xref: /openbmc/linux/fs/xfs/xfs_trans_ail.c (revision 94c7b6fc)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * Copyright (c) 2008 Dave Chinner
4  * All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it would be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write the Free Software Foundation,
17  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
18  */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_trace.h"
29 #include "xfs_error.h"
30 #include "xfs_log.h"
31 
32 #ifdef DEBUG
33 /*
34  * Check that the list is sorted as it should be.
35  */
36 STATIC void
37 xfs_ail_check(
38 	struct xfs_ail	*ailp,
39 	xfs_log_item_t	*lip)
40 {
41 	xfs_log_item_t	*prev_lip;
42 
43 	if (list_empty(&ailp->xa_ail))
44 		return;
45 
46 	/*
47 	 * Check the next and previous entries are valid.
48 	 */
49 	ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0);
50 	prev_lip = list_entry(lip->li_ail.prev, xfs_log_item_t, li_ail);
51 	if (&prev_lip->li_ail != &ailp->xa_ail)
52 		ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0);
53 
54 	prev_lip = list_entry(lip->li_ail.next, xfs_log_item_t, li_ail);
55 	if (&prev_lip->li_ail != &ailp->xa_ail)
56 		ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) >= 0);
57 
58 
59 }
60 #else /* !DEBUG */
61 #define	xfs_ail_check(a,l)
62 #endif /* DEBUG */
63 
64 /*
65  * Return a pointer to the last item in the AIL.  If the AIL is empty, then
66  * return NULL.
67  */
68 static xfs_log_item_t *
69 xfs_ail_max(
70 	struct xfs_ail  *ailp)
71 {
72 	if (list_empty(&ailp->xa_ail))
73 		return NULL;
74 
75 	return list_entry(ailp->xa_ail.prev, xfs_log_item_t, li_ail);
76 }
77 
78 /*
79  * Return a pointer to the item which follows the given item in the AIL.  If
80  * the given item is the last item in the list, then return NULL.
81  */
82 static xfs_log_item_t *
83 xfs_ail_next(
84 	struct xfs_ail  *ailp,
85 	xfs_log_item_t  *lip)
86 {
87 	if (lip->li_ail.next == &ailp->xa_ail)
88 		return NULL;
89 
90 	return list_first_entry(&lip->li_ail, xfs_log_item_t, li_ail);
91 }
92 
93 /*
94  * This is called by the log manager code to determine the LSN of the tail of
95  * the log.  This is exactly the LSN of the first item in the AIL.  If the AIL
96  * is empty, then this function returns 0.
97  *
98  * We need the AIL lock in order to get a coherent read of the lsn of the last
99  * item in the AIL.
100  */
101 xfs_lsn_t
102 xfs_ail_min_lsn(
103 	struct xfs_ail	*ailp)
104 {
105 	xfs_lsn_t	lsn = 0;
106 	xfs_log_item_t	*lip;
107 
108 	spin_lock(&ailp->xa_lock);
109 	lip = xfs_ail_min(ailp);
110 	if (lip)
111 		lsn = lip->li_lsn;
112 	spin_unlock(&ailp->xa_lock);
113 
114 	return lsn;
115 }
116 
117 /*
118  * Return the maximum lsn held in the AIL, or zero if the AIL is empty.
119  */
120 static xfs_lsn_t
121 xfs_ail_max_lsn(
122 	struct xfs_ail  *ailp)
123 {
124 	xfs_lsn_t       lsn = 0;
125 	xfs_log_item_t  *lip;
126 
127 	spin_lock(&ailp->xa_lock);
128 	lip = xfs_ail_max(ailp);
129 	if (lip)
130 		lsn = lip->li_lsn;
131 	spin_unlock(&ailp->xa_lock);
132 
133 	return lsn;
134 }
135 
136 /*
137  * The cursor keeps track of where our current traversal is up to by tracking
138  * the next item in the list for us. However, for this to be safe, removing an
139  * object from the AIL needs to invalidate any cursor that points to it. hence
140  * the traversal cursor needs to be linked to the struct xfs_ail so that
141  * deletion can search all the active cursors for invalidation.
142  */
143 STATIC void
144 xfs_trans_ail_cursor_init(
145 	struct xfs_ail		*ailp,
146 	struct xfs_ail_cursor	*cur)
147 {
148 	cur->item = NULL;
149 	list_add_tail(&cur->list, &ailp->xa_cursors);
150 }
151 
152 /*
153  * Get the next item in the traversal and advance the cursor.  If the cursor
154  * was invalidated (indicated by a lip of 1), restart the traversal.
155  */
156 struct xfs_log_item *
157 xfs_trans_ail_cursor_next(
158 	struct xfs_ail		*ailp,
159 	struct xfs_ail_cursor	*cur)
160 {
161 	struct xfs_log_item	*lip = cur->item;
162 
163 	if ((__psint_t)lip & 1)
164 		lip = xfs_ail_min(ailp);
165 	if (lip)
166 		cur->item = xfs_ail_next(ailp, lip);
167 	return lip;
168 }
169 
170 /*
171  * When the traversal is complete, we need to remove the cursor from the list
172  * of traversing cursors.
173  */
174 void
175 xfs_trans_ail_cursor_done(
176 	struct xfs_ail_cursor	*cur)
177 {
178 	cur->item = NULL;
179 	list_del_init(&cur->list);
180 }
181 
182 /*
183  * Invalidate any cursor that is pointing to this item. This is called when an
184  * item is removed from the AIL. Any cursor pointing to this object is now
185  * invalid and the traversal needs to be terminated so it doesn't reference a
186  * freed object. We set the low bit of the cursor item pointer so we can
187  * distinguish between an invalidation and the end of the list when getting the
188  * next item from the cursor.
189  */
190 STATIC void
191 xfs_trans_ail_cursor_clear(
192 	struct xfs_ail		*ailp,
193 	struct xfs_log_item	*lip)
194 {
195 	struct xfs_ail_cursor	*cur;
196 
197 	list_for_each_entry(cur, &ailp->xa_cursors, list) {
198 		if (cur->item == lip)
199 			cur->item = (struct xfs_log_item *)
200 					((__psint_t)cur->item | 1);
201 	}
202 }
203 
204 /*
205  * Find the first item in the AIL with the given @lsn by searching in ascending
206  * LSN order and initialise the cursor to point to the next item for a
207  * ascending traversal.  Pass a @lsn of zero to initialise the cursor to the
208  * first item in the AIL. Returns NULL if the list is empty.
209  */
210 xfs_log_item_t *
211 xfs_trans_ail_cursor_first(
212 	struct xfs_ail		*ailp,
213 	struct xfs_ail_cursor	*cur,
214 	xfs_lsn_t		lsn)
215 {
216 	xfs_log_item_t		*lip;
217 
218 	xfs_trans_ail_cursor_init(ailp, cur);
219 
220 	if (lsn == 0) {
221 		lip = xfs_ail_min(ailp);
222 		goto out;
223 	}
224 
225 	list_for_each_entry(lip, &ailp->xa_ail, li_ail) {
226 		if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
227 			goto out;
228 	}
229 	return NULL;
230 
231 out:
232 	if (lip)
233 		cur->item = xfs_ail_next(ailp, lip);
234 	return lip;
235 }
236 
237 static struct xfs_log_item *
238 __xfs_trans_ail_cursor_last(
239 	struct xfs_ail		*ailp,
240 	xfs_lsn_t		lsn)
241 {
242 	xfs_log_item_t		*lip;
243 
244 	list_for_each_entry_reverse(lip, &ailp->xa_ail, li_ail) {
245 		if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
246 			return lip;
247 	}
248 	return NULL;
249 }
250 
251 /*
252  * Find the last item in the AIL with the given @lsn by searching in descending
253  * LSN order and initialise the cursor to point to that item.  If there is no
254  * item with the value of @lsn, then it sets the cursor to the last item with an
255  * LSN lower than @lsn.  Returns NULL if the list is empty.
256  */
257 struct xfs_log_item *
258 xfs_trans_ail_cursor_last(
259 	struct xfs_ail		*ailp,
260 	struct xfs_ail_cursor	*cur,
261 	xfs_lsn_t		lsn)
262 {
263 	xfs_trans_ail_cursor_init(ailp, cur);
264 	cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
265 	return cur->item;
266 }
267 
268 /*
269  * Splice the log item list into the AIL at the given LSN. We splice to the
270  * tail of the given LSN to maintain insert order for push traversals. The
271  * cursor is optional, allowing repeated updates to the same LSN to avoid
272  * repeated traversals.  This should not be called with an empty list.
273  */
274 static void
275 xfs_ail_splice(
276 	struct xfs_ail		*ailp,
277 	struct xfs_ail_cursor	*cur,
278 	struct list_head	*list,
279 	xfs_lsn_t		lsn)
280 {
281 	struct xfs_log_item	*lip;
282 
283 	ASSERT(!list_empty(list));
284 
285 	/*
286 	 * Use the cursor to determine the insertion point if one is
287 	 * provided.  If not, or if the one we got is not valid,
288 	 * find the place in the AIL where the items belong.
289 	 */
290 	lip = cur ? cur->item : NULL;
291 	if (!lip || (__psint_t) lip & 1)
292 		lip = __xfs_trans_ail_cursor_last(ailp, lsn);
293 
294 	/*
295 	 * If a cursor is provided, we know we're processing the AIL
296 	 * in lsn order, and future items to be spliced in will
297 	 * follow the last one being inserted now.  Update the
298 	 * cursor to point to that last item, now while we have a
299 	 * reliable pointer to it.
300 	 */
301 	if (cur)
302 		cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);
303 
304 	/*
305 	 * Finally perform the splice.  Unless the AIL was empty,
306 	 * lip points to the item in the AIL _after_ which the new
307 	 * items should go.  If lip is null the AIL was empty, so
308 	 * the new items go at the head of the AIL.
309 	 */
310 	if (lip)
311 		list_splice(list, &lip->li_ail);
312 	else
313 		list_splice(list, &ailp->xa_ail);
314 }
315 
316 /*
317  * Delete the given item from the AIL.  Return a pointer to the item.
318  */
319 static void
320 xfs_ail_delete(
321 	struct xfs_ail  *ailp,
322 	xfs_log_item_t  *lip)
323 {
324 	xfs_ail_check(ailp, lip);
325 	list_del(&lip->li_ail);
326 	xfs_trans_ail_cursor_clear(ailp, lip);
327 }
328 
329 static long
330 xfsaild_push(
331 	struct xfs_ail		*ailp)
332 {
333 	xfs_mount_t		*mp = ailp->xa_mount;
334 	struct xfs_ail_cursor	cur;
335 	xfs_log_item_t		*lip;
336 	xfs_lsn_t		lsn;
337 	xfs_lsn_t		target;
338 	long			tout;
339 	int			stuck = 0;
340 	int			flushing = 0;
341 	int			count = 0;
342 
343 	/*
344 	 * If we encountered pinned items or did not finish writing out all
345 	 * buffers the last time we ran, force the log first and wait for it
346 	 * before pushing again.
347 	 */
348 	if (ailp->xa_log_flush && ailp->xa_last_pushed_lsn == 0 &&
349 	    (!list_empty_careful(&ailp->xa_buf_list) ||
350 	     xfs_ail_min_lsn(ailp))) {
351 		ailp->xa_log_flush = 0;
352 
353 		XFS_STATS_INC(xs_push_ail_flush);
354 		xfs_log_force(mp, XFS_LOG_SYNC);
355 	}
356 
357 	spin_lock(&ailp->xa_lock);
358 
359 	/* barrier matches the xa_target update in xfs_ail_push() */
360 	smp_rmb();
361 	target = ailp->xa_target;
362 	ailp->xa_target_prev = target;
363 
364 	lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->xa_last_pushed_lsn);
365 	if (!lip) {
366 		/*
367 		 * If the AIL is empty or our push has reached the end we are
368 		 * done now.
369 		 */
370 		xfs_trans_ail_cursor_done(&cur);
371 		spin_unlock(&ailp->xa_lock);
372 		goto out_done;
373 	}
374 
375 	XFS_STATS_INC(xs_push_ail);
376 
377 	lsn = lip->li_lsn;
378 	while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) {
379 		int	lock_result;
380 
381 		/*
382 		 * Note that iop_push may unlock and reacquire the AIL lock.  We
383 		 * rely on the AIL cursor implementation to be able to deal with
384 		 * the dropped lock.
385 		 */
386 		lock_result = lip->li_ops->iop_push(lip, &ailp->xa_buf_list);
387 		switch (lock_result) {
388 		case XFS_ITEM_SUCCESS:
389 			XFS_STATS_INC(xs_push_ail_success);
390 			trace_xfs_ail_push(lip);
391 
392 			ailp->xa_last_pushed_lsn = lsn;
393 			break;
394 
395 		case XFS_ITEM_FLUSHING:
396 			/*
397 			 * The item or its backing buffer is already beeing
398 			 * flushed.  The typical reason for that is that an
399 			 * inode buffer is locked because we already pushed the
400 			 * updates to it as part of inode clustering.
401 			 *
402 			 * We do not want to to stop flushing just because lots
403 			 * of items are already beeing flushed, but we need to
404 			 * re-try the flushing relatively soon if most of the
405 			 * AIL is beeing flushed.
406 			 */
407 			XFS_STATS_INC(xs_push_ail_flushing);
408 			trace_xfs_ail_flushing(lip);
409 
410 			flushing++;
411 			ailp->xa_last_pushed_lsn = lsn;
412 			break;
413 
414 		case XFS_ITEM_PINNED:
415 			XFS_STATS_INC(xs_push_ail_pinned);
416 			trace_xfs_ail_pinned(lip);
417 
418 			stuck++;
419 			ailp->xa_log_flush++;
420 			break;
421 		case XFS_ITEM_LOCKED:
422 			XFS_STATS_INC(xs_push_ail_locked);
423 			trace_xfs_ail_locked(lip);
424 
425 			stuck++;
426 			break;
427 		default:
428 			ASSERT(0);
429 			break;
430 		}
431 
432 		count++;
433 
434 		/*
435 		 * Are there too many items we can't do anything with?
436 		 *
437 		 * If we we are skipping too many items because we can't flush
438 		 * them or they are already being flushed, we back off and
439 		 * given them time to complete whatever operation is being
440 		 * done. i.e. remove pressure from the AIL while we can't make
441 		 * progress so traversals don't slow down further inserts and
442 		 * removals to/from the AIL.
443 		 *
444 		 * The value of 100 is an arbitrary magic number based on
445 		 * observation.
446 		 */
447 		if (stuck > 100)
448 			break;
449 
450 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
451 		if (lip == NULL)
452 			break;
453 		lsn = lip->li_lsn;
454 	}
455 	xfs_trans_ail_cursor_done(&cur);
456 	spin_unlock(&ailp->xa_lock);
457 
458 	if (xfs_buf_delwri_submit_nowait(&ailp->xa_buf_list))
459 		ailp->xa_log_flush++;
460 
461 	if (!count || XFS_LSN_CMP(lsn, target) >= 0) {
462 out_done:
463 		/*
464 		 * We reached the target or the AIL is empty, so wait a bit
465 		 * longer for I/O to complete and remove pushed items from the
466 		 * AIL before we start the next scan from the start of the AIL.
467 		 */
468 		tout = 50;
469 		ailp->xa_last_pushed_lsn = 0;
470 	} else if (((stuck + flushing) * 100) / count > 90) {
471 		/*
472 		 * Either there is a lot of contention on the AIL or we are
473 		 * stuck due to operations in progress. "Stuck" in this case
474 		 * is defined as >90% of the items we tried to push were stuck.
475 		 *
476 		 * Backoff a bit more to allow some I/O to complete before
477 		 * restarting from the start of the AIL. This prevents us from
478 		 * spinning on the same items, and if they are pinned will all
479 		 * the restart to issue a log force to unpin the stuck items.
480 		 */
481 		tout = 20;
482 		ailp->xa_last_pushed_lsn = 0;
483 	} else {
484 		/*
485 		 * Assume we have more work to do in a short while.
486 		 */
487 		tout = 10;
488 	}
489 
490 	return tout;
491 }
492 
493 static int
494 xfsaild(
495 	void		*data)
496 {
497 	struct xfs_ail	*ailp = data;
498 	long		tout = 0;	/* milliseconds */
499 
500 	current->flags |= PF_MEMALLOC;
501 
502 	while (!kthread_should_stop()) {
503 		if (tout && tout <= 20)
504 			__set_current_state(TASK_KILLABLE);
505 		else
506 			__set_current_state(TASK_INTERRUPTIBLE);
507 
508 		spin_lock(&ailp->xa_lock);
509 
510 		/*
511 		 * Idle if the AIL is empty and we are not racing with a target
512 		 * update. We check the AIL after we set the task to a sleep
513 		 * state to guarantee that we either catch an xa_target update
514 		 * or that a wake_up resets the state to TASK_RUNNING.
515 		 * Otherwise, we run the risk of sleeping indefinitely.
516 		 *
517 		 * The barrier matches the xa_target update in xfs_ail_push().
518 		 */
519 		smp_rmb();
520 		if (!xfs_ail_min(ailp) &&
521 		    ailp->xa_target == ailp->xa_target_prev) {
522 			spin_unlock(&ailp->xa_lock);
523 			schedule();
524 			tout = 0;
525 			continue;
526 		}
527 		spin_unlock(&ailp->xa_lock);
528 
529 		if (tout)
530 			schedule_timeout(msecs_to_jiffies(tout));
531 
532 		__set_current_state(TASK_RUNNING);
533 
534 		try_to_freeze();
535 
536 		tout = xfsaild_push(ailp);
537 	}
538 
539 	return 0;
540 }
541 
542 /*
543  * This routine is called to move the tail of the AIL forward.  It does this by
544  * trying to flush items in the AIL whose lsns are below the given
545  * threshold_lsn.
546  *
547  * The push is run asynchronously in a workqueue, which means the caller needs
548  * to handle waiting on the async flush for space to become available.
549  * We don't want to interrupt any push that is in progress, hence we only queue
550  * work if we set the pushing bit approriately.
551  *
552  * We do this unlocked - we only need to know whether there is anything in the
553  * AIL at the time we are called. We don't need to access the contents of
554  * any of the objects, so the lock is not needed.
555  */
556 void
557 xfs_ail_push(
558 	struct xfs_ail	*ailp,
559 	xfs_lsn_t	threshold_lsn)
560 {
561 	xfs_log_item_t	*lip;
562 
563 	lip = xfs_ail_min(ailp);
564 	if (!lip || XFS_FORCED_SHUTDOWN(ailp->xa_mount) ||
565 	    XFS_LSN_CMP(threshold_lsn, ailp->xa_target) <= 0)
566 		return;
567 
568 	/*
569 	 * Ensure that the new target is noticed in push code before it clears
570 	 * the XFS_AIL_PUSHING_BIT.
571 	 */
572 	smp_wmb();
573 	xfs_trans_ail_copy_lsn(ailp, &ailp->xa_target, &threshold_lsn);
574 	smp_wmb();
575 
576 	wake_up_process(ailp->xa_task);
577 }
578 
579 /*
580  * Push out all items in the AIL immediately
581  */
582 void
583 xfs_ail_push_all(
584 	struct xfs_ail  *ailp)
585 {
586 	xfs_lsn_t       threshold_lsn = xfs_ail_max_lsn(ailp);
587 
588 	if (threshold_lsn)
589 		xfs_ail_push(ailp, threshold_lsn);
590 }
591 
592 /*
593  * Push out all items in the AIL immediately and wait until the AIL is empty.
594  */
595 void
596 xfs_ail_push_all_sync(
597 	struct xfs_ail  *ailp)
598 {
599 	struct xfs_log_item	*lip;
600 	DEFINE_WAIT(wait);
601 
602 	spin_lock(&ailp->xa_lock);
603 	while ((lip = xfs_ail_max(ailp)) != NULL) {
604 		prepare_to_wait(&ailp->xa_empty, &wait, TASK_UNINTERRUPTIBLE);
605 		ailp->xa_target = lip->li_lsn;
606 		wake_up_process(ailp->xa_task);
607 		spin_unlock(&ailp->xa_lock);
608 		schedule();
609 		spin_lock(&ailp->xa_lock);
610 	}
611 	spin_unlock(&ailp->xa_lock);
612 
613 	finish_wait(&ailp->xa_empty, &wait);
614 }
615 
616 /*
617  * xfs_trans_ail_update - bulk AIL insertion operation.
618  *
619  * @xfs_trans_ail_update takes an array of log items that all need to be
620  * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
621  * be added.  Otherwise, it will be repositioned  by removing it and re-adding
622  * it to the AIL. If we move the first item in the AIL, update the log tail to
623  * match the new minimum LSN in the AIL.
624  *
625  * This function takes the AIL lock once to execute the update operations on
626  * all the items in the array, and as such should not be called with the AIL
627  * lock held. As a result, once we have the AIL lock, we need to check each log
628  * item LSN to confirm it needs to be moved forward in the AIL.
629  *
630  * To optimise the insert operation, we delete all the items from the AIL in
631  * the first pass, moving them into a temporary list, then splice the temporary
632  * list into the correct position in the AIL. This avoids needing to do an
633  * insert operation on every item.
634  *
635  * This function must be called with the AIL lock held.  The lock is dropped
636  * before returning.
637  */
638 void
639 xfs_trans_ail_update_bulk(
640 	struct xfs_ail		*ailp,
641 	struct xfs_ail_cursor	*cur,
642 	struct xfs_log_item	**log_items,
643 	int			nr_items,
644 	xfs_lsn_t		lsn) __releases(ailp->xa_lock)
645 {
646 	xfs_log_item_t		*mlip;
647 	int			mlip_changed = 0;
648 	int			i;
649 	LIST_HEAD(tmp);
650 
651 	ASSERT(nr_items > 0);		/* Not required, but true. */
652 	mlip = xfs_ail_min(ailp);
653 
654 	for (i = 0; i < nr_items; i++) {
655 		struct xfs_log_item *lip = log_items[i];
656 		if (lip->li_flags & XFS_LI_IN_AIL) {
657 			/* check if we really need to move the item */
658 			if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
659 				continue;
660 
661 			trace_xfs_ail_move(lip, lip->li_lsn, lsn);
662 			xfs_ail_delete(ailp, lip);
663 			if (mlip == lip)
664 				mlip_changed = 1;
665 		} else {
666 			lip->li_flags |= XFS_LI_IN_AIL;
667 			trace_xfs_ail_insert(lip, 0, lsn);
668 		}
669 		lip->li_lsn = lsn;
670 		list_add(&lip->li_ail, &tmp);
671 	}
672 
673 	if (!list_empty(&tmp))
674 		xfs_ail_splice(ailp, cur, &tmp, lsn);
675 
676 	if (mlip_changed) {
677 		if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount))
678 			xlog_assign_tail_lsn_locked(ailp->xa_mount);
679 		spin_unlock(&ailp->xa_lock);
680 
681 		xfs_log_space_wake(ailp->xa_mount);
682 	} else {
683 		spin_unlock(&ailp->xa_lock);
684 	}
685 }
686 
687 /*
688  * xfs_trans_ail_delete_bulk - remove multiple log items from the AIL
689  *
690  * @xfs_trans_ail_delete_bulk takes an array of log items that all need to
691  * removed from the AIL. The caller is already holding the AIL lock, and done
692  * all the checks necessary to ensure the items passed in via @log_items are
693  * ready for deletion. This includes checking that the items are in the AIL.
694  *
695  * For each log item to be removed, unlink it  from the AIL, clear the IN_AIL
696  * flag from the item and reset the item's lsn to 0. If we remove the first
697  * item in the AIL, update the log tail to match the new minimum LSN in the
698  * AIL.
699  *
700  * This function will not drop the AIL lock until all items are removed from
701  * the AIL to minimise the amount of lock traffic on the AIL. This does not
702  * greatly increase the AIL hold time, but does significantly reduce the amount
703  * of traffic on the lock, especially during IO completion.
704  *
705  * This function must be called with the AIL lock held.  The lock is dropped
706  * before returning.
707  */
708 void
709 xfs_trans_ail_delete_bulk(
710 	struct xfs_ail		*ailp,
711 	struct xfs_log_item	**log_items,
712 	int			nr_items,
713 	int			shutdown_type) __releases(ailp->xa_lock)
714 {
715 	xfs_log_item_t		*mlip;
716 	int			mlip_changed = 0;
717 	int			i;
718 
719 	mlip = xfs_ail_min(ailp);
720 
721 	for (i = 0; i < nr_items; i++) {
722 		struct xfs_log_item *lip = log_items[i];
723 		if (!(lip->li_flags & XFS_LI_IN_AIL)) {
724 			struct xfs_mount	*mp = ailp->xa_mount;
725 
726 			spin_unlock(&ailp->xa_lock);
727 			if (!XFS_FORCED_SHUTDOWN(mp)) {
728 				xfs_alert_tag(mp, XFS_PTAG_AILDELETE,
729 		"%s: attempting to delete a log item that is not in the AIL",
730 						__func__);
731 				xfs_force_shutdown(mp, shutdown_type);
732 			}
733 			return;
734 		}
735 
736 		trace_xfs_ail_delete(lip, mlip->li_lsn, lip->li_lsn);
737 		xfs_ail_delete(ailp, lip);
738 		lip->li_flags &= ~XFS_LI_IN_AIL;
739 		lip->li_lsn = 0;
740 		if (mlip == lip)
741 			mlip_changed = 1;
742 	}
743 
744 	if (mlip_changed) {
745 		if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount))
746 			xlog_assign_tail_lsn_locked(ailp->xa_mount);
747 		if (list_empty(&ailp->xa_ail))
748 			wake_up_all(&ailp->xa_empty);
749 		spin_unlock(&ailp->xa_lock);
750 
751 		xfs_log_space_wake(ailp->xa_mount);
752 	} else {
753 		spin_unlock(&ailp->xa_lock);
754 	}
755 }
756 
757 int
758 xfs_trans_ail_init(
759 	xfs_mount_t	*mp)
760 {
761 	struct xfs_ail	*ailp;
762 
763 	ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL);
764 	if (!ailp)
765 		return ENOMEM;
766 
767 	ailp->xa_mount = mp;
768 	INIT_LIST_HEAD(&ailp->xa_ail);
769 	INIT_LIST_HEAD(&ailp->xa_cursors);
770 	spin_lock_init(&ailp->xa_lock);
771 	INIT_LIST_HEAD(&ailp->xa_buf_list);
772 	init_waitqueue_head(&ailp->xa_empty);
773 
774 	ailp->xa_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
775 			ailp->xa_mount->m_fsname);
776 	if (IS_ERR(ailp->xa_task))
777 		goto out_free_ailp;
778 
779 	mp->m_ail = ailp;
780 	return 0;
781 
782 out_free_ailp:
783 	kmem_free(ailp);
784 	return ENOMEM;
785 }
786 
787 void
788 xfs_trans_ail_destroy(
789 	xfs_mount_t	*mp)
790 {
791 	struct xfs_ail	*ailp = mp->m_ail;
792 
793 	kthread_stop(ailp->xa_task);
794 	kmem_free(ailp);
795 }
796