xref: /openbmc/linux/fs/xfs/xfs_trans_ail.c (revision e0f6d1a5)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * Copyright (c) 2008 Dave Chinner
4  * All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it would be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write the Free Software Foundation,
17  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
18  */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_trace.h"
28 #include "xfs_errortag.h"
29 #include "xfs_error.h"
30 #include "xfs_log.h"
31 
32 #ifdef DEBUG
33 /*
34  * Check that the list is sorted as it should be.
35  */
36 STATIC void
37 xfs_ail_check(
38 	struct xfs_ail	*ailp,
39 	xfs_log_item_t	*lip)
40 {
41 	xfs_log_item_t	*prev_lip;
42 
43 	if (list_empty(&ailp->ail_head))
44 		return;
45 
46 	/*
47 	 * Check the next and previous entries are valid.
48 	 */
49 	ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0);
50 	prev_lip = list_entry(lip->li_ail.prev, xfs_log_item_t, li_ail);
51 	if (&prev_lip->li_ail != &ailp->ail_head)
52 		ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0);
53 
54 	prev_lip = list_entry(lip->li_ail.next, xfs_log_item_t, li_ail);
55 	if (&prev_lip->li_ail != &ailp->ail_head)
56 		ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) >= 0);
57 
58 
59 }
60 #else /* !DEBUG */
61 #define	xfs_ail_check(a,l)
62 #endif /* DEBUG */
63 
64 /*
65  * Return a pointer to the last item in the AIL.  If the AIL is empty, then
66  * return NULL.
67  */
68 static xfs_log_item_t *
69 xfs_ail_max(
70 	struct xfs_ail  *ailp)
71 {
72 	if (list_empty(&ailp->ail_head))
73 		return NULL;
74 
75 	return list_entry(ailp->ail_head.prev, xfs_log_item_t, li_ail);
76 }
77 
78 /*
79  * Return a pointer to the item which follows the given item in the AIL.  If
80  * the given item is the last item in the list, then return NULL.
81  */
82 static xfs_log_item_t *
83 xfs_ail_next(
84 	struct xfs_ail  *ailp,
85 	xfs_log_item_t  *lip)
86 {
87 	if (lip->li_ail.next == &ailp->ail_head)
88 		return NULL;
89 
90 	return list_first_entry(&lip->li_ail, xfs_log_item_t, li_ail);
91 }
92 
93 /*
94  * This is called by the log manager code to determine the LSN of the tail of
95  * the log.  This is exactly the LSN of the first item in the AIL.  If the AIL
96  * is empty, then this function returns 0.
97  *
98  * We need the AIL lock in order to get a coherent read of the lsn of the last
99  * item in the AIL.
100  */
101 xfs_lsn_t
102 xfs_ail_min_lsn(
103 	struct xfs_ail	*ailp)
104 {
105 	xfs_lsn_t	lsn = 0;
106 	xfs_log_item_t	*lip;
107 
108 	spin_lock(&ailp->ail_lock);
109 	lip = xfs_ail_min(ailp);
110 	if (lip)
111 		lsn = lip->li_lsn;
112 	spin_unlock(&ailp->ail_lock);
113 
114 	return lsn;
115 }
116 
117 /*
118  * Return the maximum lsn held in the AIL, or zero if the AIL is empty.
119  */
120 static xfs_lsn_t
121 xfs_ail_max_lsn(
122 	struct xfs_ail  *ailp)
123 {
124 	xfs_lsn_t       lsn = 0;
125 	xfs_log_item_t  *lip;
126 
127 	spin_lock(&ailp->ail_lock);
128 	lip = xfs_ail_max(ailp);
129 	if (lip)
130 		lsn = lip->li_lsn;
131 	spin_unlock(&ailp->ail_lock);
132 
133 	return lsn;
134 }
135 
136 /*
137  * The cursor keeps track of where our current traversal is up to by tracking
138  * the next item in the list for us. However, for this to be safe, removing an
139  * object from the AIL needs to invalidate any cursor that points to it. hence
140  * the traversal cursor needs to be linked to the struct xfs_ail so that
141  * deletion can search all the active cursors for invalidation.
142  */
143 STATIC void
144 xfs_trans_ail_cursor_init(
145 	struct xfs_ail		*ailp,
146 	struct xfs_ail_cursor	*cur)
147 {
148 	cur->item = NULL;
149 	list_add_tail(&cur->list, &ailp->ail_cursors);
150 }
151 
152 /*
153  * Get the next item in the traversal and advance the cursor.  If the cursor
154  * was invalidated (indicated by a lip of 1), restart the traversal.
155  */
156 struct xfs_log_item *
157 xfs_trans_ail_cursor_next(
158 	struct xfs_ail		*ailp,
159 	struct xfs_ail_cursor	*cur)
160 {
161 	struct xfs_log_item	*lip = cur->item;
162 
163 	if ((uintptr_t)lip & 1)
164 		lip = xfs_ail_min(ailp);
165 	if (lip)
166 		cur->item = xfs_ail_next(ailp, lip);
167 	return lip;
168 }
169 
170 /*
171  * When the traversal is complete, we need to remove the cursor from the list
172  * of traversing cursors.
173  */
174 void
175 xfs_trans_ail_cursor_done(
176 	struct xfs_ail_cursor	*cur)
177 {
178 	cur->item = NULL;
179 	list_del_init(&cur->list);
180 }
181 
182 /*
183  * Invalidate any cursor that is pointing to this item. This is called when an
184  * item is removed from the AIL. Any cursor pointing to this object is now
185  * invalid and the traversal needs to be terminated so it doesn't reference a
186  * freed object. We set the low bit of the cursor item pointer so we can
187  * distinguish between an invalidation and the end of the list when getting the
188  * next item from the cursor.
189  */
190 STATIC void
191 xfs_trans_ail_cursor_clear(
192 	struct xfs_ail		*ailp,
193 	struct xfs_log_item	*lip)
194 {
195 	struct xfs_ail_cursor	*cur;
196 
197 	list_for_each_entry(cur, &ailp->ail_cursors, list) {
198 		if (cur->item == lip)
199 			cur->item = (struct xfs_log_item *)
200 					((uintptr_t)cur->item | 1);
201 	}
202 }
203 
204 /*
205  * Find the first item in the AIL with the given @lsn by searching in ascending
206  * LSN order and initialise the cursor to point to the next item for a
207  * ascending traversal.  Pass a @lsn of zero to initialise the cursor to the
208  * first item in the AIL. Returns NULL if the list is empty.
209  */
210 xfs_log_item_t *
211 xfs_trans_ail_cursor_first(
212 	struct xfs_ail		*ailp,
213 	struct xfs_ail_cursor	*cur,
214 	xfs_lsn_t		lsn)
215 {
216 	xfs_log_item_t		*lip;
217 
218 	xfs_trans_ail_cursor_init(ailp, cur);
219 
220 	if (lsn == 0) {
221 		lip = xfs_ail_min(ailp);
222 		goto out;
223 	}
224 
225 	list_for_each_entry(lip, &ailp->ail_head, li_ail) {
226 		if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
227 			goto out;
228 	}
229 	return NULL;
230 
231 out:
232 	if (lip)
233 		cur->item = xfs_ail_next(ailp, lip);
234 	return lip;
235 }
236 
237 static struct xfs_log_item *
238 __xfs_trans_ail_cursor_last(
239 	struct xfs_ail		*ailp,
240 	xfs_lsn_t		lsn)
241 {
242 	xfs_log_item_t		*lip;
243 
244 	list_for_each_entry_reverse(lip, &ailp->ail_head, li_ail) {
245 		if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
246 			return lip;
247 	}
248 	return NULL;
249 }
250 
251 /*
252  * Find the last item in the AIL with the given @lsn by searching in descending
253  * LSN order and initialise the cursor to point to that item.  If there is no
254  * item with the value of @lsn, then it sets the cursor to the last item with an
255  * LSN lower than @lsn.  Returns NULL if the list is empty.
256  */
257 struct xfs_log_item *
258 xfs_trans_ail_cursor_last(
259 	struct xfs_ail		*ailp,
260 	struct xfs_ail_cursor	*cur,
261 	xfs_lsn_t		lsn)
262 {
263 	xfs_trans_ail_cursor_init(ailp, cur);
264 	cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
265 	return cur->item;
266 }
267 
268 /*
269  * Splice the log item list into the AIL at the given LSN. We splice to the
270  * tail of the given LSN to maintain insert order for push traversals. The
271  * cursor is optional, allowing repeated updates to the same LSN to avoid
272  * repeated traversals.  This should not be called with an empty list.
273  */
274 static void
275 xfs_ail_splice(
276 	struct xfs_ail		*ailp,
277 	struct xfs_ail_cursor	*cur,
278 	struct list_head	*list,
279 	xfs_lsn_t		lsn)
280 {
281 	struct xfs_log_item	*lip;
282 
283 	ASSERT(!list_empty(list));
284 
285 	/*
286 	 * Use the cursor to determine the insertion point if one is
287 	 * provided.  If not, or if the one we got is not valid,
288 	 * find the place in the AIL where the items belong.
289 	 */
290 	lip = cur ? cur->item : NULL;
291 	if (!lip || (uintptr_t)lip & 1)
292 		lip = __xfs_trans_ail_cursor_last(ailp, lsn);
293 
294 	/*
295 	 * If a cursor is provided, we know we're processing the AIL
296 	 * in lsn order, and future items to be spliced in will
297 	 * follow the last one being inserted now.  Update the
298 	 * cursor to point to that last item, now while we have a
299 	 * reliable pointer to it.
300 	 */
301 	if (cur)
302 		cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);
303 
304 	/*
305 	 * Finally perform the splice.  Unless the AIL was empty,
306 	 * lip points to the item in the AIL _after_ which the new
307 	 * items should go.  If lip is null the AIL was empty, so
308 	 * the new items go at the head of the AIL.
309 	 */
310 	if (lip)
311 		list_splice(list, &lip->li_ail);
312 	else
313 		list_splice(list, &ailp->ail_head);
314 }
315 
316 /*
317  * Delete the given item from the AIL.  Return a pointer to the item.
318  */
319 static void
320 xfs_ail_delete(
321 	struct xfs_ail  *ailp,
322 	xfs_log_item_t  *lip)
323 {
324 	xfs_ail_check(ailp, lip);
325 	list_del(&lip->li_ail);
326 	xfs_trans_ail_cursor_clear(ailp, lip);
327 }
328 
329 static inline uint
330 xfsaild_push_item(
331 	struct xfs_ail		*ailp,
332 	struct xfs_log_item	*lip)
333 {
334 	/*
335 	 * If log item pinning is enabled, skip the push and track the item as
336 	 * pinned. This can help induce head-behind-tail conditions.
337 	 */
338 	if (XFS_TEST_ERROR(false, ailp->ail_mount, XFS_ERRTAG_LOG_ITEM_PIN))
339 		return XFS_ITEM_PINNED;
340 
341 	return lip->li_ops->iop_push(lip, &ailp->ail_buf_list);
342 }
343 
344 static long
345 xfsaild_push(
346 	struct xfs_ail		*ailp)
347 {
348 	xfs_mount_t		*mp = ailp->ail_mount;
349 	struct xfs_ail_cursor	cur;
350 	xfs_log_item_t		*lip;
351 	xfs_lsn_t		lsn;
352 	xfs_lsn_t		target;
353 	long			tout;
354 	int			stuck = 0;
355 	int			flushing = 0;
356 	int			count = 0;
357 
358 	/*
359 	 * If we encountered pinned items or did not finish writing out all
360 	 * buffers the last time we ran, force the log first and wait for it
361 	 * before pushing again.
362 	 */
363 	if (ailp->ail_log_flush && ailp->ail_last_pushed_lsn == 0 &&
364 	    (!list_empty_careful(&ailp->ail_buf_list) ||
365 	     xfs_ail_min_lsn(ailp))) {
366 		ailp->ail_log_flush = 0;
367 
368 		XFS_STATS_INC(mp, xs_push_ail_flush);
369 		xfs_log_force(mp, XFS_LOG_SYNC);
370 	}
371 
372 	spin_lock(&ailp->ail_lock);
373 
374 	/* barrier matches the ail_target update in xfs_ail_push() */
375 	smp_rmb();
376 	target = ailp->ail_target;
377 	ailp->ail_target_prev = target;
378 
379 	lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->ail_last_pushed_lsn);
380 	if (!lip) {
381 		/*
382 		 * If the AIL is empty or our push has reached the end we are
383 		 * done now.
384 		 */
385 		xfs_trans_ail_cursor_done(&cur);
386 		spin_unlock(&ailp->ail_lock);
387 		goto out_done;
388 	}
389 
390 	XFS_STATS_INC(mp, xs_push_ail);
391 
392 	lsn = lip->li_lsn;
393 	while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) {
394 		int	lock_result;
395 
396 		/*
397 		 * Note that iop_push may unlock and reacquire the AIL lock.  We
398 		 * rely on the AIL cursor implementation to be able to deal with
399 		 * the dropped lock.
400 		 */
401 		lock_result = xfsaild_push_item(ailp, lip);
402 		switch (lock_result) {
403 		case XFS_ITEM_SUCCESS:
404 			XFS_STATS_INC(mp, xs_push_ail_success);
405 			trace_xfs_ail_push(lip);
406 
407 			ailp->ail_last_pushed_lsn = lsn;
408 			break;
409 
410 		case XFS_ITEM_FLUSHING:
411 			/*
412 			 * The item or its backing buffer is already beeing
413 			 * flushed.  The typical reason for that is that an
414 			 * inode buffer is locked because we already pushed the
415 			 * updates to it as part of inode clustering.
416 			 *
417 			 * We do not want to to stop flushing just because lots
418 			 * of items are already beeing flushed, but we need to
419 			 * re-try the flushing relatively soon if most of the
420 			 * AIL is beeing flushed.
421 			 */
422 			XFS_STATS_INC(mp, xs_push_ail_flushing);
423 			trace_xfs_ail_flushing(lip);
424 
425 			flushing++;
426 			ailp->ail_last_pushed_lsn = lsn;
427 			break;
428 
429 		case XFS_ITEM_PINNED:
430 			XFS_STATS_INC(mp, xs_push_ail_pinned);
431 			trace_xfs_ail_pinned(lip);
432 
433 			stuck++;
434 			ailp->ail_log_flush++;
435 			break;
436 		case XFS_ITEM_LOCKED:
437 			XFS_STATS_INC(mp, xs_push_ail_locked);
438 			trace_xfs_ail_locked(lip);
439 
440 			stuck++;
441 			break;
442 		default:
443 			ASSERT(0);
444 			break;
445 		}
446 
447 		count++;
448 
449 		/*
450 		 * Are there too many items we can't do anything with?
451 		 *
452 		 * If we we are skipping too many items because we can't flush
453 		 * them or they are already being flushed, we back off and
454 		 * given them time to complete whatever operation is being
455 		 * done. i.e. remove pressure from the AIL while we can't make
456 		 * progress so traversals don't slow down further inserts and
457 		 * removals to/from the AIL.
458 		 *
459 		 * The value of 100 is an arbitrary magic number based on
460 		 * observation.
461 		 */
462 		if (stuck > 100)
463 			break;
464 
465 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
466 		if (lip == NULL)
467 			break;
468 		lsn = lip->li_lsn;
469 	}
470 	xfs_trans_ail_cursor_done(&cur);
471 	spin_unlock(&ailp->ail_lock);
472 
473 	if (xfs_buf_delwri_submit_nowait(&ailp->ail_buf_list))
474 		ailp->ail_log_flush++;
475 
476 	if (!count || XFS_LSN_CMP(lsn, target) >= 0) {
477 out_done:
478 		/*
479 		 * We reached the target or the AIL is empty, so wait a bit
480 		 * longer for I/O to complete and remove pushed items from the
481 		 * AIL before we start the next scan from the start of the AIL.
482 		 */
483 		tout = 50;
484 		ailp->ail_last_pushed_lsn = 0;
485 	} else if (((stuck + flushing) * 100) / count > 90) {
486 		/*
487 		 * Either there is a lot of contention on the AIL or we are
488 		 * stuck due to operations in progress. "Stuck" in this case
489 		 * is defined as >90% of the items we tried to push were stuck.
490 		 *
491 		 * Backoff a bit more to allow some I/O to complete before
492 		 * restarting from the start of the AIL. This prevents us from
493 		 * spinning on the same items, and if they are pinned will all
494 		 * the restart to issue a log force to unpin the stuck items.
495 		 */
496 		tout = 20;
497 		ailp->ail_last_pushed_lsn = 0;
498 	} else {
499 		/*
500 		 * Assume we have more work to do in a short while.
501 		 */
502 		tout = 10;
503 	}
504 
505 	return tout;
506 }
507 
508 static int
509 xfsaild(
510 	void		*data)
511 {
512 	struct xfs_ail	*ailp = data;
513 	long		tout = 0;	/* milliseconds */
514 
515 	current->flags |= PF_MEMALLOC;
516 	set_freezable();
517 
518 	while (1) {
519 		if (tout && tout <= 20)
520 			set_current_state(TASK_KILLABLE);
521 		else
522 			set_current_state(TASK_INTERRUPTIBLE);
523 
524 		/*
525 		 * Check kthread_should_stop() after we set the task state
526 		 * to guarantee that we either see the stop bit and exit or
527 		 * the task state is reset to runnable such that it's not
528 		 * scheduled out indefinitely and detects the stop bit at
529 		 * next iteration.
530 		 *
531 		 * A memory barrier is included in above task state set to
532 		 * serialize again kthread_stop().
533 		 */
534 		if (kthread_should_stop()) {
535 			__set_current_state(TASK_RUNNING);
536 			break;
537 		}
538 
539 		spin_lock(&ailp->ail_lock);
540 
541 		/*
542 		 * Idle if the AIL is empty and we are not racing with a target
543 		 * update. We check the AIL after we set the task to a sleep
544 		 * state to guarantee that we either catch an ail_target update
545 		 * or that a wake_up resets the state to TASK_RUNNING.
546 		 * Otherwise, we run the risk of sleeping indefinitely.
547 		 *
548 		 * The barrier matches the ail_target update in xfs_ail_push().
549 		 */
550 		smp_rmb();
551 		if (!xfs_ail_min(ailp) &&
552 		    ailp->ail_target == ailp->ail_target_prev) {
553 			spin_unlock(&ailp->ail_lock);
554 			freezable_schedule();
555 			tout = 0;
556 			continue;
557 		}
558 		spin_unlock(&ailp->ail_lock);
559 
560 		if (tout)
561 			freezable_schedule_timeout(msecs_to_jiffies(tout));
562 
563 		__set_current_state(TASK_RUNNING);
564 
565 		try_to_freeze();
566 
567 		tout = xfsaild_push(ailp);
568 	}
569 
570 	return 0;
571 }
572 
573 /*
574  * This routine is called to move the tail of the AIL forward.  It does this by
575  * trying to flush items in the AIL whose lsns are below the given
576  * threshold_lsn.
577  *
578  * The push is run asynchronously in a workqueue, which means the caller needs
579  * to handle waiting on the async flush for space to become available.
580  * We don't want to interrupt any push that is in progress, hence we only queue
581  * work if we set the pushing bit approriately.
582  *
583  * We do this unlocked - we only need to know whether there is anything in the
584  * AIL at the time we are called. We don't need to access the contents of
585  * any of the objects, so the lock is not needed.
586  */
587 void
588 xfs_ail_push(
589 	struct xfs_ail	*ailp,
590 	xfs_lsn_t	threshold_lsn)
591 {
592 	xfs_log_item_t	*lip;
593 
594 	lip = xfs_ail_min(ailp);
595 	if (!lip || XFS_FORCED_SHUTDOWN(ailp->ail_mount) ||
596 	    XFS_LSN_CMP(threshold_lsn, ailp->ail_target) <= 0)
597 		return;
598 
599 	/*
600 	 * Ensure that the new target is noticed in push code before it clears
601 	 * the XFS_AIL_PUSHING_BIT.
602 	 */
603 	smp_wmb();
604 	xfs_trans_ail_copy_lsn(ailp, &ailp->ail_target, &threshold_lsn);
605 	smp_wmb();
606 
607 	wake_up_process(ailp->ail_task);
608 }
609 
610 /*
611  * Push out all items in the AIL immediately
612  */
613 void
614 xfs_ail_push_all(
615 	struct xfs_ail  *ailp)
616 {
617 	xfs_lsn_t       threshold_lsn = xfs_ail_max_lsn(ailp);
618 
619 	if (threshold_lsn)
620 		xfs_ail_push(ailp, threshold_lsn);
621 }
622 
623 /*
624  * Push out all items in the AIL immediately and wait until the AIL is empty.
625  */
626 void
627 xfs_ail_push_all_sync(
628 	struct xfs_ail  *ailp)
629 {
630 	struct xfs_log_item	*lip;
631 	DEFINE_WAIT(wait);
632 
633 	spin_lock(&ailp->ail_lock);
634 	while ((lip = xfs_ail_max(ailp)) != NULL) {
635 		prepare_to_wait(&ailp->ail_empty, &wait, TASK_UNINTERRUPTIBLE);
636 		ailp->ail_target = lip->li_lsn;
637 		wake_up_process(ailp->ail_task);
638 		spin_unlock(&ailp->ail_lock);
639 		schedule();
640 		spin_lock(&ailp->ail_lock);
641 	}
642 	spin_unlock(&ailp->ail_lock);
643 
644 	finish_wait(&ailp->ail_empty, &wait);
645 }
646 
647 /*
648  * xfs_trans_ail_update - bulk AIL insertion operation.
649  *
650  * @xfs_trans_ail_update takes an array of log items that all need to be
651  * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
652  * be added.  Otherwise, it will be repositioned  by removing it and re-adding
653  * it to the AIL. If we move the first item in the AIL, update the log tail to
654  * match the new minimum LSN in the AIL.
655  *
656  * This function takes the AIL lock once to execute the update operations on
657  * all the items in the array, and as such should not be called with the AIL
658  * lock held. As a result, once we have the AIL lock, we need to check each log
659  * item LSN to confirm it needs to be moved forward in the AIL.
660  *
661  * To optimise the insert operation, we delete all the items from the AIL in
662  * the first pass, moving them into a temporary list, then splice the temporary
663  * list into the correct position in the AIL. This avoids needing to do an
664  * insert operation on every item.
665  *
666  * This function must be called with the AIL lock held.  The lock is dropped
667  * before returning.
668  */
669 void
670 xfs_trans_ail_update_bulk(
671 	struct xfs_ail		*ailp,
672 	struct xfs_ail_cursor	*cur,
673 	struct xfs_log_item	**log_items,
674 	int			nr_items,
675 	xfs_lsn_t		lsn) __releases(ailp->ail_lock)
676 {
677 	xfs_log_item_t		*mlip;
678 	int			mlip_changed = 0;
679 	int			i;
680 	LIST_HEAD(tmp);
681 
682 	ASSERT(nr_items > 0);		/* Not required, but true. */
683 	mlip = xfs_ail_min(ailp);
684 
685 	for (i = 0; i < nr_items; i++) {
686 		struct xfs_log_item *lip = log_items[i];
687 		if (lip->li_flags & XFS_LI_IN_AIL) {
688 			/* check if we really need to move the item */
689 			if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
690 				continue;
691 
692 			trace_xfs_ail_move(lip, lip->li_lsn, lsn);
693 			xfs_ail_delete(ailp, lip);
694 			if (mlip == lip)
695 				mlip_changed = 1;
696 		} else {
697 			lip->li_flags |= XFS_LI_IN_AIL;
698 			trace_xfs_ail_insert(lip, 0, lsn);
699 		}
700 		lip->li_lsn = lsn;
701 		list_add(&lip->li_ail, &tmp);
702 	}
703 
704 	if (!list_empty(&tmp))
705 		xfs_ail_splice(ailp, cur, &tmp, lsn);
706 
707 	if (mlip_changed) {
708 		if (!XFS_FORCED_SHUTDOWN(ailp->ail_mount))
709 			xlog_assign_tail_lsn_locked(ailp->ail_mount);
710 		spin_unlock(&ailp->ail_lock);
711 
712 		xfs_log_space_wake(ailp->ail_mount);
713 	} else {
714 		spin_unlock(&ailp->ail_lock);
715 	}
716 }
717 
718 bool
719 xfs_ail_delete_one(
720 	struct xfs_ail		*ailp,
721 	struct xfs_log_item	*lip)
722 {
723 	struct xfs_log_item	*mlip = xfs_ail_min(ailp);
724 
725 	trace_xfs_ail_delete(lip, mlip->li_lsn, lip->li_lsn);
726 	xfs_ail_delete(ailp, lip);
727 	xfs_clear_li_failed(lip);
728 	lip->li_flags &= ~XFS_LI_IN_AIL;
729 	lip->li_lsn = 0;
730 
731 	return mlip == lip;
732 }
733 
734 /**
735  * Remove a log items from the AIL
736  *
737  * @xfs_trans_ail_delete_bulk takes an array of log items that all need to
738  * removed from the AIL. The caller is already holding the AIL lock, and done
739  * all the checks necessary to ensure the items passed in via @log_items are
740  * ready for deletion. This includes checking that the items are in the AIL.
741  *
742  * For each log item to be removed, unlink it  from the AIL, clear the IN_AIL
743  * flag from the item and reset the item's lsn to 0. If we remove the first
744  * item in the AIL, update the log tail to match the new minimum LSN in the
745  * AIL.
746  *
747  * This function will not drop the AIL lock until all items are removed from
748  * the AIL to minimise the amount of lock traffic on the AIL. This does not
749  * greatly increase the AIL hold time, but does significantly reduce the amount
750  * of traffic on the lock, especially during IO completion.
751  *
752  * This function must be called with the AIL lock held.  The lock is dropped
753  * before returning.
754  */
755 void
756 xfs_trans_ail_delete(
757 	struct xfs_ail		*ailp,
758 	struct xfs_log_item	*lip,
759 	int			shutdown_type) __releases(ailp->ail_lock)
760 {
761 	struct xfs_mount	*mp = ailp->ail_mount;
762 	bool			mlip_changed;
763 
764 	if (!(lip->li_flags & XFS_LI_IN_AIL)) {
765 		spin_unlock(&ailp->ail_lock);
766 		if (!XFS_FORCED_SHUTDOWN(mp)) {
767 			xfs_alert_tag(mp, XFS_PTAG_AILDELETE,
768 	"%s: attempting to delete a log item that is not in the AIL",
769 					__func__);
770 			xfs_force_shutdown(mp, shutdown_type);
771 		}
772 		return;
773 	}
774 
775 	mlip_changed = xfs_ail_delete_one(ailp, lip);
776 	if (mlip_changed) {
777 		if (!XFS_FORCED_SHUTDOWN(mp))
778 			xlog_assign_tail_lsn_locked(mp);
779 		if (list_empty(&ailp->ail_head))
780 			wake_up_all(&ailp->ail_empty);
781 	}
782 
783 	spin_unlock(&ailp->ail_lock);
784 	if (mlip_changed)
785 		xfs_log_space_wake(ailp->ail_mount);
786 }
787 
788 int
789 xfs_trans_ail_init(
790 	xfs_mount_t	*mp)
791 {
792 	struct xfs_ail	*ailp;
793 
794 	ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL);
795 	if (!ailp)
796 		return -ENOMEM;
797 
798 	ailp->ail_mount = mp;
799 	INIT_LIST_HEAD(&ailp->ail_head);
800 	INIT_LIST_HEAD(&ailp->ail_cursors);
801 	spin_lock_init(&ailp->ail_lock);
802 	INIT_LIST_HEAD(&ailp->ail_buf_list);
803 	init_waitqueue_head(&ailp->ail_empty);
804 
805 	ailp->ail_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
806 			ailp->ail_mount->m_fsname);
807 	if (IS_ERR(ailp->ail_task))
808 		goto out_free_ailp;
809 
810 	mp->m_ail = ailp;
811 	return 0;
812 
813 out_free_ailp:
814 	kmem_free(ailp);
815 	return -ENOMEM;
816 }
817 
818 void
819 xfs_trans_ail_destroy(
820 	xfs_mount_t	*mp)
821 {
822 	struct xfs_ail	*ailp = mp->m_ail;
823 
824 	kthread_stop(ailp->ail_task);
825 	kmem_free(ailp);
826 }
827