1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * Copyright (c) 2008 Dave Chinner 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_trans.h" 14 #include "xfs_trans_priv.h" 15 #include "xfs_trace.h" 16 #include "xfs_errortag.h" 17 #include "xfs_error.h" 18 #include "xfs_log.h" 19 20 #ifdef DEBUG 21 /* 22 * Check that the list is sorted as it should be. 23 * 24 * Called with the ail lock held, but we don't want to assert fail with it 25 * held otherwise we'll lock everything up and won't be able to debug the 26 * cause. Hence we sample and check the state under the AIL lock and return if 27 * everything is fine, otherwise we drop the lock and run the ASSERT checks. 28 * Asserts may not be fatal, so pick the lock back up and continue onwards. 29 */ 30 STATIC void 31 xfs_ail_check( 32 struct xfs_ail *ailp, 33 struct xfs_log_item *lip) 34 { 35 struct xfs_log_item *prev_lip; 36 struct xfs_log_item *next_lip; 37 xfs_lsn_t prev_lsn = NULLCOMMITLSN; 38 xfs_lsn_t next_lsn = NULLCOMMITLSN; 39 xfs_lsn_t lsn; 40 bool in_ail; 41 42 43 if (list_empty(&ailp->ail_head)) 44 return; 45 46 /* 47 * Sample then check the next and previous entries are valid. 48 */ 49 in_ail = test_bit(XFS_LI_IN_AIL, &lip->li_flags); 50 prev_lip = list_entry(lip->li_ail.prev, struct xfs_log_item, li_ail); 51 if (&prev_lip->li_ail != &ailp->ail_head) 52 prev_lsn = prev_lip->li_lsn; 53 next_lip = list_entry(lip->li_ail.next, struct xfs_log_item, li_ail); 54 if (&next_lip->li_ail != &ailp->ail_head) 55 next_lsn = next_lip->li_lsn; 56 lsn = lip->li_lsn; 57 58 if (in_ail && 59 (prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0) && 60 (next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0)) 61 return; 62 63 spin_unlock(&ailp->ail_lock); 64 ASSERT(in_ail); 65 ASSERT(prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0); 66 ASSERT(next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0); 67 spin_lock(&ailp->ail_lock); 68 } 69 #else /* !DEBUG */ 70 #define xfs_ail_check(a,l) 71 #endif /* DEBUG */ 72 73 /* 74 * Return a pointer to the last item in the AIL. If the AIL is empty, then 75 * return NULL. 76 */ 77 static xfs_log_item_t * 78 xfs_ail_max( 79 struct xfs_ail *ailp) 80 { 81 if (list_empty(&ailp->ail_head)) 82 return NULL; 83 84 return list_entry(ailp->ail_head.prev, xfs_log_item_t, li_ail); 85 } 86 87 /* 88 * Return a pointer to the item which follows the given item in the AIL. If 89 * the given item is the last item in the list, then return NULL. 90 */ 91 static xfs_log_item_t * 92 xfs_ail_next( 93 struct xfs_ail *ailp, 94 xfs_log_item_t *lip) 95 { 96 if (lip->li_ail.next == &ailp->ail_head) 97 return NULL; 98 99 return list_first_entry(&lip->li_ail, xfs_log_item_t, li_ail); 100 } 101 102 /* 103 * This is called by the log manager code to determine the LSN of the tail of 104 * the log. This is exactly the LSN of the first item in the AIL. If the AIL 105 * is empty, then this function returns 0. 106 * 107 * We need the AIL lock in order to get a coherent read of the lsn of the last 108 * item in the AIL. 109 */ 110 xfs_lsn_t 111 xfs_ail_min_lsn( 112 struct xfs_ail *ailp) 113 { 114 xfs_lsn_t lsn = 0; 115 xfs_log_item_t *lip; 116 117 spin_lock(&ailp->ail_lock); 118 lip = xfs_ail_min(ailp); 119 if (lip) 120 lsn = lip->li_lsn; 121 spin_unlock(&ailp->ail_lock); 122 123 return lsn; 124 } 125 126 /* 127 * Return the maximum lsn held in the AIL, or zero if the AIL is empty. 128 */ 129 static xfs_lsn_t 130 xfs_ail_max_lsn( 131 struct xfs_ail *ailp) 132 { 133 xfs_lsn_t lsn = 0; 134 xfs_log_item_t *lip; 135 136 spin_lock(&ailp->ail_lock); 137 lip = xfs_ail_max(ailp); 138 if (lip) 139 lsn = lip->li_lsn; 140 spin_unlock(&ailp->ail_lock); 141 142 return lsn; 143 } 144 145 /* 146 * The cursor keeps track of where our current traversal is up to by tracking 147 * the next item in the list for us. However, for this to be safe, removing an 148 * object from the AIL needs to invalidate any cursor that points to it. hence 149 * the traversal cursor needs to be linked to the struct xfs_ail so that 150 * deletion can search all the active cursors for invalidation. 151 */ 152 STATIC void 153 xfs_trans_ail_cursor_init( 154 struct xfs_ail *ailp, 155 struct xfs_ail_cursor *cur) 156 { 157 cur->item = NULL; 158 list_add_tail(&cur->list, &ailp->ail_cursors); 159 } 160 161 /* 162 * Get the next item in the traversal and advance the cursor. If the cursor 163 * was invalidated (indicated by a lip of 1), restart the traversal. 164 */ 165 struct xfs_log_item * 166 xfs_trans_ail_cursor_next( 167 struct xfs_ail *ailp, 168 struct xfs_ail_cursor *cur) 169 { 170 struct xfs_log_item *lip = cur->item; 171 172 if ((uintptr_t)lip & 1) 173 lip = xfs_ail_min(ailp); 174 if (lip) 175 cur->item = xfs_ail_next(ailp, lip); 176 return lip; 177 } 178 179 /* 180 * When the traversal is complete, we need to remove the cursor from the list 181 * of traversing cursors. 182 */ 183 void 184 xfs_trans_ail_cursor_done( 185 struct xfs_ail_cursor *cur) 186 { 187 cur->item = NULL; 188 list_del_init(&cur->list); 189 } 190 191 /* 192 * Invalidate any cursor that is pointing to this item. This is called when an 193 * item is removed from the AIL. Any cursor pointing to this object is now 194 * invalid and the traversal needs to be terminated so it doesn't reference a 195 * freed object. We set the low bit of the cursor item pointer so we can 196 * distinguish between an invalidation and the end of the list when getting the 197 * next item from the cursor. 198 */ 199 STATIC void 200 xfs_trans_ail_cursor_clear( 201 struct xfs_ail *ailp, 202 struct xfs_log_item *lip) 203 { 204 struct xfs_ail_cursor *cur; 205 206 list_for_each_entry(cur, &ailp->ail_cursors, list) { 207 if (cur->item == lip) 208 cur->item = (struct xfs_log_item *) 209 ((uintptr_t)cur->item | 1); 210 } 211 } 212 213 /* 214 * Find the first item in the AIL with the given @lsn by searching in ascending 215 * LSN order and initialise the cursor to point to the next item for a 216 * ascending traversal. Pass a @lsn of zero to initialise the cursor to the 217 * first item in the AIL. Returns NULL if the list is empty. 218 */ 219 xfs_log_item_t * 220 xfs_trans_ail_cursor_first( 221 struct xfs_ail *ailp, 222 struct xfs_ail_cursor *cur, 223 xfs_lsn_t lsn) 224 { 225 xfs_log_item_t *lip; 226 227 xfs_trans_ail_cursor_init(ailp, cur); 228 229 if (lsn == 0) { 230 lip = xfs_ail_min(ailp); 231 goto out; 232 } 233 234 list_for_each_entry(lip, &ailp->ail_head, li_ail) { 235 if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0) 236 goto out; 237 } 238 return NULL; 239 240 out: 241 if (lip) 242 cur->item = xfs_ail_next(ailp, lip); 243 return lip; 244 } 245 246 static struct xfs_log_item * 247 __xfs_trans_ail_cursor_last( 248 struct xfs_ail *ailp, 249 xfs_lsn_t lsn) 250 { 251 xfs_log_item_t *lip; 252 253 list_for_each_entry_reverse(lip, &ailp->ail_head, li_ail) { 254 if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0) 255 return lip; 256 } 257 return NULL; 258 } 259 260 /* 261 * Find the last item in the AIL with the given @lsn by searching in descending 262 * LSN order and initialise the cursor to point to that item. If there is no 263 * item with the value of @lsn, then it sets the cursor to the last item with an 264 * LSN lower than @lsn. Returns NULL if the list is empty. 265 */ 266 struct xfs_log_item * 267 xfs_trans_ail_cursor_last( 268 struct xfs_ail *ailp, 269 struct xfs_ail_cursor *cur, 270 xfs_lsn_t lsn) 271 { 272 xfs_trans_ail_cursor_init(ailp, cur); 273 cur->item = __xfs_trans_ail_cursor_last(ailp, lsn); 274 return cur->item; 275 } 276 277 /* 278 * Splice the log item list into the AIL at the given LSN. We splice to the 279 * tail of the given LSN to maintain insert order for push traversals. The 280 * cursor is optional, allowing repeated updates to the same LSN to avoid 281 * repeated traversals. This should not be called with an empty list. 282 */ 283 static void 284 xfs_ail_splice( 285 struct xfs_ail *ailp, 286 struct xfs_ail_cursor *cur, 287 struct list_head *list, 288 xfs_lsn_t lsn) 289 { 290 struct xfs_log_item *lip; 291 292 ASSERT(!list_empty(list)); 293 294 /* 295 * Use the cursor to determine the insertion point if one is 296 * provided. If not, or if the one we got is not valid, 297 * find the place in the AIL where the items belong. 298 */ 299 lip = cur ? cur->item : NULL; 300 if (!lip || (uintptr_t)lip & 1) 301 lip = __xfs_trans_ail_cursor_last(ailp, lsn); 302 303 /* 304 * If a cursor is provided, we know we're processing the AIL 305 * in lsn order, and future items to be spliced in will 306 * follow the last one being inserted now. Update the 307 * cursor to point to that last item, now while we have a 308 * reliable pointer to it. 309 */ 310 if (cur) 311 cur->item = list_entry(list->prev, struct xfs_log_item, li_ail); 312 313 /* 314 * Finally perform the splice. Unless the AIL was empty, 315 * lip points to the item in the AIL _after_ which the new 316 * items should go. If lip is null the AIL was empty, so 317 * the new items go at the head of the AIL. 318 */ 319 if (lip) 320 list_splice(list, &lip->li_ail); 321 else 322 list_splice(list, &ailp->ail_head); 323 } 324 325 /* 326 * Delete the given item from the AIL. Return a pointer to the item. 327 */ 328 static void 329 xfs_ail_delete( 330 struct xfs_ail *ailp, 331 xfs_log_item_t *lip) 332 { 333 xfs_ail_check(ailp, lip); 334 list_del(&lip->li_ail); 335 xfs_trans_ail_cursor_clear(ailp, lip); 336 } 337 338 static inline uint 339 xfsaild_push_item( 340 struct xfs_ail *ailp, 341 struct xfs_log_item *lip) 342 { 343 /* 344 * If log item pinning is enabled, skip the push and track the item as 345 * pinned. This can help induce head-behind-tail conditions. 346 */ 347 if (XFS_TEST_ERROR(false, ailp->ail_mount, XFS_ERRTAG_LOG_ITEM_PIN)) 348 return XFS_ITEM_PINNED; 349 350 return lip->li_ops->iop_push(lip, &ailp->ail_buf_list); 351 } 352 353 static long 354 xfsaild_push( 355 struct xfs_ail *ailp) 356 { 357 xfs_mount_t *mp = ailp->ail_mount; 358 struct xfs_ail_cursor cur; 359 xfs_log_item_t *lip; 360 xfs_lsn_t lsn; 361 xfs_lsn_t target; 362 long tout; 363 int stuck = 0; 364 int flushing = 0; 365 int count = 0; 366 367 /* 368 * If we encountered pinned items or did not finish writing out all 369 * buffers the last time we ran, force the log first and wait for it 370 * before pushing again. 371 */ 372 if (ailp->ail_log_flush && ailp->ail_last_pushed_lsn == 0 && 373 (!list_empty_careful(&ailp->ail_buf_list) || 374 xfs_ail_min_lsn(ailp))) { 375 ailp->ail_log_flush = 0; 376 377 XFS_STATS_INC(mp, xs_push_ail_flush); 378 xfs_log_force(mp, XFS_LOG_SYNC); 379 } 380 381 spin_lock(&ailp->ail_lock); 382 383 /* barrier matches the ail_target update in xfs_ail_push() */ 384 smp_rmb(); 385 target = ailp->ail_target; 386 ailp->ail_target_prev = target; 387 388 lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->ail_last_pushed_lsn); 389 if (!lip) { 390 /* 391 * If the AIL is empty or our push has reached the end we are 392 * done now. 393 */ 394 xfs_trans_ail_cursor_done(&cur); 395 spin_unlock(&ailp->ail_lock); 396 goto out_done; 397 } 398 399 XFS_STATS_INC(mp, xs_push_ail); 400 401 lsn = lip->li_lsn; 402 while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) { 403 int lock_result; 404 405 /* 406 * Note that iop_push may unlock and reacquire the AIL lock. We 407 * rely on the AIL cursor implementation to be able to deal with 408 * the dropped lock. 409 */ 410 lock_result = xfsaild_push_item(ailp, lip); 411 switch (lock_result) { 412 case XFS_ITEM_SUCCESS: 413 XFS_STATS_INC(mp, xs_push_ail_success); 414 trace_xfs_ail_push(lip); 415 416 ailp->ail_last_pushed_lsn = lsn; 417 break; 418 419 case XFS_ITEM_FLUSHING: 420 /* 421 * The item or its backing buffer is already beeing 422 * flushed. The typical reason for that is that an 423 * inode buffer is locked because we already pushed the 424 * updates to it as part of inode clustering. 425 * 426 * We do not want to to stop flushing just because lots 427 * of items are already beeing flushed, but we need to 428 * re-try the flushing relatively soon if most of the 429 * AIL is beeing flushed. 430 */ 431 XFS_STATS_INC(mp, xs_push_ail_flushing); 432 trace_xfs_ail_flushing(lip); 433 434 flushing++; 435 ailp->ail_last_pushed_lsn = lsn; 436 break; 437 438 case XFS_ITEM_PINNED: 439 XFS_STATS_INC(mp, xs_push_ail_pinned); 440 trace_xfs_ail_pinned(lip); 441 442 stuck++; 443 ailp->ail_log_flush++; 444 break; 445 case XFS_ITEM_LOCKED: 446 XFS_STATS_INC(mp, xs_push_ail_locked); 447 trace_xfs_ail_locked(lip); 448 449 stuck++; 450 break; 451 default: 452 ASSERT(0); 453 break; 454 } 455 456 count++; 457 458 /* 459 * Are there too many items we can't do anything with? 460 * 461 * If we we are skipping too many items because we can't flush 462 * them or they are already being flushed, we back off and 463 * given them time to complete whatever operation is being 464 * done. i.e. remove pressure from the AIL while we can't make 465 * progress so traversals don't slow down further inserts and 466 * removals to/from the AIL. 467 * 468 * The value of 100 is an arbitrary magic number based on 469 * observation. 470 */ 471 if (stuck > 100) 472 break; 473 474 lip = xfs_trans_ail_cursor_next(ailp, &cur); 475 if (lip == NULL) 476 break; 477 lsn = lip->li_lsn; 478 } 479 xfs_trans_ail_cursor_done(&cur); 480 spin_unlock(&ailp->ail_lock); 481 482 if (xfs_buf_delwri_submit_nowait(&ailp->ail_buf_list)) 483 ailp->ail_log_flush++; 484 485 if (!count || XFS_LSN_CMP(lsn, target) >= 0) { 486 out_done: 487 /* 488 * We reached the target or the AIL is empty, so wait a bit 489 * longer for I/O to complete and remove pushed items from the 490 * AIL before we start the next scan from the start of the AIL. 491 */ 492 tout = 50; 493 ailp->ail_last_pushed_lsn = 0; 494 } else if (((stuck + flushing) * 100) / count > 90) { 495 /* 496 * Either there is a lot of contention on the AIL or we are 497 * stuck due to operations in progress. "Stuck" in this case 498 * is defined as >90% of the items we tried to push were stuck. 499 * 500 * Backoff a bit more to allow some I/O to complete before 501 * restarting from the start of the AIL. This prevents us from 502 * spinning on the same items, and if they are pinned will all 503 * the restart to issue a log force to unpin the stuck items. 504 */ 505 tout = 20; 506 ailp->ail_last_pushed_lsn = 0; 507 } else { 508 /* 509 * Assume we have more work to do in a short while. 510 */ 511 tout = 10; 512 } 513 514 return tout; 515 } 516 517 static int 518 xfsaild( 519 void *data) 520 { 521 struct xfs_ail *ailp = data; 522 long tout = 0; /* milliseconds */ 523 524 current->flags |= PF_MEMALLOC; 525 set_freezable(); 526 527 while (1) { 528 if (tout && tout <= 20) 529 set_current_state(TASK_KILLABLE); 530 else 531 set_current_state(TASK_INTERRUPTIBLE); 532 533 /* 534 * Check kthread_should_stop() after we set the task state to 535 * guarantee that we either see the stop bit and exit or the 536 * task state is reset to runnable such that it's not scheduled 537 * out indefinitely and detects the stop bit at next iteration. 538 * A memory barrier is included in above task state set to 539 * serialize again kthread_stop(). 540 */ 541 if (kthread_should_stop()) { 542 __set_current_state(TASK_RUNNING); 543 544 /* 545 * The caller forces out the AIL before stopping the 546 * thread in the common case, which means the delwri 547 * queue is drained. In the shutdown case, the queue may 548 * still hold relogged buffers that haven't been 549 * submitted because they were pinned since added to the 550 * queue. 551 * 552 * Log I/O error processing stales the underlying buffer 553 * and clears the delwri state, expecting the buf to be 554 * removed on the next submission attempt. That won't 555 * happen if we're shutting down, so this is the last 556 * opportunity to release such buffers from the queue. 557 */ 558 ASSERT(list_empty(&ailp->ail_buf_list) || 559 XFS_FORCED_SHUTDOWN(ailp->ail_mount)); 560 xfs_buf_delwri_cancel(&ailp->ail_buf_list); 561 break; 562 } 563 564 spin_lock(&ailp->ail_lock); 565 566 /* 567 * Idle if the AIL is empty and we are not racing with a target 568 * update. We check the AIL after we set the task to a sleep 569 * state to guarantee that we either catch an ail_target update 570 * or that a wake_up resets the state to TASK_RUNNING. 571 * Otherwise, we run the risk of sleeping indefinitely. 572 * 573 * The barrier matches the ail_target update in xfs_ail_push(). 574 */ 575 smp_rmb(); 576 if (!xfs_ail_min(ailp) && 577 ailp->ail_target == ailp->ail_target_prev) { 578 spin_unlock(&ailp->ail_lock); 579 freezable_schedule(); 580 tout = 0; 581 continue; 582 } 583 spin_unlock(&ailp->ail_lock); 584 585 if (tout) 586 freezable_schedule_timeout(msecs_to_jiffies(tout)); 587 588 __set_current_state(TASK_RUNNING); 589 590 try_to_freeze(); 591 592 tout = xfsaild_push(ailp); 593 } 594 595 return 0; 596 } 597 598 /* 599 * This routine is called to move the tail of the AIL forward. It does this by 600 * trying to flush items in the AIL whose lsns are below the given 601 * threshold_lsn. 602 * 603 * The push is run asynchronously in a workqueue, which means the caller needs 604 * to handle waiting on the async flush for space to become available. 605 * We don't want to interrupt any push that is in progress, hence we only queue 606 * work if we set the pushing bit approriately. 607 * 608 * We do this unlocked - we only need to know whether there is anything in the 609 * AIL at the time we are called. We don't need to access the contents of 610 * any of the objects, so the lock is not needed. 611 */ 612 void 613 xfs_ail_push( 614 struct xfs_ail *ailp, 615 xfs_lsn_t threshold_lsn) 616 { 617 xfs_log_item_t *lip; 618 619 lip = xfs_ail_min(ailp); 620 if (!lip || XFS_FORCED_SHUTDOWN(ailp->ail_mount) || 621 XFS_LSN_CMP(threshold_lsn, ailp->ail_target) <= 0) 622 return; 623 624 /* 625 * Ensure that the new target is noticed in push code before it clears 626 * the XFS_AIL_PUSHING_BIT. 627 */ 628 smp_wmb(); 629 xfs_trans_ail_copy_lsn(ailp, &ailp->ail_target, &threshold_lsn); 630 smp_wmb(); 631 632 wake_up_process(ailp->ail_task); 633 } 634 635 /* 636 * Push out all items in the AIL immediately 637 */ 638 void 639 xfs_ail_push_all( 640 struct xfs_ail *ailp) 641 { 642 xfs_lsn_t threshold_lsn = xfs_ail_max_lsn(ailp); 643 644 if (threshold_lsn) 645 xfs_ail_push(ailp, threshold_lsn); 646 } 647 648 /* 649 * Push out all items in the AIL immediately and wait until the AIL is empty. 650 */ 651 void 652 xfs_ail_push_all_sync( 653 struct xfs_ail *ailp) 654 { 655 struct xfs_log_item *lip; 656 DEFINE_WAIT(wait); 657 658 spin_lock(&ailp->ail_lock); 659 while ((lip = xfs_ail_max(ailp)) != NULL) { 660 prepare_to_wait(&ailp->ail_empty, &wait, TASK_UNINTERRUPTIBLE); 661 ailp->ail_target = lip->li_lsn; 662 wake_up_process(ailp->ail_task); 663 spin_unlock(&ailp->ail_lock); 664 schedule(); 665 spin_lock(&ailp->ail_lock); 666 } 667 spin_unlock(&ailp->ail_lock); 668 669 finish_wait(&ailp->ail_empty, &wait); 670 } 671 672 /* 673 * xfs_trans_ail_update - bulk AIL insertion operation. 674 * 675 * @xfs_trans_ail_update takes an array of log items that all need to be 676 * positioned at the same LSN in the AIL. If an item is not in the AIL, it will 677 * be added. Otherwise, it will be repositioned by removing it and re-adding 678 * it to the AIL. If we move the first item in the AIL, update the log tail to 679 * match the new minimum LSN in the AIL. 680 * 681 * This function takes the AIL lock once to execute the update operations on 682 * all the items in the array, and as such should not be called with the AIL 683 * lock held. As a result, once we have the AIL lock, we need to check each log 684 * item LSN to confirm it needs to be moved forward in the AIL. 685 * 686 * To optimise the insert operation, we delete all the items from the AIL in 687 * the first pass, moving them into a temporary list, then splice the temporary 688 * list into the correct position in the AIL. This avoids needing to do an 689 * insert operation on every item. 690 * 691 * This function must be called with the AIL lock held. The lock is dropped 692 * before returning. 693 */ 694 void 695 xfs_trans_ail_update_bulk( 696 struct xfs_ail *ailp, 697 struct xfs_ail_cursor *cur, 698 struct xfs_log_item **log_items, 699 int nr_items, 700 xfs_lsn_t lsn) __releases(ailp->ail_lock) 701 { 702 xfs_log_item_t *mlip; 703 int mlip_changed = 0; 704 int i; 705 LIST_HEAD(tmp); 706 707 ASSERT(nr_items > 0); /* Not required, but true. */ 708 mlip = xfs_ail_min(ailp); 709 710 for (i = 0; i < nr_items; i++) { 711 struct xfs_log_item *lip = log_items[i]; 712 if (test_and_set_bit(XFS_LI_IN_AIL, &lip->li_flags)) { 713 /* check if we really need to move the item */ 714 if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0) 715 continue; 716 717 trace_xfs_ail_move(lip, lip->li_lsn, lsn); 718 xfs_ail_delete(ailp, lip); 719 if (mlip == lip) 720 mlip_changed = 1; 721 } else { 722 trace_xfs_ail_insert(lip, 0, lsn); 723 } 724 lip->li_lsn = lsn; 725 list_add(&lip->li_ail, &tmp); 726 } 727 728 if (!list_empty(&tmp)) 729 xfs_ail_splice(ailp, cur, &tmp, lsn); 730 731 if (mlip_changed) { 732 if (!XFS_FORCED_SHUTDOWN(ailp->ail_mount)) 733 xlog_assign_tail_lsn_locked(ailp->ail_mount); 734 spin_unlock(&ailp->ail_lock); 735 736 xfs_log_space_wake(ailp->ail_mount); 737 } else { 738 spin_unlock(&ailp->ail_lock); 739 } 740 } 741 742 bool 743 xfs_ail_delete_one( 744 struct xfs_ail *ailp, 745 struct xfs_log_item *lip) 746 { 747 struct xfs_log_item *mlip = xfs_ail_min(ailp); 748 749 trace_xfs_ail_delete(lip, mlip->li_lsn, lip->li_lsn); 750 xfs_ail_delete(ailp, lip); 751 xfs_clear_li_failed(lip); 752 clear_bit(XFS_LI_IN_AIL, &lip->li_flags); 753 lip->li_lsn = 0; 754 755 return mlip == lip; 756 } 757 758 /** 759 * Remove a log items from the AIL 760 * 761 * @xfs_trans_ail_delete_bulk takes an array of log items that all need to 762 * removed from the AIL. The caller is already holding the AIL lock, and done 763 * all the checks necessary to ensure the items passed in via @log_items are 764 * ready for deletion. This includes checking that the items are in the AIL. 765 * 766 * For each log item to be removed, unlink it from the AIL, clear the IN_AIL 767 * flag from the item and reset the item's lsn to 0. If we remove the first 768 * item in the AIL, update the log tail to match the new minimum LSN in the 769 * AIL. 770 * 771 * This function will not drop the AIL lock until all items are removed from 772 * the AIL to minimise the amount of lock traffic on the AIL. This does not 773 * greatly increase the AIL hold time, but does significantly reduce the amount 774 * of traffic on the lock, especially during IO completion. 775 * 776 * This function must be called with the AIL lock held. The lock is dropped 777 * before returning. 778 */ 779 void 780 xfs_trans_ail_delete( 781 struct xfs_ail *ailp, 782 struct xfs_log_item *lip, 783 int shutdown_type) __releases(ailp->ail_lock) 784 { 785 struct xfs_mount *mp = ailp->ail_mount; 786 bool mlip_changed; 787 788 if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) { 789 spin_unlock(&ailp->ail_lock); 790 if (!XFS_FORCED_SHUTDOWN(mp)) { 791 xfs_alert_tag(mp, XFS_PTAG_AILDELETE, 792 "%s: attempting to delete a log item that is not in the AIL", 793 __func__); 794 xfs_force_shutdown(mp, shutdown_type); 795 } 796 return; 797 } 798 799 mlip_changed = xfs_ail_delete_one(ailp, lip); 800 if (mlip_changed) { 801 if (!XFS_FORCED_SHUTDOWN(mp)) 802 xlog_assign_tail_lsn_locked(mp); 803 if (list_empty(&ailp->ail_head)) 804 wake_up_all(&ailp->ail_empty); 805 } 806 807 spin_unlock(&ailp->ail_lock); 808 if (mlip_changed) 809 xfs_log_space_wake(ailp->ail_mount); 810 } 811 812 int 813 xfs_trans_ail_init( 814 xfs_mount_t *mp) 815 { 816 struct xfs_ail *ailp; 817 818 ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL); 819 if (!ailp) 820 return -ENOMEM; 821 822 ailp->ail_mount = mp; 823 INIT_LIST_HEAD(&ailp->ail_head); 824 INIT_LIST_HEAD(&ailp->ail_cursors); 825 spin_lock_init(&ailp->ail_lock); 826 INIT_LIST_HEAD(&ailp->ail_buf_list); 827 init_waitqueue_head(&ailp->ail_empty); 828 829 ailp->ail_task = kthread_run(xfsaild, ailp, "xfsaild/%s", 830 ailp->ail_mount->m_fsname); 831 if (IS_ERR(ailp->ail_task)) 832 goto out_free_ailp; 833 834 mp->m_ail = ailp; 835 return 0; 836 837 out_free_ailp: 838 kmem_free(ailp); 839 return -ENOMEM; 840 } 841 842 void 843 xfs_trans_ail_destroy( 844 xfs_mount_t *mp) 845 { 846 struct xfs_ail *ailp = mp->m_ail; 847 848 kthread_stop(ailp->ail_task); 849 kmem_free(ailp); 850 } 851