xref: /openbmc/linux/fs/xfs/xfs_trans_ail.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * Copyright (c) 2008 Dave Chinner
4  * All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it would be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write the Free Software Foundation,
17  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
18  */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_trace.h"
28 #include "xfs_error.h"
29 #include "xfs_log.h"
30 
31 #ifdef DEBUG
32 /*
33  * Check that the list is sorted as it should be.
34  */
35 STATIC void
36 xfs_ail_check(
37 	struct xfs_ail	*ailp,
38 	xfs_log_item_t	*lip)
39 {
40 	xfs_log_item_t	*prev_lip;
41 
42 	if (list_empty(&ailp->xa_ail))
43 		return;
44 
45 	/*
46 	 * Check the next and previous entries are valid.
47 	 */
48 	ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0);
49 	prev_lip = list_entry(lip->li_ail.prev, xfs_log_item_t, li_ail);
50 	if (&prev_lip->li_ail != &ailp->xa_ail)
51 		ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0);
52 
53 	prev_lip = list_entry(lip->li_ail.next, xfs_log_item_t, li_ail);
54 	if (&prev_lip->li_ail != &ailp->xa_ail)
55 		ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) >= 0);
56 
57 
58 }
59 #else /* !DEBUG */
60 #define	xfs_ail_check(a,l)
61 #endif /* DEBUG */
62 
63 /*
64  * Return a pointer to the last item in the AIL.  If the AIL is empty, then
65  * return NULL.
66  */
67 static xfs_log_item_t *
68 xfs_ail_max(
69 	struct xfs_ail  *ailp)
70 {
71 	if (list_empty(&ailp->xa_ail))
72 		return NULL;
73 
74 	return list_entry(ailp->xa_ail.prev, xfs_log_item_t, li_ail);
75 }
76 
77 /*
78  * Return a pointer to the item which follows the given item in the AIL.  If
79  * the given item is the last item in the list, then return NULL.
80  */
81 static xfs_log_item_t *
82 xfs_ail_next(
83 	struct xfs_ail  *ailp,
84 	xfs_log_item_t  *lip)
85 {
86 	if (lip->li_ail.next == &ailp->xa_ail)
87 		return NULL;
88 
89 	return list_first_entry(&lip->li_ail, xfs_log_item_t, li_ail);
90 }
91 
92 /*
93  * This is called by the log manager code to determine the LSN of the tail of
94  * the log.  This is exactly the LSN of the first item in the AIL.  If the AIL
95  * is empty, then this function returns 0.
96  *
97  * We need the AIL lock in order to get a coherent read of the lsn of the last
98  * item in the AIL.
99  */
100 xfs_lsn_t
101 xfs_ail_min_lsn(
102 	struct xfs_ail	*ailp)
103 {
104 	xfs_lsn_t	lsn = 0;
105 	xfs_log_item_t	*lip;
106 
107 	spin_lock(&ailp->xa_lock);
108 	lip = xfs_ail_min(ailp);
109 	if (lip)
110 		lsn = lip->li_lsn;
111 	spin_unlock(&ailp->xa_lock);
112 
113 	return lsn;
114 }
115 
116 /*
117  * Return the maximum lsn held in the AIL, or zero if the AIL is empty.
118  */
119 static xfs_lsn_t
120 xfs_ail_max_lsn(
121 	struct xfs_ail  *ailp)
122 {
123 	xfs_lsn_t       lsn = 0;
124 	xfs_log_item_t  *lip;
125 
126 	spin_lock(&ailp->xa_lock);
127 	lip = xfs_ail_max(ailp);
128 	if (lip)
129 		lsn = lip->li_lsn;
130 	spin_unlock(&ailp->xa_lock);
131 
132 	return lsn;
133 }
134 
135 /*
136  * The cursor keeps track of where our current traversal is up to by tracking
137  * the next item in the list for us. However, for this to be safe, removing an
138  * object from the AIL needs to invalidate any cursor that points to it. hence
139  * the traversal cursor needs to be linked to the struct xfs_ail so that
140  * deletion can search all the active cursors for invalidation.
141  */
142 STATIC void
143 xfs_trans_ail_cursor_init(
144 	struct xfs_ail		*ailp,
145 	struct xfs_ail_cursor	*cur)
146 {
147 	cur->item = NULL;
148 	list_add_tail(&cur->list, &ailp->xa_cursors);
149 }
150 
151 /*
152  * Get the next item in the traversal and advance the cursor.  If the cursor
153  * was invalidated (indicated by a lip of 1), restart the traversal.
154  */
155 struct xfs_log_item *
156 xfs_trans_ail_cursor_next(
157 	struct xfs_ail		*ailp,
158 	struct xfs_ail_cursor	*cur)
159 {
160 	struct xfs_log_item	*lip = cur->item;
161 
162 	if ((uintptr_t)lip & 1)
163 		lip = xfs_ail_min(ailp);
164 	if (lip)
165 		cur->item = xfs_ail_next(ailp, lip);
166 	return lip;
167 }
168 
169 /*
170  * When the traversal is complete, we need to remove the cursor from the list
171  * of traversing cursors.
172  */
173 void
174 xfs_trans_ail_cursor_done(
175 	struct xfs_ail_cursor	*cur)
176 {
177 	cur->item = NULL;
178 	list_del_init(&cur->list);
179 }
180 
181 /*
182  * Invalidate any cursor that is pointing to this item. This is called when an
183  * item is removed from the AIL. Any cursor pointing to this object is now
184  * invalid and the traversal needs to be terminated so it doesn't reference a
185  * freed object. We set the low bit of the cursor item pointer so we can
186  * distinguish between an invalidation and the end of the list when getting the
187  * next item from the cursor.
188  */
189 STATIC void
190 xfs_trans_ail_cursor_clear(
191 	struct xfs_ail		*ailp,
192 	struct xfs_log_item	*lip)
193 {
194 	struct xfs_ail_cursor	*cur;
195 
196 	list_for_each_entry(cur, &ailp->xa_cursors, list) {
197 		if (cur->item == lip)
198 			cur->item = (struct xfs_log_item *)
199 					((uintptr_t)cur->item | 1);
200 	}
201 }
202 
203 /*
204  * Find the first item in the AIL with the given @lsn by searching in ascending
205  * LSN order and initialise the cursor to point to the next item for a
206  * ascending traversal.  Pass a @lsn of zero to initialise the cursor to the
207  * first item in the AIL. Returns NULL if the list is empty.
208  */
209 xfs_log_item_t *
210 xfs_trans_ail_cursor_first(
211 	struct xfs_ail		*ailp,
212 	struct xfs_ail_cursor	*cur,
213 	xfs_lsn_t		lsn)
214 {
215 	xfs_log_item_t		*lip;
216 
217 	xfs_trans_ail_cursor_init(ailp, cur);
218 
219 	if (lsn == 0) {
220 		lip = xfs_ail_min(ailp);
221 		goto out;
222 	}
223 
224 	list_for_each_entry(lip, &ailp->xa_ail, li_ail) {
225 		if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
226 			goto out;
227 	}
228 	return NULL;
229 
230 out:
231 	if (lip)
232 		cur->item = xfs_ail_next(ailp, lip);
233 	return lip;
234 }
235 
236 static struct xfs_log_item *
237 __xfs_trans_ail_cursor_last(
238 	struct xfs_ail		*ailp,
239 	xfs_lsn_t		lsn)
240 {
241 	xfs_log_item_t		*lip;
242 
243 	list_for_each_entry_reverse(lip, &ailp->xa_ail, li_ail) {
244 		if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
245 			return lip;
246 	}
247 	return NULL;
248 }
249 
250 /*
251  * Find the last item in the AIL with the given @lsn by searching in descending
252  * LSN order and initialise the cursor to point to that item.  If there is no
253  * item with the value of @lsn, then it sets the cursor to the last item with an
254  * LSN lower than @lsn.  Returns NULL if the list is empty.
255  */
256 struct xfs_log_item *
257 xfs_trans_ail_cursor_last(
258 	struct xfs_ail		*ailp,
259 	struct xfs_ail_cursor	*cur,
260 	xfs_lsn_t		lsn)
261 {
262 	xfs_trans_ail_cursor_init(ailp, cur);
263 	cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
264 	return cur->item;
265 }
266 
267 /*
268  * Splice the log item list into the AIL at the given LSN. We splice to the
269  * tail of the given LSN to maintain insert order for push traversals. The
270  * cursor is optional, allowing repeated updates to the same LSN to avoid
271  * repeated traversals.  This should not be called with an empty list.
272  */
273 static void
274 xfs_ail_splice(
275 	struct xfs_ail		*ailp,
276 	struct xfs_ail_cursor	*cur,
277 	struct list_head	*list,
278 	xfs_lsn_t		lsn)
279 {
280 	struct xfs_log_item	*lip;
281 
282 	ASSERT(!list_empty(list));
283 
284 	/*
285 	 * Use the cursor to determine the insertion point if one is
286 	 * provided.  If not, or if the one we got is not valid,
287 	 * find the place in the AIL where the items belong.
288 	 */
289 	lip = cur ? cur->item : NULL;
290 	if (!lip || (uintptr_t)lip & 1)
291 		lip = __xfs_trans_ail_cursor_last(ailp, lsn);
292 
293 	/*
294 	 * If a cursor is provided, we know we're processing the AIL
295 	 * in lsn order, and future items to be spliced in will
296 	 * follow the last one being inserted now.  Update the
297 	 * cursor to point to that last item, now while we have a
298 	 * reliable pointer to it.
299 	 */
300 	if (cur)
301 		cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);
302 
303 	/*
304 	 * Finally perform the splice.  Unless the AIL was empty,
305 	 * lip points to the item in the AIL _after_ which the new
306 	 * items should go.  If lip is null the AIL was empty, so
307 	 * the new items go at the head of the AIL.
308 	 */
309 	if (lip)
310 		list_splice(list, &lip->li_ail);
311 	else
312 		list_splice(list, &ailp->xa_ail);
313 }
314 
315 /*
316  * Delete the given item from the AIL.  Return a pointer to the item.
317  */
318 static void
319 xfs_ail_delete(
320 	struct xfs_ail  *ailp,
321 	xfs_log_item_t  *lip)
322 {
323 	xfs_ail_check(ailp, lip);
324 	list_del(&lip->li_ail);
325 	xfs_trans_ail_cursor_clear(ailp, lip);
326 }
327 
328 static long
329 xfsaild_push(
330 	struct xfs_ail		*ailp)
331 {
332 	xfs_mount_t		*mp = ailp->xa_mount;
333 	struct xfs_ail_cursor	cur;
334 	xfs_log_item_t		*lip;
335 	xfs_lsn_t		lsn;
336 	xfs_lsn_t		target;
337 	long			tout;
338 	int			stuck = 0;
339 	int			flushing = 0;
340 	int			count = 0;
341 
342 	/*
343 	 * If we encountered pinned items or did not finish writing out all
344 	 * buffers the last time we ran, force the log first and wait for it
345 	 * before pushing again.
346 	 */
347 	if (ailp->xa_log_flush && ailp->xa_last_pushed_lsn == 0 &&
348 	    (!list_empty_careful(&ailp->xa_buf_list) ||
349 	     xfs_ail_min_lsn(ailp))) {
350 		ailp->xa_log_flush = 0;
351 
352 		XFS_STATS_INC(xs_push_ail_flush);
353 		xfs_log_force(mp, XFS_LOG_SYNC);
354 	}
355 
356 	spin_lock(&ailp->xa_lock);
357 
358 	/* barrier matches the xa_target update in xfs_ail_push() */
359 	smp_rmb();
360 	target = ailp->xa_target;
361 	ailp->xa_target_prev = target;
362 
363 	lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->xa_last_pushed_lsn);
364 	if (!lip) {
365 		/*
366 		 * If the AIL is empty or our push has reached the end we are
367 		 * done now.
368 		 */
369 		xfs_trans_ail_cursor_done(&cur);
370 		spin_unlock(&ailp->xa_lock);
371 		goto out_done;
372 	}
373 
374 	XFS_STATS_INC(xs_push_ail);
375 
376 	lsn = lip->li_lsn;
377 	while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) {
378 		int	lock_result;
379 
380 		/*
381 		 * Note that iop_push may unlock and reacquire the AIL lock.  We
382 		 * rely on the AIL cursor implementation to be able to deal with
383 		 * the dropped lock.
384 		 */
385 		lock_result = lip->li_ops->iop_push(lip, &ailp->xa_buf_list);
386 		switch (lock_result) {
387 		case XFS_ITEM_SUCCESS:
388 			XFS_STATS_INC(xs_push_ail_success);
389 			trace_xfs_ail_push(lip);
390 
391 			ailp->xa_last_pushed_lsn = lsn;
392 			break;
393 
394 		case XFS_ITEM_FLUSHING:
395 			/*
396 			 * The item or its backing buffer is already beeing
397 			 * flushed.  The typical reason for that is that an
398 			 * inode buffer is locked because we already pushed the
399 			 * updates to it as part of inode clustering.
400 			 *
401 			 * We do not want to to stop flushing just because lots
402 			 * of items are already beeing flushed, but we need to
403 			 * re-try the flushing relatively soon if most of the
404 			 * AIL is beeing flushed.
405 			 */
406 			XFS_STATS_INC(xs_push_ail_flushing);
407 			trace_xfs_ail_flushing(lip);
408 
409 			flushing++;
410 			ailp->xa_last_pushed_lsn = lsn;
411 			break;
412 
413 		case XFS_ITEM_PINNED:
414 			XFS_STATS_INC(xs_push_ail_pinned);
415 			trace_xfs_ail_pinned(lip);
416 
417 			stuck++;
418 			ailp->xa_log_flush++;
419 			break;
420 		case XFS_ITEM_LOCKED:
421 			XFS_STATS_INC(xs_push_ail_locked);
422 			trace_xfs_ail_locked(lip);
423 
424 			stuck++;
425 			break;
426 		default:
427 			ASSERT(0);
428 			break;
429 		}
430 
431 		count++;
432 
433 		/*
434 		 * Are there too many items we can't do anything with?
435 		 *
436 		 * If we we are skipping too many items because we can't flush
437 		 * them or they are already being flushed, we back off and
438 		 * given them time to complete whatever operation is being
439 		 * done. i.e. remove pressure from the AIL while we can't make
440 		 * progress so traversals don't slow down further inserts and
441 		 * removals to/from the AIL.
442 		 *
443 		 * The value of 100 is an arbitrary magic number based on
444 		 * observation.
445 		 */
446 		if (stuck > 100)
447 			break;
448 
449 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
450 		if (lip == NULL)
451 			break;
452 		lsn = lip->li_lsn;
453 	}
454 	xfs_trans_ail_cursor_done(&cur);
455 	spin_unlock(&ailp->xa_lock);
456 
457 	if (xfs_buf_delwri_submit_nowait(&ailp->xa_buf_list))
458 		ailp->xa_log_flush++;
459 
460 	if (!count || XFS_LSN_CMP(lsn, target) >= 0) {
461 out_done:
462 		/*
463 		 * We reached the target or the AIL is empty, so wait a bit
464 		 * longer for I/O to complete and remove pushed items from the
465 		 * AIL before we start the next scan from the start of the AIL.
466 		 */
467 		tout = 50;
468 		ailp->xa_last_pushed_lsn = 0;
469 	} else if (((stuck + flushing) * 100) / count > 90) {
470 		/*
471 		 * Either there is a lot of contention on the AIL or we are
472 		 * stuck due to operations in progress. "Stuck" in this case
473 		 * is defined as >90% of the items we tried to push were stuck.
474 		 *
475 		 * Backoff a bit more to allow some I/O to complete before
476 		 * restarting from the start of the AIL. This prevents us from
477 		 * spinning on the same items, and if they are pinned will all
478 		 * the restart to issue a log force to unpin the stuck items.
479 		 */
480 		tout = 20;
481 		ailp->xa_last_pushed_lsn = 0;
482 	} else {
483 		/*
484 		 * Assume we have more work to do in a short while.
485 		 */
486 		tout = 10;
487 	}
488 
489 	return tout;
490 }
491 
492 static int
493 xfsaild(
494 	void		*data)
495 {
496 	struct xfs_ail	*ailp = data;
497 	long		tout = 0;	/* milliseconds */
498 
499 	current->flags |= PF_MEMALLOC;
500 
501 	while (!kthread_should_stop()) {
502 		if (tout && tout <= 20)
503 			__set_current_state(TASK_KILLABLE);
504 		else
505 			__set_current_state(TASK_INTERRUPTIBLE);
506 
507 		spin_lock(&ailp->xa_lock);
508 
509 		/*
510 		 * Idle if the AIL is empty and we are not racing with a target
511 		 * update. We check the AIL after we set the task to a sleep
512 		 * state to guarantee that we either catch an xa_target update
513 		 * or that a wake_up resets the state to TASK_RUNNING.
514 		 * Otherwise, we run the risk of sleeping indefinitely.
515 		 *
516 		 * The barrier matches the xa_target update in xfs_ail_push().
517 		 */
518 		smp_rmb();
519 		if (!xfs_ail_min(ailp) &&
520 		    ailp->xa_target == ailp->xa_target_prev) {
521 			spin_unlock(&ailp->xa_lock);
522 			schedule();
523 			tout = 0;
524 			continue;
525 		}
526 		spin_unlock(&ailp->xa_lock);
527 
528 		if (tout)
529 			schedule_timeout(msecs_to_jiffies(tout));
530 
531 		__set_current_state(TASK_RUNNING);
532 
533 		try_to_freeze();
534 
535 		tout = xfsaild_push(ailp);
536 	}
537 
538 	return 0;
539 }
540 
541 /*
542  * This routine is called to move the tail of the AIL forward.  It does this by
543  * trying to flush items in the AIL whose lsns are below the given
544  * threshold_lsn.
545  *
546  * The push is run asynchronously in a workqueue, which means the caller needs
547  * to handle waiting on the async flush for space to become available.
548  * We don't want to interrupt any push that is in progress, hence we only queue
549  * work if we set the pushing bit approriately.
550  *
551  * We do this unlocked - we only need to know whether there is anything in the
552  * AIL at the time we are called. We don't need to access the contents of
553  * any of the objects, so the lock is not needed.
554  */
555 void
556 xfs_ail_push(
557 	struct xfs_ail	*ailp,
558 	xfs_lsn_t	threshold_lsn)
559 {
560 	xfs_log_item_t	*lip;
561 
562 	lip = xfs_ail_min(ailp);
563 	if (!lip || XFS_FORCED_SHUTDOWN(ailp->xa_mount) ||
564 	    XFS_LSN_CMP(threshold_lsn, ailp->xa_target) <= 0)
565 		return;
566 
567 	/*
568 	 * Ensure that the new target is noticed in push code before it clears
569 	 * the XFS_AIL_PUSHING_BIT.
570 	 */
571 	smp_wmb();
572 	xfs_trans_ail_copy_lsn(ailp, &ailp->xa_target, &threshold_lsn);
573 	smp_wmb();
574 
575 	wake_up_process(ailp->xa_task);
576 }
577 
578 /*
579  * Push out all items in the AIL immediately
580  */
581 void
582 xfs_ail_push_all(
583 	struct xfs_ail  *ailp)
584 {
585 	xfs_lsn_t       threshold_lsn = xfs_ail_max_lsn(ailp);
586 
587 	if (threshold_lsn)
588 		xfs_ail_push(ailp, threshold_lsn);
589 }
590 
591 /*
592  * Push out all items in the AIL immediately and wait until the AIL is empty.
593  */
594 void
595 xfs_ail_push_all_sync(
596 	struct xfs_ail  *ailp)
597 {
598 	struct xfs_log_item	*lip;
599 	DEFINE_WAIT(wait);
600 
601 	spin_lock(&ailp->xa_lock);
602 	while ((lip = xfs_ail_max(ailp)) != NULL) {
603 		prepare_to_wait(&ailp->xa_empty, &wait, TASK_UNINTERRUPTIBLE);
604 		ailp->xa_target = lip->li_lsn;
605 		wake_up_process(ailp->xa_task);
606 		spin_unlock(&ailp->xa_lock);
607 		schedule();
608 		spin_lock(&ailp->xa_lock);
609 	}
610 	spin_unlock(&ailp->xa_lock);
611 
612 	finish_wait(&ailp->xa_empty, &wait);
613 }
614 
615 /*
616  * xfs_trans_ail_update - bulk AIL insertion operation.
617  *
618  * @xfs_trans_ail_update takes an array of log items that all need to be
619  * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
620  * be added.  Otherwise, it will be repositioned  by removing it and re-adding
621  * it to the AIL. If we move the first item in the AIL, update the log tail to
622  * match the new minimum LSN in the AIL.
623  *
624  * This function takes the AIL lock once to execute the update operations on
625  * all the items in the array, and as such should not be called with the AIL
626  * lock held. As a result, once we have the AIL lock, we need to check each log
627  * item LSN to confirm it needs to be moved forward in the AIL.
628  *
629  * To optimise the insert operation, we delete all the items from the AIL in
630  * the first pass, moving them into a temporary list, then splice the temporary
631  * list into the correct position in the AIL. This avoids needing to do an
632  * insert operation on every item.
633  *
634  * This function must be called with the AIL lock held.  The lock is dropped
635  * before returning.
636  */
637 void
638 xfs_trans_ail_update_bulk(
639 	struct xfs_ail		*ailp,
640 	struct xfs_ail_cursor	*cur,
641 	struct xfs_log_item	**log_items,
642 	int			nr_items,
643 	xfs_lsn_t		lsn) __releases(ailp->xa_lock)
644 {
645 	xfs_log_item_t		*mlip;
646 	int			mlip_changed = 0;
647 	int			i;
648 	LIST_HEAD(tmp);
649 
650 	ASSERT(nr_items > 0);		/* Not required, but true. */
651 	mlip = xfs_ail_min(ailp);
652 
653 	for (i = 0; i < nr_items; i++) {
654 		struct xfs_log_item *lip = log_items[i];
655 		if (lip->li_flags & XFS_LI_IN_AIL) {
656 			/* check if we really need to move the item */
657 			if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
658 				continue;
659 
660 			trace_xfs_ail_move(lip, lip->li_lsn, lsn);
661 			xfs_ail_delete(ailp, lip);
662 			if (mlip == lip)
663 				mlip_changed = 1;
664 		} else {
665 			lip->li_flags |= XFS_LI_IN_AIL;
666 			trace_xfs_ail_insert(lip, 0, lsn);
667 		}
668 		lip->li_lsn = lsn;
669 		list_add(&lip->li_ail, &tmp);
670 	}
671 
672 	if (!list_empty(&tmp))
673 		xfs_ail_splice(ailp, cur, &tmp, lsn);
674 
675 	if (mlip_changed) {
676 		if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount))
677 			xlog_assign_tail_lsn_locked(ailp->xa_mount);
678 		spin_unlock(&ailp->xa_lock);
679 
680 		xfs_log_space_wake(ailp->xa_mount);
681 	} else {
682 		spin_unlock(&ailp->xa_lock);
683 	}
684 }
685 
686 /*
687  * xfs_trans_ail_delete_bulk - remove multiple log items from the AIL
688  *
689  * @xfs_trans_ail_delete_bulk takes an array of log items that all need to
690  * removed from the AIL. The caller is already holding the AIL lock, and done
691  * all the checks necessary to ensure the items passed in via @log_items are
692  * ready for deletion. This includes checking that the items are in the AIL.
693  *
694  * For each log item to be removed, unlink it  from the AIL, clear the IN_AIL
695  * flag from the item and reset the item's lsn to 0. If we remove the first
696  * item in the AIL, update the log tail to match the new minimum LSN in the
697  * AIL.
698  *
699  * This function will not drop the AIL lock until all items are removed from
700  * the AIL to minimise the amount of lock traffic on the AIL. This does not
701  * greatly increase the AIL hold time, but does significantly reduce the amount
702  * of traffic on the lock, especially during IO completion.
703  *
704  * This function must be called with the AIL lock held.  The lock is dropped
705  * before returning.
706  */
707 void
708 xfs_trans_ail_delete_bulk(
709 	struct xfs_ail		*ailp,
710 	struct xfs_log_item	**log_items,
711 	int			nr_items,
712 	int			shutdown_type) __releases(ailp->xa_lock)
713 {
714 	xfs_log_item_t		*mlip;
715 	int			mlip_changed = 0;
716 	int			i;
717 
718 	mlip = xfs_ail_min(ailp);
719 
720 	for (i = 0; i < nr_items; i++) {
721 		struct xfs_log_item *lip = log_items[i];
722 		if (!(lip->li_flags & XFS_LI_IN_AIL)) {
723 			struct xfs_mount	*mp = ailp->xa_mount;
724 
725 			spin_unlock(&ailp->xa_lock);
726 			if (!XFS_FORCED_SHUTDOWN(mp)) {
727 				xfs_alert_tag(mp, XFS_PTAG_AILDELETE,
728 		"%s: attempting to delete a log item that is not in the AIL",
729 						__func__);
730 				xfs_force_shutdown(mp, shutdown_type);
731 			}
732 			return;
733 		}
734 
735 		trace_xfs_ail_delete(lip, mlip->li_lsn, lip->li_lsn);
736 		xfs_ail_delete(ailp, lip);
737 		lip->li_flags &= ~XFS_LI_IN_AIL;
738 		lip->li_lsn = 0;
739 		if (mlip == lip)
740 			mlip_changed = 1;
741 	}
742 
743 	if (mlip_changed) {
744 		if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount))
745 			xlog_assign_tail_lsn_locked(ailp->xa_mount);
746 		if (list_empty(&ailp->xa_ail))
747 			wake_up_all(&ailp->xa_empty);
748 		spin_unlock(&ailp->xa_lock);
749 
750 		xfs_log_space_wake(ailp->xa_mount);
751 	} else {
752 		spin_unlock(&ailp->xa_lock);
753 	}
754 }
755 
756 int
757 xfs_trans_ail_init(
758 	xfs_mount_t	*mp)
759 {
760 	struct xfs_ail	*ailp;
761 
762 	ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL);
763 	if (!ailp)
764 		return -ENOMEM;
765 
766 	ailp->xa_mount = mp;
767 	INIT_LIST_HEAD(&ailp->xa_ail);
768 	INIT_LIST_HEAD(&ailp->xa_cursors);
769 	spin_lock_init(&ailp->xa_lock);
770 	INIT_LIST_HEAD(&ailp->xa_buf_list);
771 	init_waitqueue_head(&ailp->xa_empty);
772 
773 	ailp->xa_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
774 			ailp->xa_mount->m_fsname);
775 	if (IS_ERR(ailp->xa_task))
776 		goto out_free_ailp;
777 
778 	mp->m_ail = ailp;
779 	return 0;
780 
781 out_free_ailp:
782 	kmem_free(ailp);
783 	return -ENOMEM;
784 }
785 
786 void
787 xfs_trans_ail_destroy(
788 	xfs_mount_t	*mp)
789 {
790 	struct xfs_ail	*ailp = mp->m_ail;
791 
792 	kthread_stop(ailp->xa_task);
793 	kmem_free(ailp);
794 }
795