541 
542 out_done:
543 	xfs_trans_ail_cursor_done(&cur);
544 	spin_unlock(&ailp->ail_lock);
545 
546 	if (xfs_buf_delwri_submit_nowait(&ailp->ail_buf_list))
547 		ailp->ail_log_flush++;
548 
549 	if (!count || XFS_LSN_CMP(lsn, target) >= 0) {
550 		/*
551 		 * We reached the target or the AIL is empty, so wait a bit
552 		 * longer for I/O to complete and remove pushed items from the
553 		 * AIL before we start the next scan from the start of the AIL.
554 		 */
555 		tout = 50;
556 		ailp->ail_last_pushed_lsn = 0;
557 	} else if (((stuck + flushing) * 100) / count > 90) {
558 		/*
559 		 * Either there is a lot of contention on the AIL or we are
560 		 * stuck due to operations in progress. "Stuck" in this case
561 		 * is defined as >90% of the items we tried to push were stuck.
562 		 *
563 		 * Backoff a bit more to allow some I/O to complete before
564 		 * restarting from the start of the AIL. This prevents us from
565 		 * spinning on the same items, and if they are pinned will all
566 		 * the restart to issue a log force to unpin the stuck items.
567 		 */
568 		tout = 20;
569 		ailp->ail_last_pushed_lsn = 0;
570 	} else {
571 		/*
572 		 * Assume we have more work to do in a short while.
573 		 */
574 		tout = 10;
575 	}
576 
577 	return tout;
578 }
579 
580 static int
581 xfsaild(
582 	void		*data)
583 {
584 	struct xfs_ail	*ailp = data;
585 	long		tout = 0;	/* milliseconds */
586 	unsigned int	noreclaim_flag;
587 
588 	noreclaim_flag = memalloc_noreclaim_save();
589 	set_freezable();
590 
591 	while (1) {
592 		if (tout && tout <= 20)
593 			set_current_state(TASK_KILLABLE);
594 		else
595 			set_current_state(TASK_INTERRUPTIBLE);
596 
597 		/*
598 		 * Check kthread_should_stop() after we set the task state to
599 		 * guarantee that we either see the stop bit and exit or the
600 		 * task state is reset to runnable such that it's not scheduled
601 		 * out indefinitely and detects the stop bit at next iteration.
602 		 * A memory barrier is included in above task state set to
603 		 * serialize again kthread_stop().
604 		 */
605 		if (kthread_should_stop()) {
606 			__set_current_state(TASK_RUNNING);
607 
608 			/*
609 			 * The caller forces out the AIL before stopping the
610 			 * thread in the common case, which means the delwri
611 			 * queue is drained. In the shutdown case, the queue may
612 			 * still hold relogged buffers that haven't been
613 			 * submitted because they were pinned since added to the
614 			 * queue.
615 			 *
616 			 * Log I/O error processing stales the underlying buffer
617 			 * and clears the delwri state, expecting the buf to be
618 			 * removed on the next submission attempt. That won't
619 			 * happen if we're shutting down, so this is the last
620 			 * opportunity to release such buffers from the queue.
621 			 */
622 			ASSERT(list_empty(&ailp->ail_buf_list) ||
623 			       xfs_is_shutdown(ailp->ail_mount));
624 			xfs_buf_delwri_cancel(&ailp->ail_buf_list);
625 			break;
626 		}
627 
628 		spin_lock(&ailp->ail_lock);
629 
630 		/*
631 		 * Idle if the AIL is empty and we are not racing with a target
632 		 * update. We check the AIL after we set the task to a sleep
633 		 * state to guarantee that we either catch an ail_target update
634 		 * or that a wake_up resets the state to TASK_RUNNING.
635 		 * Otherwise, we run the risk of sleeping indefinitely.
636 		 *
637 		 * The barrier matches the ail_target update in xfs_ail_push().
638 		 */
639 		smp_rmb();
640 		if (!xfs_ail_min(ailp) &&
641 		    ailp->ail_target == ailp->ail_target_prev &&
642 		    list_empty(&ailp->ail_buf_list)) {
643 			spin_unlock(&ailp->ail_lock);
644 			freezable_schedule();
645 			tout = 0;
646 			continue;
647 		}
648 		spin_unlock(&ailp->ail_lock);
649 
650 		if (tout)
651 			freezable_schedule_timeout(msecs_to_jiffies(tout));
652 
653 		__set_current_state(TASK_RUNNING);
654 
655 		try_to_freeze();
656 
657 		tout = xfsaild_push(ailp);
658 	}
659 
660 	memalloc_noreclaim_restore(noreclaim_flag);
661 	return 0;
662 }
663 
664 /*
665  * This routine is called to move the tail of the AIL forward.  It does this by
666  * trying to flush items in the AIL whose lsns are below the given
667  * threshold_lsn.
668  *
669  * The push is run asynchronously in a workqueue, which means the caller needs
670  * to handle waiting on the async flush for space to become available.
671  * We don't want to interrupt any push that is in progress, hence we only queue
672  * work if we set the pushing bit appropriately.
673  *
674  * We do this unlocked - we only need to know whether there is anything in the
675  * AIL at the time we are called. We don't need to access the contents of
676  * any of the objects, so the lock is not needed.
677  */
678 void
679 xfs_ail_push(
680 	struct xfs_ail		*ailp,
681 	xfs_lsn_t		threshold_lsn)
682 {
683 	struct xfs_log_item	*lip;
684 
685 	lip = xfs_ail_min(ailp);
686 	if (!lip || xfs_is_shutdown(ailp->ail_mount) ||
687 	    XFS_LSN_CMP(threshold_lsn, ailp->ail_target) <= 0)
688 		return;
689 
690 	/*
691 	 * Ensure that the new target is noticed in push code before it clears
692 	 * the XFS_AIL_PUSHING_BIT.
693 	 */
694 	smp_wmb();
695 	xfs_trans_ail_copy_lsn(ailp, &ailp->ail_target, &threshold_lsn);
696 	smp_wmb();
697 
698 	wake_up_process(ailp->ail_task);
699 }
700 
701 /*
702  * Push out all items in the AIL immediately
703  */
704 void
705 xfs_ail_push_all(
706 	struct xfs_ail  *ailp)
707 {
708 	xfs_lsn_t       threshold_lsn = xfs_ail_max_lsn(ailp);
709 
710 	if (threshold_lsn)
711 		xfs_ail_push(ailp, threshold_lsn);
712 }
713 
714 /*
715  * Push out all items in the AIL immediately and wait until the AIL is empty.
716  */
717 void
718 xfs_ail_push_all_sync(
719 	struct xfs_ail  *ailp)
720 {
721 	struct xfs_log_item	*lip;
722 	DEFINE_WAIT(wait);
723 
724 	spin_lock(&ailp->ail_lock);
725 	while ((lip = xfs_ail_max(ailp)) != NULL) {
726 		prepare_to_wait(&ailp->ail_empty, &wait, TASK_UNINTERRUPTIBLE);
727 		ailp->ail_target = lip->li_lsn;
728 		wake_up_process(ailp->ail_task);
729 		spin_unlock(&ailp->ail_lock);
730 		schedule();
731 		spin_lock(&ailp->ail_lock);
732 	}
733 	spin_unlock(&ailp->ail_lock);
734 
735 	finish_wait(&ailp->ail_empty, &wait);
736 }
737 
738 void
739 xfs_ail_update_finish(
740 	struct xfs_ail		*ailp,
741 	xfs_lsn_t		old_lsn) __releases(ailp->ail_lock)
742 {
743 	struct xfs_mount	*mp = ailp->ail_mount;
744 
745 	/* if the tail lsn hasn't changed, don't do updates or wakeups. */
746 	if (!old_lsn || old_lsn == __xfs_ail_min_lsn(ailp)) {
747 		spin_unlock(&ailp->ail_lock);
748 		return;
749 	}
750 
751 	if (!xfs_is_shutdown(mp))
752 		xlog_assign_tail_lsn_locked(mp);
753 
754 	if (list_empty(&ailp->ail_head))
755 		wake_up_all(&ailp->ail_empty);
756 	spin_unlock(&ailp->ail_lock);
757 	xfs_log_space_wake(mp);
758 }
759 
760 /*
761  * xfs_trans_ail_update - bulk AIL insertion operation.
762  *
763  * @xfs_trans_ail_update takes an array of log items that all need to be
764  * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
765  * be added.  Otherwise, it will be repositioned  by removing it and re-adding
766  * it to the AIL. If we move the first item in the AIL, update the log tail to
767  * match the new minimum LSN in the AIL.
768  *
769  * This function takes the AIL lock once to execute the update operations on
770  * all the items in the array, and as such should not be called with the AIL
771  * lock held. As a result, once we have the AIL lock, we need to check each log
772  * item LSN to confirm it needs to be moved forward in the AIL.
773  *
774  * To optimise the insert operation, we delete all the items from the AIL in
775  * the first pass, moving them into a temporary list, then splice the temporary
776  * list into the correct position in the AIL. This avoids needing to do an
777  * insert operation on every item.
778  *
779  * This function must be called with the AIL lock held.  The lock is dropped
780  * before returning.
781  */
782 void
783 xfs_trans_ail_update_bulk(
784 	struct xfs_ail		*ailp,
785 	struct xfs_ail_cursor	*cur,
786 	struct xfs_log_item	**log_items,
787 	int			nr_items,
788 	xfs_lsn_t		lsn) __releases(ailp->ail_lock)
789 {
790 	struct xfs_log_item	*mlip;
791 	xfs_lsn_t		tail_lsn = 0;
792 	int			i;
793 	LIST_HEAD(tmp);
794 
795 	ASSERT(nr_items > 0);		/* Not required, but true. */
796 	mlip = xfs_ail_min(ailp);
797 
798 	for (i = 0; i < nr_items; i++) {
799 		struct xfs_log_item *lip = log_items[i];
800 		if (test_and_set_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
801 			/* check if we really need to move the item */
802 			if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
803 				continue;
804 
805 			trace_xfs_ail_move(lip, lip->li_lsn, lsn);
806 			if (mlip == lip && !tail_lsn)
807 				tail_lsn = lip->li_lsn;
808 
809 			xfs_ail_delete(ailp, lip);
810 		} else {
811 			trace_xfs_ail_insert(lip, 0, lsn);
812 		}
813 		lip->li_lsn = lsn;
814 		list_add(&lip->li_ail, &tmp);
815 	}
816 
817 	if (!list_empty(&tmp))
818 		xfs_ail_splice(ailp, cur, &tmp, lsn);
819 
820 	xfs_ail_update_finish(ailp, tail_lsn);
821 }
822 
823 /* Insert a log item into the AIL. */
824 void
825 xfs_trans_ail_insert(
826 	struct xfs_ail		*ailp,
827 	struct xfs_log_item	*lip,
828 	xfs_lsn_t		lsn)
829 {
830 	spin_lock(&ailp->ail_lock);
831 	xfs_trans_ail_update_bulk(ailp, NULL, &lip, 1, lsn);
832 }
833 
834 /*
835  * Delete one log item from the AIL.
836  *
837  * If this item was at the tail of the AIL, return the LSN of the log item so
838  * that we can use it to check if the LSN of the tail of the log has moved
839  * when finishing up the AIL delete process in xfs_ail_update_finish().
840  */
841 xfs_lsn_t
842 xfs_ail_delete_one(
843 	struct xfs_ail		*ailp,
844 	struct xfs_log_item	*lip)
845 {
846 	struct xfs_log_item	*mlip = xfs_ail_min(ailp);
847 	xfs_lsn_t		lsn = lip->li_lsn;
848 
849 	trace_xfs_ail_delete(lip, mlip->li_lsn, lip->li_lsn);
850 	xfs_ail_delete(ailp, lip);
851 	clear_bit(XFS_LI_IN_AIL, &lip->li_flags);
852 	lip->li_lsn = 0;
853 
854 	if (mlip == lip)
855 		return lsn;
856 	return 0;
857 }
858 
859 void
860 xfs_trans_ail_delete(
861 	struct xfs_log_item	*lip,
862 	int			shutdown_type)
863 {
864 	struct xfs_ail		*ailp = lip->li_ailp;
865 	struct xfs_mount	*mp = ailp->ail_mount;
866 	xfs_lsn_t		tail_lsn;
867 
868 	spin_lock(&ailp->ail_lock);
869 	if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
870 		spin_unlock(&ailp->ail_lock);
871 		if (shutdown_type && !xfs_is_shutdown(mp)) {
872 			xfs_alert_tag(mp, XFS_PTAG_AILDELETE,
873 	"%s: attempting to delete a log item that is not in the AIL",
874 					__func__);
875 			xfs_force_shutdown(mp, shutdown_type);
876 		}
877 		return;
878 	}
879 
880 	/* xfs_ail_update_finish() drops the AIL lock */
881 	xfs_clear_li_failed(lip);
882 	tail_lsn = xfs_ail_delete_one(ailp, lip);
883 	xfs_ail_update_finish(ailp, tail_lsn);
884 }
885 
886 int
887 xfs_trans_ail_init(
888 	xfs_mount_t	*mp)
889 {
890 	struct xfs_ail	*ailp;
891 
892 	ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL);
893 	if (!ailp)
894 		return -ENOMEM;
895 
896 	ailp->ail_mount = mp;
897 	INIT_LIST_HEAD(&ailp->ail_head);
898 	INIT_LIST_HEAD(&ailp->ail_cursors);
899 	spin_lock_init(&ailp->ail_lock);
900 	INIT_LIST_HEAD(&ailp->ail_buf_list);
901 	init_waitqueue_head(&ailp->ail_empty);
902 
903 	ailp->ail_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
904 			ailp->ail_mount->m_super->s_id);
905 	if (IS_ERR(ailp->ail_task))
906 		goto out_free_ailp;
907 
908 	mp->m_ail = ailp;
909 	return 0;
910 
911 out_free_ailp:
912 	kmem_free(ailp);
913 	return -ENOMEM;
914 }
915 
916 void
917 xfs_trans_ail_destroy(
918 	xfs_mount_t	*mp)
919 {
920 	struct xfs_ail	*ailp = mp->m_ail;
921 
922 	kthread_stop(ailp->ail_task);
923 	kmem_free(ailp);
924 }
925