1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * Copyright (c) 2008 Dave Chinner 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_mount.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_trace.h" 17 #include "xfs_errortag.h" 18 #include "xfs_error.h" 19 #include "xfs_log.h" 20 21 #ifdef DEBUG 22 /* 23 * Check that the list is sorted as it should be. 24 * 25 * Called with the ail lock held, but we don't want to assert fail with it 26 * held otherwise we'll lock everything up and won't be able to debug the 27 * cause. Hence we sample and check the state under the AIL lock and return if 28 * everything is fine, otherwise we drop the lock and run the ASSERT checks. 29 * Asserts may not be fatal, so pick the lock back up and continue onwards. 30 */ 31 STATIC void 32 xfs_ail_check( 33 struct xfs_ail *ailp, 34 struct xfs_log_item *lip) 35 { 36 struct xfs_log_item *prev_lip; 37 struct xfs_log_item *next_lip; 38 xfs_lsn_t prev_lsn = NULLCOMMITLSN; 39 xfs_lsn_t next_lsn = NULLCOMMITLSN; 40 xfs_lsn_t lsn; 41 bool in_ail; 42 43 44 if (list_empty(&ailp->ail_head)) 45 return; 46 47 /* 48 * Sample then check the next and previous entries are valid. 49 */ 50 in_ail = test_bit(XFS_LI_IN_AIL, &lip->li_flags); 51 prev_lip = list_entry(lip->li_ail.prev, struct xfs_log_item, li_ail); 52 if (&prev_lip->li_ail != &ailp->ail_head) 53 prev_lsn = prev_lip->li_lsn; 54 next_lip = list_entry(lip->li_ail.next, struct xfs_log_item, li_ail); 55 if (&next_lip->li_ail != &ailp->ail_head) 56 next_lsn = next_lip->li_lsn; 57 lsn = lip->li_lsn; 58 59 if (in_ail && 60 (prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0) && 61 (next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0)) 62 return; 63 64 spin_unlock(&ailp->ail_lock); 65 ASSERT(in_ail); 66 ASSERT(prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0); 67 ASSERT(next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0); 68 spin_lock(&ailp->ail_lock); 69 } 70 #else /* !DEBUG */ 71 #define xfs_ail_check(a,l) 72 #endif /* DEBUG */ 73 74 /* 75 * Return a pointer to the last item in the AIL. If the AIL is empty, then 76 * return NULL. 77 */ 78 static struct xfs_log_item * 79 xfs_ail_max( 80 struct xfs_ail *ailp) 81 { 82 if (list_empty(&ailp->ail_head)) 83 return NULL; 84 85 return list_entry(ailp->ail_head.prev, struct xfs_log_item, li_ail); 86 } 87 88 /* 89 * Return a pointer to the item which follows the given item in the AIL. If 90 * the given item is the last item in the list, then return NULL. 91 */ 92 static struct xfs_log_item * 93 xfs_ail_next( 94 struct xfs_ail *ailp, 95 struct xfs_log_item *lip) 96 { 97 if (lip->li_ail.next == &ailp->ail_head) 98 return NULL; 99 100 return list_first_entry(&lip->li_ail, struct xfs_log_item, li_ail); 101 } 102 103 /* 104 * This is called by the log manager code to determine the LSN of the tail of 105 * the log. This is exactly the LSN of the first item in the AIL. If the AIL 106 * is empty, then this function returns 0. 107 * 108 * We need the AIL lock in order to get a coherent read of the lsn of the last 109 * item in the AIL. 110 */ 111 xfs_lsn_t 112 xfs_ail_min_lsn( 113 struct xfs_ail *ailp) 114 { 115 xfs_lsn_t lsn = 0; 116 struct xfs_log_item *lip; 117 118 spin_lock(&ailp->ail_lock); 119 lip = xfs_ail_min(ailp); 120 if (lip) 121 lsn = lip->li_lsn; 122 spin_unlock(&ailp->ail_lock); 123 124 return lsn; 125 } 126 127 /* 128 * Return the maximum lsn held in the AIL, or zero if the AIL is empty. 129 */ 130 static xfs_lsn_t 131 xfs_ail_max_lsn( 132 struct xfs_ail *ailp) 133 { 134 xfs_lsn_t lsn = 0; 135 struct xfs_log_item *lip; 136 137 spin_lock(&ailp->ail_lock); 138 lip = xfs_ail_max(ailp); 139 if (lip) 140 lsn = lip->li_lsn; 141 spin_unlock(&ailp->ail_lock); 142 143 return lsn; 144 } 145 146 /* 147 * The cursor keeps track of where our current traversal is up to by tracking 148 * the next item in the list for us. However, for this to be safe, removing an 149 * object from the AIL needs to invalidate any cursor that points to it. hence 150 * the traversal cursor needs to be linked to the struct xfs_ail so that 151 * deletion can search all the active cursors for invalidation. 152 */ 153 STATIC void 154 xfs_trans_ail_cursor_init( 155 struct xfs_ail *ailp, 156 struct xfs_ail_cursor *cur) 157 { 158 cur->item = NULL; 159 list_add_tail(&cur->list, &ailp->ail_cursors); 160 } 161 162 /* 163 * Get the next item in the traversal and advance the cursor. If the cursor 164 * was invalidated (indicated by a lip of 1), restart the traversal. 165 */ 166 struct xfs_log_item * 167 xfs_trans_ail_cursor_next( 168 struct xfs_ail *ailp, 169 struct xfs_ail_cursor *cur) 170 { 171 struct xfs_log_item *lip = cur->item; 172 173 if ((uintptr_t)lip & 1) 174 lip = xfs_ail_min(ailp); 175 if (lip) 176 cur->item = xfs_ail_next(ailp, lip); 177 return lip; 178 } 179 180 /* 181 * When the traversal is complete, we need to remove the cursor from the list 182 * of traversing cursors. 183 */ 184 void 185 xfs_trans_ail_cursor_done( 186 struct xfs_ail_cursor *cur) 187 { 188 cur->item = NULL; 189 list_del_init(&cur->list); 190 } 191 192 /* 193 * Invalidate any cursor that is pointing to this item. This is called when an 194 * item is removed from the AIL. Any cursor pointing to this object is now 195 * invalid and the traversal needs to be terminated so it doesn't reference a 196 * freed object. We set the low bit of the cursor item pointer so we can 197 * distinguish between an invalidation and the end of the list when getting the 198 * next item from the cursor. 199 */ 200 STATIC void 201 xfs_trans_ail_cursor_clear( 202 struct xfs_ail *ailp, 203 struct xfs_log_item *lip) 204 { 205 struct xfs_ail_cursor *cur; 206 207 list_for_each_entry(cur, &ailp->ail_cursors, list) { 208 if (cur->item == lip) 209 cur->item = (struct xfs_log_item *) 210 ((uintptr_t)cur->item | 1); 211 } 212 } 213 214 /* 215 * Find the first item in the AIL with the given @lsn by searching in ascending 216 * LSN order and initialise the cursor to point to the next item for a 217 * ascending traversal. Pass a @lsn of zero to initialise the cursor to the 218 * first item in the AIL. Returns NULL if the list is empty. 219 */ 220 struct xfs_log_item * 221 xfs_trans_ail_cursor_first( 222 struct xfs_ail *ailp, 223 struct xfs_ail_cursor *cur, 224 xfs_lsn_t lsn) 225 { 226 struct xfs_log_item *lip; 227 228 xfs_trans_ail_cursor_init(ailp, cur); 229 230 if (lsn == 0) { 231 lip = xfs_ail_min(ailp); 232 goto out; 233 } 234 235 list_for_each_entry(lip, &ailp->ail_head, li_ail) { 236 if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0) 237 goto out; 238 } 239 return NULL; 240 241 out: 242 if (lip) 243 cur->item = xfs_ail_next(ailp, lip); 244 return lip; 245 } 246 247 static struct xfs_log_item * 248 __xfs_trans_ail_cursor_last( 249 struct xfs_ail *ailp, 250 xfs_lsn_t lsn) 251 { 252 struct xfs_log_item *lip; 253 254 list_for_each_entry_reverse(lip, &ailp->ail_head, li_ail) { 255 if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0) 256 return lip; 257 } 258 return NULL; 259 } 260 261 /* 262 * Find the last item in the AIL with the given @lsn by searching in descending 263 * LSN order and initialise the cursor to point to that item. If there is no 264 * item with the value of @lsn, then it sets the cursor to the last item with an 265 * LSN lower than @lsn. Returns NULL if the list is empty. 266 */ 267 struct xfs_log_item * 268 xfs_trans_ail_cursor_last( 269 struct xfs_ail *ailp, 270 struct xfs_ail_cursor *cur, 271 xfs_lsn_t lsn) 272 { 273 xfs_trans_ail_cursor_init(ailp, cur); 274 cur->item = __xfs_trans_ail_cursor_last(ailp, lsn); 275 return cur->item; 276 } 277 278 /* 279 * Splice the log item list into the AIL at the given LSN. We splice to the 280 * tail of the given LSN to maintain insert order for push traversals. The 281 * cursor is optional, allowing repeated updates to the same LSN to avoid 282 * repeated traversals. This should not be called with an empty list. 283 */ 284 static void 285 xfs_ail_splice( 286 struct xfs_ail *ailp, 287 struct xfs_ail_cursor *cur, 288 struct list_head *list, 289 xfs_lsn_t lsn) 290 { 291 struct xfs_log_item *lip; 292 293 ASSERT(!list_empty(list)); 294 295 /* 296 * Use the cursor to determine the insertion point if one is 297 * provided. If not, or if the one we got is not valid, 298 * find the place in the AIL where the items belong. 299 */ 300 lip = cur ? cur->item : NULL; 301 if (!lip || (uintptr_t)lip & 1) 302 lip = __xfs_trans_ail_cursor_last(ailp, lsn); 303 304 /* 305 * If a cursor is provided, we know we're processing the AIL 306 * in lsn order, and future items to be spliced in will 307 * follow the last one being inserted now. Update the 308 * cursor to point to that last item, now while we have a 309 * reliable pointer to it. 310 */ 311 if (cur) 312 cur->item = list_entry(list->prev, struct xfs_log_item, li_ail); 313 314 /* 315 * Finally perform the splice. Unless the AIL was empty, 316 * lip points to the item in the AIL _after_ which the new 317 * items should go. If lip is null the AIL was empty, so 318 * the new items go at the head of the AIL. 319 */ 320 if (lip) 321 list_splice(list, &lip->li_ail); 322 else 323 list_splice(list, &ailp->ail_head); 324 } 325 326 /* 327 * Delete the given item from the AIL. Return a pointer to the item. 328 */ 329 static void 330 xfs_ail_delete( 331 struct xfs_ail *ailp, 332 struct xfs_log_item *lip) 333 { 334 xfs_ail_check(ailp, lip); 335 list_del(&lip->li_ail); 336 xfs_trans_ail_cursor_clear(ailp, lip); 337 } 338 339 static inline uint 340 xfsaild_push_item( 341 struct xfs_ail *ailp, 342 struct xfs_log_item *lip) 343 { 344 /* 345 * If log item pinning is enabled, skip the push and track the item as 346 * pinned. This can help induce head-behind-tail conditions. 347 */ 348 if (XFS_TEST_ERROR(false, ailp->ail_mount, XFS_ERRTAG_LOG_ITEM_PIN)) 349 return XFS_ITEM_PINNED; 350 351 /* 352 * Consider the item pinned if a push callback is not defined so the 353 * caller will force the log. This should only happen for intent items 354 * as they are unpinned once the associated done item is committed to 355 * the on-disk log. 356 */ 357 if (!lip->li_ops->iop_push) 358 return XFS_ITEM_PINNED; 359 return lip->li_ops->iop_push(lip, &ailp->ail_buf_list); 360 } 361 362 static long 363 xfsaild_push( 364 struct xfs_ail *ailp) 365 { 366 xfs_mount_t *mp = ailp->ail_mount; 367 struct xfs_ail_cursor cur; 368 struct xfs_log_item *lip; 369 xfs_lsn_t lsn; 370 xfs_lsn_t target; 371 long tout; 372 int stuck = 0; 373 int flushing = 0; 374 int count = 0; 375 376 /* 377 * If we encountered pinned items or did not finish writing out all 378 * buffers the last time we ran, force the log first and wait for it 379 * before pushing again. 380 */ 381 if (ailp->ail_log_flush && ailp->ail_last_pushed_lsn == 0 && 382 (!list_empty_careful(&ailp->ail_buf_list) || 383 xfs_ail_min_lsn(ailp))) { 384 ailp->ail_log_flush = 0; 385 386 XFS_STATS_INC(mp, xs_push_ail_flush); 387 xfs_log_force(mp, XFS_LOG_SYNC); 388 } 389 390 spin_lock(&ailp->ail_lock); 391 392 /* barrier matches the ail_target update in xfs_ail_push() */ 393 smp_rmb(); 394 target = ailp->ail_target; 395 ailp->ail_target_prev = target; 396 397 lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->ail_last_pushed_lsn); 398 if (!lip) { 399 /* 400 * If the AIL is empty or our push has reached the end we are 401 * done now. 402 */ 403 xfs_trans_ail_cursor_done(&cur); 404 spin_unlock(&ailp->ail_lock); 405 goto out_done; 406 } 407 408 XFS_STATS_INC(mp, xs_push_ail); 409 410 lsn = lip->li_lsn; 411 while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) { 412 int lock_result; 413 414 /* 415 * Note that iop_push may unlock and reacquire the AIL lock. We 416 * rely on the AIL cursor implementation to be able to deal with 417 * the dropped lock. 418 */ 419 lock_result = xfsaild_push_item(ailp, lip); 420 switch (lock_result) { 421 case XFS_ITEM_SUCCESS: 422 XFS_STATS_INC(mp, xs_push_ail_success); 423 trace_xfs_ail_push(lip); 424 425 ailp->ail_last_pushed_lsn = lsn; 426 break; 427 428 case XFS_ITEM_FLUSHING: 429 /* 430 * The item or its backing buffer is already beeing 431 * flushed. The typical reason for that is that an 432 * inode buffer is locked because we already pushed the 433 * updates to it as part of inode clustering. 434 * 435 * We do not want to to stop flushing just because lots 436 * of items are already beeing flushed, but we need to 437 * re-try the flushing relatively soon if most of the 438 * AIL is beeing flushed. 439 */ 440 XFS_STATS_INC(mp, xs_push_ail_flushing); 441 trace_xfs_ail_flushing(lip); 442 443 flushing++; 444 ailp->ail_last_pushed_lsn = lsn; 445 break; 446 447 case XFS_ITEM_PINNED: 448 XFS_STATS_INC(mp, xs_push_ail_pinned); 449 trace_xfs_ail_pinned(lip); 450 451 stuck++; 452 ailp->ail_log_flush++; 453 break; 454 case XFS_ITEM_LOCKED: 455 XFS_STATS_INC(mp, xs_push_ail_locked); 456 trace_xfs_ail_locked(lip); 457 458 stuck++; 459 break; 460 default: 461 ASSERT(0); 462 break; 463 } 464 465 count++; 466 467 /* 468 * Are there too many items we can't do anything with? 469 * 470 * If we we are skipping too many items because we can't flush 471 * them or they are already being flushed, we back off and 472 * given them time to complete whatever operation is being 473 * done. i.e. remove pressure from the AIL while we can't make 474 * progress so traversals don't slow down further inserts and 475 * removals to/from the AIL. 476 * 477 * The value of 100 is an arbitrary magic number based on 478 * observation. 479 */ 480 if (stuck > 100) 481 break; 482 483 lip = xfs_trans_ail_cursor_next(ailp, &cur); 484 if (lip == NULL) 485 break; 486 lsn = lip->li_lsn; 487 } 488 xfs_trans_ail_cursor_done(&cur); 489 spin_unlock(&ailp->ail_lock); 490 491 if (xfs_buf_delwri_submit_nowait(&ailp->ail_buf_list)) 492 ailp->ail_log_flush++; 493 494 if (!count || XFS_LSN_CMP(lsn, target) >= 0) { 495 out_done: 496 /* 497 * We reached the target or the AIL is empty, so wait a bit 498 * longer for I/O to complete and remove pushed items from the 499 * AIL before we start the next scan from the start of the AIL. 500 */ 501 tout = 50; 502 ailp->ail_last_pushed_lsn = 0; 503 } else if (((stuck + flushing) * 100) / count > 90) { 504 /* 505 * Either there is a lot of contention on the AIL or we are 506 * stuck due to operations in progress. "Stuck" in this case 507 * is defined as >90% of the items we tried to push were stuck. 508 * 509 * Backoff a bit more to allow some I/O to complete before 510 * restarting from the start of the AIL. This prevents us from 511 * spinning on the same items, and if they are pinned will all 512 * the restart to issue a log force to unpin the stuck items. 513 */ 514 tout = 20; 515 ailp->ail_last_pushed_lsn = 0; 516 } else { 517 /* 518 * Assume we have more work to do in a short while. 519 */ 520 tout = 10; 521 } 522 523 return tout; 524 } 525 526 static int 527 xfsaild( 528 void *data) 529 { 530 struct xfs_ail *ailp = data; 531 long tout = 0; /* milliseconds */ 532 533 current->flags |= PF_MEMALLOC; 534 set_freezable(); 535 536 while (1) { 537 if (tout && tout <= 20) 538 set_current_state(TASK_KILLABLE); 539 else 540 set_current_state(TASK_INTERRUPTIBLE); 541 542 /* 543 * Check kthread_should_stop() after we set the task state to 544 * guarantee that we either see the stop bit and exit or the 545 * task state is reset to runnable such that it's not scheduled 546 * out indefinitely and detects the stop bit at next iteration. 547 * A memory barrier is included in above task state set to 548 * serialize again kthread_stop(). 549 */ 550 if (kthread_should_stop()) { 551 __set_current_state(TASK_RUNNING); 552 553 /* 554 * The caller forces out the AIL before stopping the 555 * thread in the common case, which means the delwri 556 * queue is drained. In the shutdown case, the queue may 557 * still hold relogged buffers that haven't been 558 * submitted because they were pinned since added to the 559 * queue. 560 * 561 * Log I/O error processing stales the underlying buffer 562 * and clears the delwri state, expecting the buf to be 563 * removed on the next submission attempt. That won't 564 * happen if we're shutting down, so this is the last 565 * opportunity to release such buffers from the queue. 566 */ 567 ASSERT(list_empty(&ailp->ail_buf_list) || 568 XFS_FORCED_SHUTDOWN(ailp->ail_mount)); 569 xfs_buf_delwri_cancel(&ailp->ail_buf_list); 570 break; 571 } 572 573 spin_lock(&ailp->ail_lock); 574 575 /* 576 * Idle if the AIL is empty and we are not racing with a target 577 * update. We check the AIL after we set the task to a sleep 578 * state to guarantee that we either catch an ail_target update 579 * or that a wake_up resets the state to TASK_RUNNING. 580 * Otherwise, we run the risk of sleeping indefinitely. 581 * 582 * The barrier matches the ail_target update in xfs_ail_push(). 583 */ 584 smp_rmb(); 585 if (!xfs_ail_min(ailp) && 586 ailp->ail_target == ailp->ail_target_prev) { 587 spin_unlock(&ailp->ail_lock); 588 freezable_schedule(); 589 tout = 0; 590 continue; 591 } 592 spin_unlock(&ailp->ail_lock); 593 594 if (tout) 595 freezable_schedule_timeout(msecs_to_jiffies(tout)); 596 597 __set_current_state(TASK_RUNNING); 598 599 try_to_freeze(); 600 601 tout = xfsaild_push(ailp); 602 } 603 604 return 0; 605 } 606 607 /* 608 * This routine is called to move the tail of the AIL forward. It does this by 609 * trying to flush items in the AIL whose lsns are below the given 610 * threshold_lsn. 611 * 612 * The push is run asynchronously in a workqueue, which means the caller needs 613 * to handle waiting on the async flush for space to become available. 614 * We don't want to interrupt any push that is in progress, hence we only queue 615 * work if we set the pushing bit approriately. 616 * 617 * We do this unlocked - we only need to know whether there is anything in the 618 * AIL at the time we are called. We don't need to access the contents of 619 * any of the objects, so the lock is not needed. 620 */ 621 void 622 xfs_ail_push( 623 struct xfs_ail *ailp, 624 xfs_lsn_t threshold_lsn) 625 { 626 struct xfs_log_item *lip; 627 628 lip = xfs_ail_min(ailp); 629 if (!lip || XFS_FORCED_SHUTDOWN(ailp->ail_mount) || 630 XFS_LSN_CMP(threshold_lsn, ailp->ail_target) <= 0) 631 return; 632 633 /* 634 * Ensure that the new target is noticed in push code before it clears 635 * the XFS_AIL_PUSHING_BIT. 636 */ 637 smp_wmb(); 638 xfs_trans_ail_copy_lsn(ailp, &ailp->ail_target, &threshold_lsn); 639 smp_wmb(); 640 641 wake_up_process(ailp->ail_task); 642 } 643 644 /* 645 * Push out all items in the AIL immediately 646 */ 647 void 648 xfs_ail_push_all( 649 struct xfs_ail *ailp) 650 { 651 xfs_lsn_t threshold_lsn = xfs_ail_max_lsn(ailp); 652 653 if (threshold_lsn) 654 xfs_ail_push(ailp, threshold_lsn); 655 } 656 657 /* 658 * Push out all items in the AIL immediately and wait until the AIL is empty. 659 */ 660 void 661 xfs_ail_push_all_sync( 662 struct xfs_ail *ailp) 663 { 664 struct xfs_log_item *lip; 665 DEFINE_WAIT(wait); 666 667 spin_lock(&ailp->ail_lock); 668 while ((lip = xfs_ail_max(ailp)) != NULL) { 669 prepare_to_wait(&ailp->ail_empty, &wait, TASK_UNINTERRUPTIBLE); 670 ailp->ail_target = lip->li_lsn; 671 wake_up_process(ailp->ail_task); 672 spin_unlock(&ailp->ail_lock); 673 schedule(); 674 spin_lock(&ailp->ail_lock); 675 } 676 spin_unlock(&ailp->ail_lock); 677 678 finish_wait(&ailp->ail_empty, &wait); 679 } 680 681 /* 682 * xfs_trans_ail_update - bulk AIL insertion operation. 683 * 684 * @xfs_trans_ail_update takes an array of log items that all need to be 685 * positioned at the same LSN in the AIL. If an item is not in the AIL, it will 686 * be added. Otherwise, it will be repositioned by removing it and re-adding 687 * it to the AIL. If we move the first item in the AIL, update the log tail to 688 * match the new minimum LSN in the AIL. 689 * 690 * This function takes the AIL lock once to execute the update operations on 691 * all the items in the array, and as such should not be called with the AIL 692 * lock held. As a result, once we have the AIL lock, we need to check each log 693 * item LSN to confirm it needs to be moved forward in the AIL. 694 * 695 * To optimise the insert operation, we delete all the items from the AIL in 696 * the first pass, moving them into a temporary list, then splice the temporary 697 * list into the correct position in the AIL. This avoids needing to do an 698 * insert operation on every item. 699 * 700 * This function must be called with the AIL lock held. The lock is dropped 701 * before returning. 702 */ 703 void 704 xfs_trans_ail_update_bulk( 705 struct xfs_ail *ailp, 706 struct xfs_ail_cursor *cur, 707 struct xfs_log_item **log_items, 708 int nr_items, 709 xfs_lsn_t lsn) __releases(ailp->ail_lock) 710 { 711 struct xfs_log_item *mlip; 712 int mlip_changed = 0; 713 int i; 714 LIST_HEAD(tmp); 715 716 ASSERT(nr_items > 0); /* Not required, but true. */ 717 mlip = xfs_ail_min(ailp); 718 719 for (i = 0; i < nr_items; i++) { 720 struct xfs_log_item *lip = log_items[i]; 721 if (test_and_set_bit(XFS_LI_IN_AIL, &lip->li_flags)) { 722 /* check if we really need to move the item */ 723 if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0) 724 continue; 725 726 trace_xfs_ail_move(lip, lip->li_lsn, lsn); 727 xfs_ail_delete(ailp, lip); 728 if (mlip == lip) 729 mlip_changed = 1; 730 } else { 731 trace_xfs_ail_insert(lip, 0, lsn); 732 } 733 lip->li_lsn = lsn; 734 list_add(&lip->li_ail, &tmp); 735 } 736 737 if (!list_empty(&tmp)) 738 xfs_ail_splice(ailp, cur, &tmp, lsn); 739 740 if (mlip_changed) { 741 if (!XFS_FORCED_SHUTDOWN(ailp->ail_mount)) 742 xlog_assign_tail_lsn_locked(ailp->ail_mount); 743 spin_unlock(&ailp->ail_lock); 744 745 xfs_log_space_wake(ailp->ail_mount); 746 } else { 747 spin_unlock(&ailp->ail_lock); 748 } 749 } 750 751 bool 752 xfs_ail_delete_one( 753 struct xfs_ail *ailp, 754 struct xfs_log_item *lip) 755 { 756 struct xfs_log_item *mlip = xfs_ail_min(ailp); 757 758 trace_xfs_ail_delete(lip, mlip->li_lsn, lip->li_lsn); 759 xfs_ail_delete(ailp, lip); 760 xfs_clear_li_failed(lip); 761 clear_bit(XFS_LI_IN_AIL, &lip->li_flags); 762 lip->li_lsn = 0; 763 764 return mlip == lip; 765 } 766 767 /** 768 * Remove a log items from the AIL 769 * 770 * @xfs_trans_ail_delete_bulk takes an array of log items that all need to 771 * removed from the AIL. The caller is already holding the AIL lock, and done 772 * all the checks necessary to ensure the items passed in via @log_items are 773 * ready for deletion. This includes checking that the items are in the AIL. 774 * 775 * For each log item to be removed, unlink it from the AIL, clear the IN_AIL 776 * flag from the item and reset the item's lsn to 0. If we remove the first 777 * item in the AIL, update the log tail to match the new minimum LSN in the 778 * AIL. 779 * 780 * This function will not drop the AIL lock until all items are removed from 781 * the AIL to minimise the amount of lock traffic on the AIL. This does not 782 * greatly increase the AIL hold time, but does significantly reduce the amount 783 * of traffic on the lock, especially during IO completion. 784 * 785 * This function must be called with the AIL lock held. The lock is dropped 786 * before returning. 787 */ 788 void 789 xfs_trans_ail_delete( 790 struct xfs_ail *ailp, 791 struct xfs_log_item *lip, 792 int shutdown_type) __releases(ailp->ail_lock) 793 { 794 struct xfs_mount *mp = ailp->ail_mount; 795 bool mlip_changed; 796 797 if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) { 798 spin_unlock(&ailp->ail_lock); 799 if (!XFS_FORCED_SHUTDOWN(mp)) { 800 xfs_alert_tag(mp, XFS_PTAG_AILDELETE, 801 "%s: attempting to delete a log item that is not in the AIL", 802 __func__); 803 xfs_force_shutdown(mp, shutdown_type); 804 } 805 return; 806 } 807 808 mlip_changed = xfs_ail_delete_one(ailp, lip); 809 if (mlip_changed) { 810 if (!XFS_FORCED_SHUTDOWN(mp)) 811 xlog_assign_tail_lsn_locked(mp); 812 if (list_empty(&ailp->ail_head)) 813 wake_up_all(&ailp->ail_empty); 814 } 815 816 spin_unlock(&ailp->ail_lock); 817 if (mlip_changed) 818 xfs_log_space_wake(ailp->ail_mount); 819 } 820 821 int 822 xfs_trans_ail_init( 823 xfs_mount_t *mp) 824 { 825 struct xfs_ail *ailp; 826 827 ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL); 828 if (!ailp) 829 return -ENOMEM; 830 831 ailp->ail_mount = mp; 832 INIT_LIST_HEAD(&ailp->ail_head); 833 INIT_LIST_HEAD(&ailp->ail_cursors); 834 spin_lock_init(&ailp->ail_lock); 835 INIT_LIST_HEAD(&ailp->ail_buf_list); 836 init_waitqueue_head(&ailp->ail_empty); 837 838 ailp->ail_task = kthread_run(xfsaild, ailp, "xfsaild/%s", 839 ailp->ail_mount->m_fsname); 840 if (IS_ERR(ailp->ail_task)) 841 goto out_free_ailp; 842 843 mp->m_ail = ailp; 844 return 0; 845 846 out_free_ailp: 847 kmem_free(ailp); 848 return -ENOMEM; 849 } 850 851 void 852 xfs_trans_ail_destroy( 853 xfs_mount_t *mp) 854 { 855 struct xfs_ail *ailp = mp->m_ail; 856 857 kthread_stop(ailp->ail_task); 858 kmem_free(ailp); 859 } 860