xref: /openbmc/linux/fs/xfs/xfs_trans_ail.c (revision ca79522c)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * Copyright (c) 2008 Dave Chinner
4  * All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it would be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write the Free Software Foundation,
17  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
18  */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_types.h"
22 #include "xfs_log.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_trace.h"
29 #include "xfs_error.h"
30 
31 #ifdef DEBUG
32 /*
33  * Check that the list is sorted as it should be.
34  */
35 STATIC void
36 xfs_ail_check(
37 	struct xfs_ail	*ailp,
38 	xfs_log_item_t	*lip)
39 {
40 	xfs_log_item_t	*prev_lip;
41 
42 	if (list_empty(&ailp->xa_ail))
43 		return;
44 
45 	/*
46 	 * Check the next and previous entries are valid.
47 	 */
48 	ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0);
49 	prev_lip = list_entry(lip->li_ail.prev, xfs_log_item_t, li_ail);
50 	if (&prev_lip->li_ail != &ailp->xa_ail)
51 		ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0);
52 
53 	prev_lip = list_entry(lip->li_ail.next, xfs_log_item_t, li_ail);
54 	if (&prev_lip->li_ail != &ailp->xa_ail)
55 		ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) >= 0);
56 
57 
58 }
59 #else /* !DEBUG */
60 #define	xfs_ail_check(a,l)
61 #endif /* DEBUG */
62 
63 /*
64  * Return a pointer to the first item in the AIL.  If the AIL is empty, then
65  * return NULL.
66  */
67 xfs_log_item_t *
68 xfs_ail_min(
69 	struct xfs_ail  *ailp)
70 {
71 	if (list_empty(&ailp->xa_ail))
72 		return NULL;
73 
74 	return list_first_entry(&ailp->xa_ail, xfs_log_item_t, li_ail);
75 }
76 
77  /*
78  * Return a pointer to the last item in the AIL.  If the AIL is empty, then
79  * return NULL.
80  */
81 static xfs_log_item_t *
82 xfs_ail_max(
83 	struct xfs_ail  *ailp)
84 {
85 	if (list_empty(&ailp->xa_ail))
86 		return NULL;
87 
88 	return list_entry(ailp->xa_ail.prev, xfs_log_item_t, li_ail);
89 }
90 
91 /*
92  * Return a pointer to the item which follows the given item in the AIL.  If
93  * the given item is the last item in the list, then return NULL.
94  */
95 static xfs_log_item_t *
96 xfs_ail_next(
97 	struct xfs_ail  *ailp,
98 	xfs_log_item_t  *lip)
99 {
100 	if (lip->li_ail.next == &ailp->xa_ail)
101 		return NULL;
102 
103 	return list_first_entry(&lip->li_ail, xfs_log_item_t, li_ail);
104 }
105 
106 /*
107  * This is called by the log manager code to determine the LSN of the tail of
108  * the log.  This is exactly the LSN of the first item in the AIL.  If the AIL
109  * is empty, then this function returns 0.
110  *
111  * We need the AIL lock in order to get a coherent read of the lsn of the last
112  * item in the AIL.
113  */
114 xfs_lsn_t
115 xfs_ail_min_lsn(
116 	struct xfs_ail	*ailp)
117 {
118 	xfs_lsn_t	lsn = 0;
119 	xfs_log_item_t	*lip;
120 
121 	spin_lock(&ailp->xa_lock);
122 	lip = xfs_ail_min(ailp);
123 	if (lip)
124 		lsn = lip->li_lsn;
125 	spin_unlock(&ailp->xa_lock);
126 
127 	return lsn;
128 }
129 
130 /*
131  * Return the maximum lsn held in the AIL, or zero if the AIL is empty.
132  */
133 static xfs_lsn_t
134 xfs_ail_max_lsn(
135 	struct xfs_ail  *ailp)
136 {
137 	xfs_lsn_t       lsn = 0;
138 	xfs_log_item_t  *lip;
139 
140 	spin_lock(&ailp->xa_lock);
141 	lip = xfs_ail_max(ailp);
142 	if (lip)
143 		lsn = lip->li_lsn;
144 	spin_unlock(&ailp->xa_lock);
145 
146 	return lsn;
147 }
148 
149 /*
150  * The cursor keeps track of where our current traversal is up to by tracking
151  * the next item in the list for us. However, for this to be safe, removing an
152  * object from the AIL needs to invalidate any cursor that points to it. hence
153  * the traversal cursor needs to be linked to the struct xfs_ail so that
154  * deletion can search all the active cursors for invalidation.
155  */
156 STATIC void
157 xfs_trans_ail_cursor_init(
158 	struct xfs_ail		*ailp,
159 	struct xfs_ail_cursor	*cur)
160 {
161 	cur->item = NULL;
162 	list_add_tail(&cur->list, &ailp->xa_cursors);
163 }
164 
165 /*
166  * Get the next item in the traversal and advance the cursor.  If the cursor
167  * was invalidated (indicated by a lip of 1), restart the traversal.
168  */
169 struct xfs_log_item *
170 xfs_trans_ail_cursor_next(
171 	struct xfs_ail		*ailp,
172 	struct xfs_ail_cursor	*cur)
173 {
174 	struct xfs_log_item	*lip = cur->item;
175 
176 	if ((__psint_t)lip & 1)
177 		lip = xfs_ail_min(ailp);
178 	if (lip)
179 		cur->item = xfs_ail_next(ailp, lip);
180 	return lip;
181 }
182 
183 /*
184  * When the traversal is complete, we need to remove the cursor from the list
185  * of traversing cursors.
186  */
187 void
188 xfs_trans_ail_cursor_done(
189 	struct xfs_ail		*ailp,
190 	struct xfs_ail_cursor	*cur)
191 {
192 	cur->item = NULL;
193 	list_del_init(&cur->list);
194 }
195 
196 /*
197  * Invalidate any cursor that is pointing to this item. This is called when an
198  * item is removed from the AIL. Any cursor pointing to this object is now
199  * invalid and the traversal needs to be terminated so it doesn't reference a
200  * freed object. We set the low bit of the cursor item pointer so we can
201  * distinguish between an invalidation and the end of the list when getting the
202  * next item from the cursor.
203  */
204 STATIC void
205 xfs_trans_ail_cursor_clear(
206 	struct xfs_ail		*ailp,
207 	struct xfs_log_item	*lip)
208 {
209 	struct xfs_ail_cursor	*cur;
210 
211 	list_for_each_entry(cur, &ailp->xa_cursors, list) {
212 		if (cur->item == lip)
213 			cur->item = (struct xfs_log_item *)
214 					((__psint_t)cur->item | 1);
215 	}
216 }
217 
218 /*
219  * Find the first item in the AIL with the given @lsn by searching in ascending
220  * LSN order and initialise the cursor to point to the next item for a
221  * ascending traversal.  Pass a @lsn of zero to initialise the cursor to the
222  * first item in the AIL. Returns NULL if the list is empty.
223  */
224 xfs_log_item_t *
225 xfs_trans_ail_cursor_first(
226 	struct xfs_ail		*ailp,
227 	struct xfs_ail_cursor	*cur,
228 	xfs_lsn_t		lsn)
229 {
230 	xfs_log_item_t		*lip;
231 
232 	xfs_trans_ail_cursor_init(ailp, cur);
233 
234 	if (lsn == 0) {
235 		lip = xfs_ail_min(ailp);
236 		goto out;
237 	}
238 
239 	list_for_each_entry(lip, &ailp->xa_ail, li_ail) {
240 		if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
241 			goto out;
242 	}
243 	return NULL;
244 
245 out:
246 	if (lip)
247 		cur->item = xfs_ail_next(ailp, lip);
248 	return lip;
249 }
250 
251 static struct xfs_log_item *
252 __xfs_trans_ail_cursor_last(
253 	struct xfs_ail		*ailp,
254 	xfs_lsn_t		lsn)
255 {
256 	xfs_log_item_t		*lip;
257 
258 	list_for_each_entry_reverse(lip, &ailp->xa_ail, li_ail) {
259 		if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
260 			return lip;
261 	}
262 	return NULL;
263 }
264 
265 /*
266  * Find the last item in the AIL with the given @lsn by searching in descending
267  * LSN order and initialise the cursor to point to that item.  If there is no
268  * item with the value of @lsn, then it sets the cursor to the last item with an
269  * LSN lower than @lsn.  Returns NULL if the list is empty.
270  */
271 struct xfs_log_item *
272 xfs_trans_ail_cursor_last(
273 	struct xfs_ail		*ailp,
274 	struct xfs_ail_cursor	*cur,
275 	xfs_lsn_t		lsn)
276 {
277 	xfs_trans_ail_cursor_init(ailp, cur);
278 	cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
279 	return cur->item;
280 }
281 
282 /*
283  * Splice the log item list into the AIL at the given LSN. We splice to the
284  * tail of the given LSN to maintain insert order for push traversals. The
285  * cursor is optional, allowing repeated updates to the same LSN to avoid
286  * repeated traversals.  This should not be called with an empty list.
287  */
288 static void
289 xfs_ail_splice(
290 	struct xfs_ail		*ailp,
291 	struct xfs_ail_cursor	*cur,
292 	struct list_head	*list,
293 	xfs_lsn_t		lsn)
294 {
295 	struct xfs_log_item	*lip;
296 
297 	ASSERT(!list_empty(list));
298 
299 	/*
300 	 * Use the cursor to determine the insertion point if one is
301 	 * provided.  If not, or if the one we got is not valid,
302 	 * find the place in the AIL where the items belong.
303 	 */
304 	lip = cur ? cur->item : NULL;
305 	if (!lip || (__psint_t) lip & 1)
306 		lip = __xfs_trans_ail_cursor_last(ailp, lsn);
307 
308 	/*
309 	 * If a cursor is provided, we know we're processing the AIL
310 	 * in lsn order, and future items to be spliced in will
311 	 * follow the last one being inserted now.  Update the
312 	 * cursor to point to that last item, now while we have a
313 	 * reliable pointer to it.
314 	 */
315 	if (cur)
316 		cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);
317 
318 	/*
319 	 * Finally perform the splice.  Unless the AIL was empty,
320 	 * lip points to the item in the AIL _after_ which the new
321 	 * items should go.  If lip is null the AIL was empty, so
322 	 * the new items go at the head of the AIL.
323 	 */
324 	if (lip)
325 		list_splice(list, &lip->li_ail);
326 	else
327 		list_splice(list, &ailp->xa_ail);
328 }
329 
330 /*
331  * Delete the given item from the AIL.  Return a pointer to the item.
332  */
333 static void
334 xfs_ail_delete(
335 	struct xfs_ail  *ailp,
336 	xfs_log_item_t  *lip)
337 {
338 	xfs_ail_check(ailp, lip);
339 	list_del(&lip->li_ail);
340 	xfs_trans_ail_cursor_clear(ailp, lip);
341 }
342 
343 static long
344 xfsaild_push(
345 	struct xfs_ail		*ailp)
346 {
347 	xfs_mount_t		*mp = ailp->xa_mount;
348 	struct xfs_ail_cursor	cur;
349 	xfs_log_item_t		*lip;
350 	xfs_lsn_t		lsn;
351 	xfs_lsn_t		target;
352 	long			tout;
353 	int			stuck = 0;
354 	int			flushing = 0;
355 	int			count = 0;
356 
357 	/*
358 	 * If we encountered pinned items or did not finish writing out all
359 	 * buffers the last time we ran, force the log first and wait for it
360 	 * before pushing again.
361 	 */
362 	if (ailp->xa_log_flush && ailp->xa_last_pushed_lsn == 0 &&
363 	    (!list_empty_careful(&ailp->xa_buf_list) ||
364 	     xfs_ail_min_lsn(ailp))) {
365 		ailp->xa_log_flush = 0;
366 
367 		XFS_STATS_INC(xs_push_ail_flush);
368 		xfs_log_force(mp, XFS_LOG_SYNC);
369 	}
370 
371 	spin_lock(&ailp->xa_lock);
372 
373 	/* barrier matches the xa_target update in xfs_ail_push() */
374 	smp_rmb();
375 	target = ailp->xa_target;
376 	ailp->xa_target_prev = target;
377 
378 	lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->xa_last_pushed_lsn);
379 	if (!lip) {
380 		/*
381 		 * If the AIL is empty or our push has reached the end we are
382 		 * done now.
383 		 */
384 		xfs_trans_ail_cursor_done(ailp, &cur);
385 		spin_unlock(&ailp->xa_lock);
386 		goto out_done;
387 	}
388 
389 	XFS_STATS_INC(xs_push_ail);
390 
391 	lsn = lip->li_lsn;
392 	while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) {
393 		int	lock_result;
394 
395 		/*
396 		 * Note that IOP_PUSH may unlock and reacquire the AIL lock.  We
397 		 * rely on the AIL cursor implementation to be able to deal with
398 		 * the dropped lock.
399 		 */
400 		lock_result = IOP_PUSH(lip, &ailp->xa_buf_list);
401 		switch (lock_result) {
402 		case XFS_ITEM_SUCCESS:
403 			XFS_STATS_INC(xs_push_ail_success);
404 			trace_xfs_ail_push(lip);
405 
406 			ailp->xa_last_pushed_lsn = lsn;
407 			break;
408 
409 		case XFS_ITEM_FLUSHING:
410 			/*
411 			 * The item or its backing buffer is already beeing
412 			 * flushed.  The typical reason for that is that an
413 			 * inode buffer is locked because we already pushed the
414 			 * updates to it as part of inode clustering.
415 			 *
416 			 * We do not want to to stop flushing just because lots
417 			 * of items are already beeing flushed, but we need to
418 			 * re-try the flushing relatively soon if most of the
419 			 * AIL is beeing flushed.
420 			 */
421 			XFS_STATS_INC(xs_push_ail_flushing);
422 			trace_xfs_ail_flushing(lip);
423 
424 			flushing++;
425 			ailp->xa_last_pushed_lsn = lsn;
426 			break;
427 
428 		case XFS_ITEM_PINNED:
429 			XFS_STATS_INC(xs_push_ail_pinned);
430 			trace_xfs_ail_pinned(lip);
431 
432 			stuck++;
433 			ailp->xa_log_flush++;
434 			break;
435 		case XFS_ITEM_LOCKED:
436 			XFS_STATS_INC(xs_push_ail_locked);
437 			trace_xfs_ail_locked(lip);
438 
439 			stuck++;
440 			break;
441 		default:
442 			ASSERT(0);
443 			break;
444 		}
445 
446 		count++;
447 
448 		/*
449 		 * Are there too many items we can't do anything with?
450 		 *
451 		 * If we we are skipping too many items because we can't flush
452 		 * them or they are already being flushed, we back off and
453 		 * given them time to complete whatever operation is being
454 		 * done. i.e. remove pressure from the AIL while we can't make
455 		 * progress so traversals don't slow down further inserts and
456 		 * removals to/from the AIL.
457 		 *
458 		 * The value of 100 is an arbitrary magic number based on
459 		 * observation.
460 		 */
461 		if (stuck > 100)
462 			break;
463 
464 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
465 		if (lip == NULL)
466 			break;
467 		lsn = lip->li_lsn;
468 	}
469 	xfs_trans_ail_cursor_done(ailp, &cur);
470 	spin_unlock(&ailp->xa_lock);
471 
472 	if (xfs_buf_delwri_submit_nowait(&ailp->xa_buf_list))
473 		ailp->xa_log_flush++;
474 
475 	if (!count || XFS_LSN_CMP(lsn, target) >= 0) {
476 out_done:
477 		/*
478 		 * We reached the target or the AIL is empty, so wait a bit
479 		 * longer for I/O to complete and remove pushed items from the
480 		 * AIL before we start the next scan from the start of the AIL.
481 		 */
482 		tout = 50;
483 		ailp->xa_last_pushed_lsn = 0;
484 	} else if (((stuck + flushing) * 100) / count > 90) {
485 		/*
486 		 * Either there is a lot of contention on the AIL or we are
487 		 * stuck due to operations in progress. "Stuck" in this case
488 		 * is defined as >90% of the items we tried to push were stuck.
489 		 *
490 		 * Backoff a bit more to allow some I/O to complete before
491 		 * restarting from the start of the AIL. This prevents us from
492 		 * spinning on the same items, and if they are pinned will all
493 		 * the restart to issue a log force to unpin the stuck items.
494 		 */
495 		tout = 20;
496 		ailp->xa_last_pushed_lsn = 0;
497 	} else {
498 		/*
499 		 * Assume we have more work to do in a short while.
500 		 */
501 		tout = 10;
502 	}
503 
504 	return tout;
505 }
506 
507 static int
508 xfsaild(
509 	void		*data)
510 {
511 	struct xfs_ail	*ailp = data;
512 	long		tout = 0;	/* milliseconds */
513 
514 	current->flags |= PF_MEMALLOC;
515 
516 	while (!kthread_should_stop()) {
517 		if (tout && tout <= 20)
518 			__set_current_state(TASK_KILLABLE);
519 		else
520 			__set_current_state(TASK_INTERRUPTIBLE);
521 
522 		spin_lock(&ailp->xa_lock);
523 
524 		/*
525 		 * Idle if the AIL is empty and we are not racing with a target
526 		 * update. We check the AIL after we set the task to a sleep
527 		 * state to guarantee that we either catch an xa_target update
528 		 * or that a wake_up resets the state to TASK_RUNNING.
529 		 * Otherwise, we run the risk of sleeping indefinitely.
530 		 *
531 		 * The barrier matches the xa_target update in xfs_ail_push().
532 		 */
533 		smp_rmb();
534 		if (!xfs_ail_min(ailp) &&
535 		    ailp->xa_target == ailp->xa_target_prev) {
536 			spin_unlock(&ailp->xa_lock);
537 			schedule();
538 			tout = 0;
539 			continue;
540 		}
541 		spin_unlock(&ailp->xa_lock);
542 
543 		if (tout)
544 			schedule_timeout(msecs_to_jiffies(tout));
545 
546 		__set_current_state(TASK_RUNNING);
547 
548 		try_to_freeze();
549 
550 		tout = xfsaild_push(ailp);
551 	}
552 
553 	return 0;
554 }
555 
556 /*
557  * This routine is called to move the tail of the AIL forward.  It does this by
558  * trying to flush items in the AIL whose lsns are below the given
559  * threshold_lsn.
560  *
561  * The push is run asynchronously in a workqueue, which means the caller needs
562  * to handle waiting on the async flush for space to become available.
563  * We don't want to interrupt any push that is in progress, hence we only queue
564  * work if we set the pushing bit approriately.
565  *
566  * We do this unlocked - we only need to know whether there is anything in the
567  * AIL at the time we are called. We don't need to access the contents of
568  * any of the objects, so the lock is not needed.
569  */
570 void
571 xfs_ail_push(
572 	struct xfs_ail	*ailp,
573 	xfs_lsn_t	threshold_lsn)
574 {
575 	xfs_log_item_t	*lip;
576 
577 	lip = xfs_ail_min(ailp);
578 	if (!lip || XFS_FORCED_SHUTDOWN(ailp->xa_mount) ||
579 	    XFS_LSN_CMP(threshold_lsn, ailp->xa_target) <= 0)
580 		return;
581 
582 	/*
583 	 * Ensure that the new target is noticed in push code before it clears
584 	 * the XFS_AIL_PUSHING_BIT.
585 	 */
586 	smp_wmb();
587 	xfs_trans_ail_copy_lsn(ailp, &ailp->xa_target, &threshold_lsn);
588 	smp_wmb();
589 
590 	wake_up_process(ailp->xa_task);
591 }
592 
593 /*
594  * Push out all items in the AIL immediately
595  */
596 void
597 xfs_ail_push_all(
598 	struct xfs_ail  *ailp)
599 {
600 	xfs_lsn_t       threshold_lsn = xfs_ail_max_lsn(ailp);
601 
602 	if (threshold_lsn)
603 		xfs_ail_push(ailp, threshold_lsn);
604 }
605 
606 /*
607  * Push out all items in the AIL immediately and wait until the AIL is empty.
608  */
609 void
610 xfs_ail_push_all_sync(
611 	struct xfs_ail  *ailp)
612 {
613 	struct xfs_log_item	*lip;
614 	DEFINE_WAIT(wait);
615 
616 	spin_lock(&ailp->xa_lock);
617 	while ((lip = xfs_ail_max(ailp)) != NULL) {
618 		prepare_to_wait(&ailp->xa_empty, &wait, TASK_UNINTERRUPTIBLE);
619 		ailp->xa_target = lip->li_lsn;
620 		wake_up_process(ailp->xa_task);
621 		spin_unlock(&ailp->xa_lock);
622 		schedule();
623 		spin_lock(&ailp->xa_lock);
624 	}
625 	spin_unlock(&ailp->xa_lock);
626 
627 	finish_wait(&ailp->xa_empty, &wait);
628 }
629 
630 /*
631  * xfs_trans_ail_update - bulk AIL insertion operation.
632  *
633  * @xfs_trans_ail_update takes an array of log items that all need to be
634  * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
635  * be added.  Otherwise, it will be repositioned  by removing it and re-adding
636  * it to the AIL. If we move the first item in the AIL, update the log tail to
637  * match the new minimum LSN in the AIL.
638  *
639  * This function takes the AIL lock once to execute the update operations on
640  * all the items in the array, and as such should not be called with the AIL
641  * lock held. As a result, once we have the AIL lock, we need to check each log
642  * item LSN to confirm it needs to be moved forward in the AIL.
643  *
644  * To optimise the insert operation, we delete all the items from the AIL in
645  * the first pass, moving them into a temporary list, then splice the temporary
646  * list into the correct position in the AIL. This avoids needing to do an
647  * insert operation on every item.
648  *
649  * This function must be called with the AIL lock held.  The lock is dropped
650  * before returning.
651  */
652 void
653 xfs_trans_ail_update_bulk(
654 	struct xfs_ail		*ailp,
655 	struct xfs_ail_cursor	*cur,
656 	struct xfs_log_item	**log_items,
657 	int			nr_items,
658 	xfs_lsn_t		lsn) __releases(ailp->xa_lock)
659 {
660 	xfs_log_item_t		*mlip;
661 	int			mlip_changed = 0;
662 	int			i;
663 	LIST_HEAD(tmp);
664 
665 	ASSERT(nr_items > 0);		/* Not required, but true. */
666 	mlip = xfs_ail_min(ailp);
667 
668 	for (i = 0; i < nr_items; i++) {
669 		struct xfs_log_item *lip = log_items[i];
670 		if (lip->li_flags & XFS_LI_IN_AIL) {
671 			/* check if we really need to move the item */
672 			if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
673 				continue;
674 
675 			xfs_ail_delete(ailp, lip);
676 			if (mlip == lip)
677 				mlip_changed = 1;
678 		} else {
679 			lip->li_flags |= XFS_LI_IN_AIL;
680 		}
681 		lip->li_lsn = lsn;
682 		list_add(&lip->li_ail, &tmp);
683 	}
684 
685 	if (!list_empty(&tmp))
686 		xfs_ail_splice(ailp, cur, &tmp, lsn);
687 
688 	if (mlip_changed) {
689 		if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount))
690 			xlog_assign_tail_lsn_locked(ailp->xa_mount);
691 		spin_unlock(&ailp->xa_lock);
692 
693 		xfs_log_space_wake(ailp->xa_mount);
694 	} else {
695 		spin_unlock(&ailp->xa_lock);
696 	}
697 }
698 
699 /*
700  * xfs_trans_ail_delete_bulk - remove multiple log items from the AIL
701  *
702  * @xfs_trans_ail_delete_bulk takes an array of log items that all need to
703  * removed from the AIL. The caller is already holding the AIL lock, and done
704  * all the checks necessary to ensure the items passed in via @log_items are
705  * ready for deletion. This includes checking that the items are in the AIL.
706  *
707  * For each log item to be removed, unlink it  from the AIL, clear the IN_AIL
708  * flag from the item and reset the item's lsn to 0. If we remove the first
709  * item in the AIL, update the log tail to match the new minimum LSN in the
710  * AIL.
711  *
712  * This function will not drop the AIL lock until all items are removed from
713  * the AIL to minimise the amount of lock traffic on the AIL. This does not
714  * greatly increase the AIL hold time, but does significantly reduce the amount
715  * of traffic on the lock, especially during IO completion.
716  *
717  * This function must be called with the AIL lock held.  The lock is dropped
718  * before returning.
719  */
720 void
721 xfs_trans_ail_delete_bulk(
722 	struct xfs_ail		*ailp,
723 	struct xfs_log_item	**log_items,
724 	int			nr_items,
725 	int			shutdown_type) __releases(ailp->xa_lock)
726 {
727 	xfs_log_item_t		*mlip;
728 	int			mlip_changed = 0;
729 	int			i;
730 
731 	mlip = xfs_ail_min(ailp);
732 
733 	for (i = 0; i < nr_items; i++) {
734 		struct xfs_log_item *lip = log_items[i];
735 		if (!(lip->li_flags & XFS_LI_IN_AIL)) {
736 			struct xfs_mount	*mp = ailp->xa_mount;
737 
738 			spin_unlock(&ailp->xa_lock);
739 			if (!XFS_FORCED_SHUTDOWN(mp)) {
740 				xfs_alert_tag(mp, XFS_PTAG_AILDELETE,
741 		"%s: attempting to delete a log item that is not in the AIL",
742 						__func__);
743 				xfs_force_shutdown(mp, shutdown_type);
744 			}
745 			return;
746 		}
747 
748 		xfs_ail_delete(ailp, lip);
749 		lip->li_flags &= ~XFS_LI_IN_AIL;
750 		lip->li_lsn = 0;
751 		if (mlip == lip)
752 			mlip_changed = 1;
753 	}
754 
755 	if (mlip_changed) {
756 		if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount))
757 			xlog_assign_tail_lsn_locked(ailp->xa_mount);
758 		if (list_empty(&ailp->xa_ail))
759 			wake_up_all(&ailp->xa_empty);
760 		spin_unlock(&ailp->xa_lock);
761 
762 		xfs_log_space_wake(ailp->xa_mount);
763 	} else {
764 		spin_unlock(&ailp->xa_lock);
765 	}
766 }
767 
768 int
769 xfs_trans_ail_init(
770 	xfs_mount_t	*mp)
771 {
772 	struct xfs_ail	*ailp;
773 
774 	ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL);
775 	if (!ailp)
776 		return ENOMEM;
777 
778 	ailp->xa_mount = mp;
779 	INIT_LIST_HEAD(&ailp->xa_ail);
780 	INIT_LIST_HEAD(&ailp->xa_cursors);
781 	spin_lock_init(&ailp->xa_lock);
782 	INIT_LIST_HEAD(&ailp->xa_buf_list);
783 	init_waitqueue_head(&ailp->xa_empty);
784 
785 	ailp->xa_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
786 			ailp->xa_mount->m_fsname);
787 	if (IS_ERR(ailp->xa_task))
788 		goto out_free_ailp;
789 
790 	mp->m_ail = ailp;
791 	return 0;
792 
793 out_free_ailp:
794 	kmem_free(ailp);
795 	return ENOMEM;
796 }
797 
798 void
799 xfs_trans_ail_destroy(
800 	xfs_mount_t	*mp)
801 {
802 	struct xfs_ail	*ailp = mp->m_ail;
803 
804 	kthread_stop(ailp->xa_task);
805 	kmem_free(ailp);
806 }
807