xref: /openbmc/linux/fs/xfs/xfs_trans_ail.c (revision a86854d0)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * Copyright (c) 2008 Dave Chinner
4  * All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it would be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write the Free Software Foundation,
17  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
18  */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_trace.h"
28 #include "xfs_errortag.h"
29 #include "xfs_error.h"
30 #include "xfs_log.h"
31 
32 #ifdef DEBUG
33 /*
34  * Check that the list is sorted as it should be.
35  *
36  * Called with the ail lock held, but we don't want to assert fail with it
37  * held otherwise we'll lock everything up and won't be able to debug the
38  * cause. Hence we sample and check the state under the AIL lock and return if
39  * everything is fine, otherwise we drop the lock and run the ASSERT checks.
40  * Asserts may not be fatal, so pick the lock back up and continue onwards.
41  */
42 STATIC void
43 xfs_ail_check(
44 	struct xfs_ail		*ailp,
45 	struct xfs_log_item	*lip)
46 {
47 	struct xfs_log_item	*prev_lip;
48 	struct xfs_log_item	*next_lip;
49 	xfs_lsn_t		prev_lsn = NULLCOMMITLSN;
50 	xfs_lsn_t		next_lsn = NULLCOMMITLSN;
51 	xfs_lsn_t		lsn;
52 	bool			in_ail;
53 
54 
55 	if (list_empty(&ailp->ail_head))
56 		return;
57 
58 	/*
59 	 * Sample then check the next and previous entries are valid.
60 	 */
61 	in_ail = test_bit(XFS_LI_IN_AIL, &lip->li_flags);
62 	prev_lip = list_entry(lip->li_ail.prev, struct xfs_log_item, li_ail);
63 	if (&prev_lip->li_ail != &ailp->ail_head)
64 		prev_lsn = prev_lip->li_lsn;
65 	next_lip = list_entry(lip->li_ail.next, struct xfs_log_item, li_ail);
66 	if (&next_lip->li_ail != &ailp->ail_head)
67 		next_lsn = next_lip->li_lsn;
68 	lsn = lip->li_lsn;
69 
70 	if (in_ail &&
71 	    (prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0) &&
72 	    (next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0))
73 		return;
74 
75 	spin_unlock(&ailp->ail_lock);
76 	ASSERT(in_ail);
77 	ASSERT(prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0);
78 	ASSERT(next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0);
79 	spin_lock(&ailp->ail_lock);
80 }
81 #else /* !DEBUG */
82 #define	xfs_ail_check(a,l)
83 #endif /* DEBUG */
84 
85 /*
86  * Return a pointer to the last item in the AIL.  If the AIL is empty, then
87  * return NULL.
88  */
89 static xfs_log_item_t *
90 xfs_ail_max(
91 	struct xfs_ail  *ailp)
92 {
93 	if (list_empty(&ailp->ail_head))
94 		return NULL;
95 
96 	return list_entry(ailp->ail_head.prev, xfs_log_item_t, li_ail);
97 }
98 
99 /*
100  * Return a pointer to the item which follows the given item in the AIL.  If
101  * the given item is the last item in the list, then return NULL.
102  */
103 static xfs_log_item_t *
104 xfs_ail_next(
105 	struct xfs_ail  *ailp,
106 	xfs_log_item_t  *lip)
107 {
108 	if (lip->li_ail.next == &ailp->ail_head)
109 		return NULL;
110 
111 	return list_first_entry(&lip->li_ail, xfs_log_item_t, li_ail);
112 }
113 
114 /*
115  * This is called by the log manager code to determine the LSN of the tail of
116  * the log.  This is exactly the LSN of the first item in the AIL.  If the AIL
117  * is empty, then this function returns 0.
118  *
119  * We need the AIL lock in order to get a coherent read of the lsn of the last
120  * item in the AIL.
121  */
122 xfs_lsn_t
123 xfs_ail_min_lsn(
124 	struct xfs_ail	*ailp)
125 {
126 	xfs_lsn_t	lsn = 0;
127 	xfs_log_item_t	*lip;
128 
129 	spin_lock(&ailp->ail_lock);
130 	lip = xfs_ail_min(ailp);
131 	if (lip)
132 		lsn = lip->li_lsn;
133 	spin_unlock(&ailp->ail_lock);
134 
135 	return lsn;
136 }
137 
138 /*
139  * Return the maximum lsn held in the AIL, or zero if the AIL is empty.
140  */
141 static xfs_lsn_t
142 xfs_ail_max_lsn(
143 	struct xfs_ail  *ailp)
144 {
145 	xfs_lsn_t       lsn = 0;
146 	xfs_log_item_t  *lip;
147 
148 	spin_lock(&ailp->ail_lock);
149 	lip = xfs_ail_max(ailp);
150 	if (lip)
151 		lsn = lip->li_lsn;
152 	spin_unlock(&ailp->ail_lock);
153 
154 	return lsn;
155 }
156 
157 /*
158  * The cursor keeps track of where our current traversal is up to by tracking
159  * the next item in the list for us. However, for this to be safe, removing an
160  * object from the AIL needs to invalidate any cursor that points to it. hence
161  * the traversal cursor needs to be linked to the struct xfs_ail so that
162  * deletion can search all the active cursors for invalidation.
163  */
164 STATIC void
165 xfs_trans_ail_cursor_init(
166 	struct xfs_ail		*ailp,
167 	struct xfs_ail_cursor	*cur)
168 {
169 	cur->item = NULL;
170 	list_add_tail(&cur->list, &ailp->ail_cursors);
171 }
172 
173 /*
174  * Get the next item in the traversal and advance the cursor.  If the cursor
175  * was invalidated (indicated by a lip of 1), restart the traversal.
176  */
177 struct xfs_log_item *
178 xfs_trans_ail_cursor_next(
179 	struct xfs_ail		*ailp,
180 	struct xfs_ail_cursor	*cur)
181 {
182 	struct xfs_log_item	*lip = cur->item;
183 
184 	if ((uintptr_t)lip & 1)
185 		lip = xfs_ail_min(ailp);
186 	if (lip)
187 		cur->item = xfs_ail_next(ailp, lip);
188 	return lip;
189 }
190 
191 /*
192  * When the traversal is complete, we need to remove the cursor from the list
193  * of traversing cursors.
194  */
195 void
196 xfs_trans_ail_cursor_done(
197 	struct xfs_ail_cursor	*cur)
198 {
199 	cur->item = NULL;
200 	list_del_init(&cur->list);
201 }
202 
203 /*
204  * Invalidate any cursor that is pointing to this item. This is called when an
205  * item is removed from the AIL. Any cursor pointing to this object is now
206  * invalid and the traversal needs to be terminated so it doesn't reference a
207  * freed object. We set the low bit of the cursor item pointer so we can
208  * distinguish between an invalidation and the end of the list when getting the
209  * next item from the cursor.
210  */
211 STATIC void
212 xfs_trans_ail_cursor_clear(
213 	struct xfs_ail		*ailp,
214 	struct xfs_log_item	*lip)
215 {
216 	struct xfs_ail_cursor	*cur;
217 
218 	list_for_each_entry(cur, &ailp->ail_cursors, list) {
219 		if (cur->item == lip)
220 			cur->item = (struct xfs_log_item *)
221 					((uintptr_t)cur->item | 1);
222 	}
223 }
224 
225 /*
226  * Find the first item in the AIL with the given @lsn by searching in ascending
227  * LSN order and initialise the cursor to point to the next item for a
228  * ascending traversal.  Pass a @lsn of zero to initialise the cursor to the
229  * first item in the AIL. Returns NULL if the list is empty.
230  */
231 xfs_log_item_t *
232 xfs_trans_ail_cursor_first(
233 	struct xfs_ail		*ailp,
234 	struct xfs_ail_cursor	*cur,
235 	xfs_lsn_t		lsn)
236 {
237 	xfs_log_item_t		*lip;
238 
239 	xfs_trans_ail_cursor_init(ailp, cur);
240 
241 	if (lsn == 0) {
242 		lip = xfs_ail_min(ailp);
243 		goto out;
244 	}
245 
246 	list_for_each_entry(lip, &ailp->ail_head, li_ail) {
247 		if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
248 			goto out;
249 	}
250 	return NULL;
251 
252 out:
253 	if (lip)
254 		cur->item = xfs_ail_next(ailp, lip);
255 	return lip;
256 }
257 
258 static struct xfs_log_item *
259 __xfs_trans_ail_cursor_last(
260 	struct xfs_ail		*ailp,
261 	xfs_lsn_t		lsn)
262 {
263 	xfs_log_item_t		*lip;
264 
265 	list_for_each_entry_reverse(lip, &ailp->ail_head, li_ail) {
266 		if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
267 			return lip;
268 	}
269 	return NULL;
270 }
271 
272 /*
273  * Find the last item in the AIL with the given @lsn by searching in descending
274  * LSN order and initialise the cursor to point to that item.  If there is no
275  * item with the value of @lsn, then it sets the cursor to the last item with an
276  * LSN lower than @lsn.  Returns NULL if the list is empty.
277  */
278 struct xfs_log_item *
279 xfs_trans_ail_cursor_last(
280 	struct xfs_ail		*ailp,
281 	struct xfs_ail_cursor	*cur,
282 	xfs_lsn_t		lsn)
283 {
284 	xfs_trans_ail_cursor_init(ailp, cur);
285 	cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
286 	return cur->item;
287 }
288 
289 /*
290  * Splice the log item list into the AIL at the given LSN. We splice to the
291  * tail of the given LSN to maintain insert order for push traversals. The
292  * cursor is optional, allowing repeated updates to the same LSN to avoid
293  * repeated traversals.  This should not be called with an empty list.
294  */
295 static void
296 xfs_ail_splice(
297 	struct xfs_ail		*ailp,
298 	struct xfs_ail_cursor	*cur,
299 	struct list_head	*list,
300 	xfs_lsn_t		lsn)
301 {
302 	struct xfs_log_item	*lip;
303 
304 	ASSERT(!list_empty(list));
305 
306 	/*
307 	 * Use the cursor to determine the insertion point if one is
308 	 * provided.  If not, or if the one we got is not valid,
309 	 * find the place in the AIL where the items belong.
310 	 */
311 	lip = cur ? cur->item : NULL;
312 	if (!lip || (uintptr_t)lip & 1)
313 		lip = __xfs_trans_ail_cursor_last(ailp, lsn);
314 
315 	/*
316 	 * If a cursor is provided, we know we're processing the AIL
317 	 * in lsn order, and future items to be spliced in will
318 	 * follow the last one being inserted now.  Update the
319 	 * cursor to point to that last item, now while we have a
320 	 * reliable pointer to it.
321 	 */
322 	if (cur)
323 		cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);
324 
325 	/*
326 	 * Finally perform the splice.  Unless the AIL was empty,
327 	 * lip points to the item in the AIL _after_ which the new
328 	 * items should go.  If lip is null the AIL was empty, so
329 	 * the new items go at the head of the AIL.
330 	 */
331 	if (lip)
332 		list_splice(list, &lip->li_ail);
333 	else
334 		list_splice(list, &ailp->ail_head);
335 }
336 
337 /*
338  * Delete the given item from the AIL.  Return a pointer to the item.
339  */
340 static void
341 xfs_ail_delete(
342 	struct xfs_ail  *ailp,
343 	xfs_log_item_t  *lip)
344 {
345 	xfs_ail_check(ailp, lip);
346 	list_del(&lip->li_ail);
347 	xfs_trans_ail_cursor_clear(ailp, lip);
348 }
349 
350 static inline uint
351 xfsaild_push_item(
352 	struct xfs_ail		*ailp,
353 	struct xfs_log_item	*lip)
354 {
355 	/*
356 	 * If log item pinning is enabled, skip the push and track the item as
357 	 * pinned. This can help induce head-behind-tail conditions.
358 	 */
359 	if (XFS_TEST_ERROR(false, ailp->ail_mount, XFS_ERRTAG_LOG_ITEM_PIN))
360 		return XFS_ITEM_PINNED;
361 
362 	return lip->li_ops->iop_push(lip, &ailp->ail_buf_list);
363 }
364 
365 static long
366 xfsaild_push(
367 	struct xfs_ail		*ailp)
368 {
369 	xfs_mount_t		*mp = ailp->ail_mount;
370 	struct xfs_ail_cursor	cur;
371 	xfs_log_item_t		*lip;
372 	xfs_lsn_t		lsn;
373 	xfs_lsn_t		target;
374 	long			tout;
375 	int			stuck = 0;
376 	int			flushing = 0;
377 	int			count = 0;
378 
379 	/*
380 	 * If we encountered pinned items or did not finish writing out all
381 	 * buffers the last time we ran, force the log first and wait for it
382 	 * before pushing again.
383 	 */
384 	if (ailp->ail_log_flush && ailp->ail_last_pushed_lsn == 0 &&
385 	    (!list_empty_careful(&ailp->ail_buf_list) ||
386 	     xfs_ail_min_lsn(ailp))) {
387 		ailp->ail_log_flush = 0;
388 
389 		XFS_STATS_INC(mp, xs_push_ail_flush);
390 		xfs_log_force(mp, XFS_LOG_SYNC);
391 	}
392 
393 	spin_lock(&ailp->ail_lock);
394 
395 	/* barrier matches the ail_target update in xfs_ail_push() */
396 	smp_rmb();
397 	target = ailp->ail_target;
398 	ailp->ail_target_prev = target;
399 
400 	lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->ail_last_pushed_lsn);
401 	if (!lip) {
402 		/*
403 		 * If the AIL is empty or our push has reached the end we are
404 		 * done now.
405 		 */
406 		xfs_trans_ail_cursor_done(&cur);
407 		spin_unlock(&ailp->ail_lock);
408 		goto out_done;
409 	}
410 
411 	XFS_STATS_INC(mp, xs_push_ail);
412 
413 	lsn = lip->li_lsn;
414 	while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) {
415 		int	lock_result;
416 
417 		/*
418 		 * Note that iop_push may unlock and reacquire the AIL lock.  We
419 		 * rely on the AIL cursor implementation to be able to deal with
420 		 * the dropped lock.
421 		 */
422 		lock_result = xfsaild_push_item(ailp, lip);
423 		switch (lock_result) {
424 		case XFS_ITEM_SUCCESS:
425 			XFS_STATS_INC(mp, xs_push_ail_success);
426 			trace_xfs_ail_push(lip);
427 
428 			ailp->ail_last_pushed_lsn = lsn;
429 			break;
430 
431 		case XFS_ITEM_FLUSHING:
432 			/*
433 			 * The item or its backing buffer is already beeing
434 			 * flushed.  The typical reason for that is that an
435 			 * inode buffer is locked because we already pushed the
436 			 * updates to it as part of inode clustering.
437 			 *
438 			 * We do not want to to stop flushing just because lots
439 			 * of items are already beeing flushed, but we need to
440 			 * re-try the flushing relatively soon if most of the
441 			 * AIL is beeing flushed.
442 			 */
443 			XFS_STATS_INC(mp, xs_push_ail_flushing);
444 			trace_xfs_ail_flushing(lip);
445 
446 			flushing++;
447 			ailp->ail_last_pushed_lsn = lsn;
448 			break;
449 
450 		case XFS_ITEM_PINNED:
451 			XFS_STATS_INC(mp, xs_push_ail_pinned);
452 			trace_xfs_ail_pinned(lip);
453 
454 			stuck++;
455 			ailp->ail_log_flush++;
456 			break;
457 		case XFS_ITEM_LOCKED:
458 			XFS_STATS_INC(mp, xs_push_ail_locked);
459 			trace_xfs_ail_locked(lip);
460 
461 			stuck++;
462 			break;
463 		default:
464 			ASSERT(0);
465 			break;
466 		}
467 
468 		count++;
469 
470 		/*
471 		 * Are there too many items we can't do anything with?
472 		 *
473 		 * If we we are skipping too many items because we can't flush
474 		 * them or they are already being flushed, we back off and
475 		 * given them time to complete whatever operation is being
476 		 * done. i.e. remove pressure from the AIL while we can't make
477 		 * progress so traversals don't slow down further inserts and
478 		 * removals to/from the AIL.
479 		 *
480 		 * The value of 100 is an arbitrary magic number based on
481 		 * observation.
482 		 */
483 		if (stuck > 100)
484 			break;
485 
486 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
487 		if (lip == NULL)
488 			break;
489 		lsn = lip->li_lsn;
490 	}
491 	xfs_trans_ail_cursor_done(&cur);
492 	spin_unlock(&ailp->ail_lock);
493 
494 	if (xfs_buf_delwri_submit_nowait(&ailp->ail_buf_list))
495 		ailp->ail_log_flush++;
496 
497 	if (!count || XFS_LSN_CMP(lsn, target) >= 0) {
498 out_done:
499 		/*
500 		 * We reached the target or the AIL is empty, so wait a bit
501 		 * longer for I/O to complete and remove pushed items from the
502 		 * AIL before we start the next scan from the start of the AIL.
503 		 */
504 		tout = 50;
505 		ailp->ail_last_pushed_lsn = 0;
506 	} else if (((stuck + flushing) * 100) / count > 90) {
507 		/*
508 		 * Either there is a lot of contention on the AIL or we are
509 		 * stuck due to operations in progress. "Stuck" in this case
510 		 * is defined as >90% of the items we tried to push were stuck.
511 		 *
512 		 * Backoff a bit more to allow some I/O to complete before
513 		 * restarting from the start of the AIL. This prevents us from
514 		 * spinning on the same items, and if they are pinned will all
515 		 * the restart to issue a log force to unpin the stuck items.
516 		 */
517 		tout = 20;
518 		ailp->ail_last_pushed_lsn = 0;
519 	} else {
520 		/*
521 		 * Assume we have more work to do in a short while.
522 		 */
523 		tout = 10;
524 	}
525 
526 	return tout;
527 }
528 
529 static int
530 xfsaild(
531 	void		*data)
532 {
533 	struct xfs_ail	*ailp = data;
534 	long		tout = 0;	/* milliseconds */
535 
536 	current->flags |= PF_MEMALLOC;
537 	set_freezable();
538 
539 	while (1) {
540 		if (tout && tout <= 20)
541 			set_current_state(TASK_KILLABLE);
542 		else
543 			set_current_state(TASK_INTERRUPTIBLE);
544 
545 		/*
546 		 * Check kthread_should_stop() after we set the task state
547 		 * to guarantee that we either see the stop bit and exit or
548 		 * the task state is reset to runnable such that it's not
549 		 * scheduled out indefinitely and detects the stop bit at
550 		 * next iteration.
551 		 *
552 		 * A memory barrier is included in above task state set to
553 		 * serialize again kthread_stop().
554 		 */
555 		if (kthread_should_stop()) {
556 			__set_current_state(TASK_RUNNING);
557 			break;
558 		}
559 
560 		spin_lock(&ailp->ail_lock);
561 
562 		/*
563 		 * Idle if the AIL is empty and we are not racing with a target
564 		 * update. We check the AIL after we set the task to a sleep
565 		 * state to guarantee that we either catch an ail_target update
566 		 * or that a wake_up resets the state to TASK_RUNNING.
567 		 * Otherwise, we run the risk of sleeping indefinitely.
568 		 *
569 		 * The barrier matches the ail_target update in xfs_ail_push().
570 		 */
571 		smp_rmb();
572 		if (!xfs_ail_min(ailp) &&
573 		    ailp->ail_target == ailp->ail_target_prev) {
574 			spin_unlock(&ailp->ail_lock);
575 			freezable_schedule();
576 			tout = 0;
577 			continue;
578 		}
579 		spin_unlock(&ailp->ail_lock);
580 
581 		if (tout)
582 			freezable_schedule_timeout(msecs_to_jiffies(tout));
583 
584 		__set_current_state(TASK_RUNNING);
585 
586 		try_to_freeze();
587 
588 		tout = xfsaild_push(ailp);
589 	}
590 
591 	return 0;
592 }
593 
594 /*
595  * This routine is called to move the tail of the AIL forward.  It does this by
596  * trying to flush items in the AIL whose lsns are below the given
597  * threshold_lsn.
598  *
599  * The push is run asynchronously in a workqueue, which means the caller needs
600  * to handle waiting on the async flush for space to become available.
601  * We don't want to interrupt any push that is in progress, hence we only queue
602  * work if we set the pushing bit approriately.
603  *
604  * We do this unlocked - we only need to know whether there is anything in the
605  * AIL at the time we are called. We don't need to access the contents of
606  * any of the objects, so the lock is not needed.
607  */
608 void
609 xfs_ail_push(
610 	struct xfs_ail	*ailp,
611 	xfs_lsn_t	threshold_lsn)
612 {
613 	xfs_log_item_t	*lip;
614 
615 	lip = xfs_ail_min(ailp);
616 	if (!lip || XFS_FORCED_SHUTDOWN(ailp->ail_mount) ||
617 	    XFS_LSN_CMP(threshold_lsn, ailp->ail_target) <= 0)
618 		return;
619 
620 	/*
621 	 * Ensure that the new target is noticed in push code before it clears
622 	 * the XFS_AIL_PUSHING_BIT.
623 	 */
624 	smp_wmb();
625 	xfs_trans_ail_copy_lsn(ailp, &ailp->ail_target, &threshold_lsn);
626 	smp_wmb();
627 
628 	wake_up_process(ailp->ail_task);
629 }
630 
631 /*
632  * Push out all items in the AIL immediately
633  */
634 void
635 xfs_ail_push_all(
636 	struct xfs_ail  *ailp)
637 {
638 	xfs_lsn_t       threshold_lsn = xfs_ail_max_lsn(ailp);
639 
640 	if (threshold_lsn)
641 		xfs_ail_push(ailp, threshold_lsn);
642 }
643 
644 /*
645  * Push out all items in the AIL immediately and wait until the AIL is empty.
646  */
647 void
648 xfs_ail_push_all_sync(
649 	struct xfs_ail  *ailp)
650 {
651 	struct xfs_log_item	*lip;
652 	DEFINE_WAIT(wait);
653 
654 	spin_lock(&ailp->ail_lock);
655 	while ((lip = xfs_ail_max(ailp)) != NULL) {
656 		prepare_to_wait(&ailp->ail_empty, &wait, TASK_UNINTERRUPTIBLE);
657 		ailp->ail_target = lip->li_lsn;
658 		wake_up_process(ailp->ail_task);
659 		spin_unlock(&ailp->ail_lock);
660 		schedule();
661 		spin_lock(&ailp->ail_lock);
662 	}
663 	spin_unlock(&ailp->ail_lock);
664 
665 	finish_wait(&ailp->ail_empty, &wait);
666 }
667 
668 /*
669  * xfs_trans_ail_update - bulk AIL insertion operation.
670  *
671  * @xfs_trans_ail_update takes an array of log items that all need to be
672  * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
673  * be added.  Otherwise, it will be repositioned  by removing it and re-adding
674  * it to the AIL. If we move the first item in the AIL, update the log tail to
675  * match the new minimum LSN in the AIL.
676  *
677  * This function takes the AIL lock once to execute the update operations on
678  * all the items in the array, and as such should not be called with the AIL
679  * lock held. As a result, once we have the AIL lock, we need to check each log
680  * item LSN to confirm it needs to be moved forward in the AIL.
681  *
682  * To optimise the insert operation, we delete all the items from the AIL in
683  * the first pass, moving them into a temporary list, then splice the temporary
684  * list into the correct position in the AIL. This avoids needing to do an
685  * insert operation on every item.
686  *
687  * This function must be called with the AIL lock held.  The lock is dropped
688  * before returning.
689  */
690 void
691 xfs_trans_ail_update_bulk(
692 	struct xfs_ail		*ailp,
693 	struct xfs_ail_cursor	*cur,
694 	struct xfs_log_item	**log_items,
695 	int			nr_items,
696 	xfs_lsn_t		lsn) __releases(ailp->ail_lock)
697 {
698 	xfs_log_item_t		*mlip;
699 	int			mlip_changed = 0;
700 	int			i;
701 	LIST_HEAD(tmp);
702 
703 	ASSERT(nr_items > 0);		/* Not required, but true. */
704 	mlip = xfs_ail_min(ailp);
705 
706 	for (i = 0; i < nr_items; i++) {
707 		struct xfs_log_item *lip = log_items[i];
708 		if (test_and_set_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
709 			/* check if we really need to move the item */
710 			if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
711 				continue;
712 
713 			trace_xfs_ail_move(lip, lip->li_lsn, lsn);
714 			xfs_ail_delete(ailp, lip);
715 			if (mlip == lip)
716 				mlip_changed = 1;
717 		} else {
718 			trace_xfs_ail_insert(lip, 0, lsn);
719 		}
720 		lip->li_lsn = lsn;
721 		list_add(&lip->li_ail, &tmp);
722 	}
723 
724 	if (!list_empty(&tmp))
725 		xfs_ail_splice(ailp, cur, &tmp, lsn);
726 
727 	if (mlip_changed) {
728 		if (!XFS_FORCED_SHUTDOWN(ailp->ail_mount))
729 			xlog_assign_tail_lsn_locked(ailp->ail_mount);
730 		spin_unlock(&ailp->ail_lock);
731 
732 		xfs_log_space_wake(ailp->ail_mount);
733 	} else {
734 		spin_unlock(&ailp->ail_lock);
735 	}
736 }
737 
738 bool
739 xfs_ail_delete_one(
740 	struct xfs_ail		*ailp,
741 	struct xfs_log_item	*lip)
742 {
743 	struct xfs_log_item	*mlip = xfs_ail_min(ailp);
744 
745 	trace_xfs_ail_delete(lip, mlip->li_lsn, lip->li_lsn);
746 	xfs_ail_delete(ailp, lip);
747 	xfs_clear_li_failed(lip);
748 	clear_bit(XFS_LI_IN_AIL, &lip->li_flags);
749 	lip->li_lsn = 0;
750 
751 	return mlip == lip;
752 }
753 
754 /**
755  * Remove a log items from the AIL
756  *
757  * @xfs_trans_ail_delete_bulk takes an array of log items that all need to
758  * removed from the AIL. The caller is already holding the AIL lock, and done
759  * all the checks necessary to ensure the items passed in via @log_items are
760  * ready for deletion. This includes checking that the items are in the AIL.
761  *
762  * For each log item to be removed, unlink it  from the AIL, clear the IN_AIL
763  * flag from the item and reset the item's lsn to 0. If we remove the first
764  * item in the AIL, update the log tail to match the new minimum LSN in the
765  * AIL.
766  *
767  * This function will not drop the AIL lock until all items are removed from
768  * the AIL to minimise the amount of lock traffic on the AIL. This does not
769  * greatly increase the AIL hold time, but does significantly reduce the amount
770  * of traffic on the lock, especially during IO completion.
771  *
772  * This function must be called with the AIL lock held.  The lock is dropped
773  * before returning.
774  */
775 void
776 xfs_trans_ail_delete(
777 	struct xfs_ail		*ailp,
778 	struct xfs_log_item	*lip,
779 	int			shutdown_type) __releases(ailp->ail_lock)
780 {
781 	struct xfs_mount	*mp = ailp->ail_mount;
782 	bool			mlip_changed;
783 
784 	if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
785 		spin_unlock(&ailp->ail_lock);
786 		if (!XFS_FORCED_SHUTDOWN(mp)) {
787 			xfs_alert_tag(mp, XFS_PTAG_AILDELETE,
788 	"%s: attempting to delete a log item that is not in the AIL",
789 					__func__);
790 			xfs_force_shutdown(mp, shutdown_type);
791 		}
792 		return;
793 	}
794 
795 	mlip_changed = xfs_ail_delete_one(ailp, lip);
796 	if (mlip_changed) {
797 		if (!XFS_FORCED_SHUTDOWN(mp))
798 			xlog_assign_tail_lsn_locked(mp);
799 		if (list_empty(&ailp->ail_head))
800 			wake_up_all(&ailp->ail_empty);
801 	}
802 
803 	spin_unlock(&ailp->ail_lock);
804 	if (mlip_changed)
805 		xfs_log_space_wake(ailp->ail_mount);
806 }
807 
808 int
809 xfs_trans_ail_init(
810 	xfs_mount_t	*mp)
811 {
812 	struct xfs_ail	*ailp;
813 
814 	ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL);
815 	if (!ailp)
816 		return -ENOMEM;
817 
818 	ailp->ail_mount = mp;
819 	INIT_LIST_HEAD(&ailp->ail_head);
820 	INIT_LIST_HEAD(&ailp->ail_cursors);
821 	spin_lock_init(&ailp->ail_lock);
822 	INIT_LIST_HEAD(&ailp->ail_buf_list);
823 	init_waitqueue_head(&ailp->ail_empty);
824 
825 	ailp->ail_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
826 			ailp->ail_mount->m_fsname);
827 	if (IS_ERR(ailp->ail_task))
828 		goto out_free_ailp;
829 
830 	mp->m_ail = ailp;
831 	return 0;
832 
833 out_free_ailp:
834 	kmem_free(ailp);
835 	return -ENOMEM;
836 }
837 
838 void
839 xfs_trans_ail_destroy(
840 	xfs_mount_t	*mp)
841 {
842 	struct xfs_ail	*ailp = mp->m_ail;
843 
844 	kthread_stop(ailp->ail_task);
845 	kmem_free(ailp);
846 }
847