xref: /openbmc/linux/fs/xfs/xfs_trans_ail.c (revision 76426e23)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * Copyright (c) 2008 Dave Chinner
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_trace.h"
17 #include "xfs_errortag.h"
18 #include "xfs_error.h"
19 #include "xfs_log.h"
20 
21 #ifdef DEBUG
22 /*
23  * Check that the list is sorted as it should be.
24  *
25  * Called with the ail lock held, but we don't want to assert fail with it
26  * held otherwise we'll lock everything up and won't be able to debug the
27  * cause. Hence we sample and check the state under the AIL lock and return if
28  * everything is fine, otherwise we drop the lock and run the ASSERT checks.
29  * Asserts may not be fatal, so pick the lock back up and continue onwards.
30  */
31 STATIC void
32 xfs_ail_check(
33 	struct xfs_ail		*ailp,
34 	struct xfs_log_item	*lip)
35 	__must_hold(&ailp->ail_lock)
36 {
37 	struct xfs_log_item	*prev_lip;
38 	struct xfs_log_item	*next_lip;
39 	xfs_lsn_t		prev_lsn = NULLCOMMITLSN;
40 	xfs_lsn_t		next_lsn = NULLCOMMITLSN;
41 	xfs_lsn_t		lsn;
42 	bool			in_ail;
43 
44 
45 	if (list_empty(&ailp->ail_head))
46 		return;
47 
48 	/*
49 	 * Sample then check the next and previous entries are valid.
50 	 */
51 	in_ail = test_bit(XFS_LI_IN_AIL, &lip->li_flags);
52 	prev_lip = list_entry(lip->li_ail.prev, struct xfs_log_item, li_ail);
53 	if (&prev_lip->li_ail != &ailp->ail_head)
54 		prev_lsn = prev_lip->li_lsn;
55 	next_lip = list_entry(lip->li_ail.next, struct xfs_log_item, li_ail);
56 	if (&next_lip->li_ail != &ailp->ail_head)
57 		next_lsn = next_lip->li_lsn;
58 	lsn = lip->li_lsn;
59 
60 	if (in_ail &&
61 	    (prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0) &&
62 	    (next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0))
63 		return;
64 
65 	spin_unlock(&ailp->ail_lock);
66 	ASSERT(in_ail);
67 	ASSERT(prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0);
68 	ASSERT(next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0);
69 	spin_lock(&ailp->ail_lock);
70 }
71 #else /* !DEBUG */
72 #define	xfs_ail_check(a,l)
73 #endif /* DEBUG */
74 
75 /*
76  * Return a pointer to the last item in the AIL.  If the AIL is empty, then
77  * return NULL.
78  */
79 static struct xfs_log_item *
80 xfs_ail_max(
81 	struct xfs_ail  *ailp)
82 {
83 	if (list_empty(&ailp->ail_head))
84 		return NULL;
85 
86 	return list_entry(ailp->ail_head.prev, struct xfs_log_item, li_ail);
87 }
88 
89 /*
90  * Return a pointer to the item which follows the given item in the AIL.  If
91  * the given item is the last item in the list, then return NULL.
92  */
93 static struct xfs_log_item *
94 xfs_ail_next(
95 	struct xfs_ail		*ailp,
96 	struct xfs_log_item	*lip)
97 {
98 	if (lip->li_ail.next == &ailp->ail_head)
99 		return NULL;
100 
101 	return list_first_entry(&lip->li_ail, struct xfs_log_item, li_ail);
102 }
103 
104 /*
105  * This is called by the log manager code to determine the LSN of the tail of
106  * the log.  This is exactly the LSN of the first item in the AIL.  If the AIL
107  * is empty, then this function returns 0.
108  *
109  * We need the AIL lock in order to get a coherent read of the lsn of the last
110  * item in the AIL.
111  */
112 xfs_lsn_t
113 xfs_ail_min_lsn(
114 	struct xfs_ail		*ailp)
115 {
116 	xfs_lsn_t		lsn = 0;
117 	struct xfs_log_item	*lip;
118 
119 	spin_lock(&ailp->ail_lock);
120 	lip = xfs_ail_min(ailp);
121 	if (lip)
122 		lsn = lip->li_lsn;
123 	spin_unlock(&ailp->ail_lock);
124 
125 	return lsn;
126 }
127 
128 /*
129  * Return the maximum lsn held in the AIL, or zero if the AIL is empty.
130  */
131 static xfs_lsn_t
132 xfs_ail_max_lsn(
133 	struct xfs_ail		*ailp)
134 {
135 	xfs_lsn_t       	lsn = 0;
136 	struct xfs_log_item	*lip;
137 
138 	spin_lock(&ailp->ail_lock);
139 	lip = xfs_ail_max(ailp);
140 	if (lip)
141 		lsn = lip->li_lsn;
142 	spin_unlock(&ailp->ail_lock);
143 
144 	return lsn;
145 }
146 
147 /*
148  * The cursor keeps track of where our current traversal is up to by tracking
149  * the next item in the list for us. However, for this to be safe, removing an
150  * object from the AIL needs to invalidate any cursor that points to it. hence
151  * the traversal cursor needs to be linked to the struct xfs_ail so that
152  * deletion can search all the active cursors for invalidation.
153  */
154 STATIC void
155 xfs_trans_ail_cursor_init(
156 	struct xfs_ail		*ailp,
157 	struct xfs_ail_cursor	*cur)
158 {
159 	cur->item = NULL;
160 	list_add_tail(&cur->list, &ailp->ail_cursors);
161 }
162 
163 /*
164  * Get the next item in the traversal and advance the cursor.  If the cursor
165  * was invalidated (indicated by a lip of 1), restart the traversal.
166  */
167 struct xfs_log_item *
168 xfs_trans_ail_cursor_next(
169 	struct xfs_ail		*ailp,
170 	struct xfs_ail_cursor	*cur)
171 {
172 	struct xfs_log_item	*lip = cur->item;
173 
174 	if ((uintptr_t)lip & 1)
175 		lip = xfs_ail_min(ailp);
176 	if (lip)
177 		cur->item = xfs_ail_next(ailp, lip);
178 	return lip;
179 }
180 
181 /*
182  * When the traversal is complete, we need to remove the cursor from the list
183  * of traversing cursors.
184  */
185 void
186 xfs_trans_ail_cursor_done(
187 	struct xfs_ail_cursor	*cur)
188 {
189 	cur->item = NULL;
190 	list_del_init(&cur->list);
191 }
192 
193 /*
194  * Invalidate any cursor that is pointing to this item. This is called when an
195  * item is removed from the AIL. Any cursor pointing to this object is now
196  * invalid and the traversal needs to be terminated so it doesn't reference a
197  * freed object. We set the low bit of the cursor item pointer so we can
198  * distinguish between an invalidation and the end of the list when getting the
199  * next item from the cursor.
200  */
201 STATIC void
202 xfs_trans_ail_cursor_clear(
203 	struct xfs_ail		*ailp,
204 	struct xfs_log_item	*lip)
205 {
206 	struct xfs_ail_cursor	*cur;
207 
208 	list_for_each_entry(cur, &ailp->ail_cursors, list) {
209 		if (cur->item == lip)
210 			cur->item = (struct xfs_log_item *)
211 					((uintptr_t)cur->item | 1);
212 	}
213 }
214 
215 /*
216  * Find the first item in the AIL with the given @lsn by searching in ascending
217  * LSN order and initialise the cursor to point to the next item for a
218  * ascending traversal.  Pass a @lsn of zero to initialise the cursor to the
219  * first item in the AIL. Returns NULL if the list is empty.
220  */
221 struct xfs_log_item *
222 xfs_trans_ail_cursor_first(
223 	struct xfs_ail		*ailp,
224 	struct xfs_ail_cursor	*cur,
225 	xfs_lsn_t		lsn)
226 {
227 	struct xfs_log_item	*lip;
228 
229 	xfs_trans_ail_cursor_init(ailp, cur);
230 
231 	if (lsn == 0) {
232 		lip = xfs_ail_min(ailp);
233 		goto out;
234 	}
235 
236 	list_for_each_entry(lip, &ailp->ail_head, li_ail) {
237 		if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
238 			goto out;
239 	}
240 	return NULL;
241 
242 out:
243 	if (lip)
244 		cur->item = xfs_ail_next(ailp, lip);
245 	return lip;
246 }
247 
248 static struct xfs_log_item *
249 __xfs_trans_ail_cursor_last(
250 	struct xfs_ail		*ailp,
251 	xfs_lsn_t		lsn)
252 {
253 	struct xfs_log_item	*lip;
254 
255 	list_for_each_entry_reverse(lip, &ailp->ail_head, li_ail) {
256 		if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
257 			return lip;
258 	}
259 	return NULL;
260 }
261 
262 /*
263  * Find the last item in the AIL with the given @lsn by searching in descending
264  * LSN order and initialise the cursor to point to that item.  If there is no
265  * item with the value of @lsn, then it sets the cursor to the last item with an
266  * LSN lower than @lsn.  Returns NULL if the list is empty.
267  */
268 struct xfs_log_item *
269 xfs_trans_ail_cursor_last(
270 	struct xfs_ail		*ailp,
271 	struct xfs_ail_cursor	*cur,
272 	xfs_lsn_t		lsn)
273 {
274 	xfs_trans_ail_cursor_init(ailp, cur);
275 	cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
276 	return cur->item;
277 }
278 
279 /*
280  * Splice the log item list into the AIL at the given LSN. We splice to the
281  * tail of the given LSN to maintain insert order for push traversals. The
282  * cursor is optional, allowing repeated updates to the same LSN to avoid
283  * repeated traversals.  This should not be called with an empty list.
284  */
285 static void
286 xfs_ail_splice(
287 	struct xfs_ail		*ailp,
288 	struct xfs_ail_cursor	*cur,
289 	struct list_head	*list,
290 	xfs_lsn_t		lsn)
291 {
292 	struct xfs_log_item	*lip;
293 
294 	ASSERT(!list_empty(list));
295 
296 	/*
297 	 * Use the cursor to determine the insertion point if one is
298 	 * provided.  If not, or if the one we got is not valid,
299 	 * find the place in the AIL where the items belong.
300 	 */
301 	lip = cur ? cur->item : NULL;
302 	if (!lip || (uintptr_t)lip & 1)
303 		lip = __xfs_trans_ail_cursor_last(ailp, lsn);
304 
305 	/*
306 	 * If a cursor is provided, we know we're processing the AIL
307 	 * in lsn order, and future items to be spliced in will
308 	 * follow the last one being inserted now.  Update the
309 	 * cursor to point to that last item, now while we have a
310 	 * reliable pointer to it.
311 	 */
312 	if (cur)
313 		cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);
314 
315 	/*
316 	 * Finally perform the splice.  Unless the AIL was empty,
317 	 * lip points to the item in the AIL _after_ which the new
318 	 * items should go.  If lip is null the AIL was empty, so
319 	 * the new items go at the head of the AIL.
320 	 */
321 	if (lip)
322 		list_splice(list, &lip->li_ail);
323 	else
324 		list_splice(list, &ailp->ail_head);
325 }
326 
327 /*
328  * Delete the given item from the AIL.  Return a pointer to the item.
329  */
330 static void
331 xfs_ail_delete(
332 	struct xfs_ail		*ailp,
333 	struct xfs_log_item	*lip)
334 {
335 	xfs_ail_check(ailp, lip);
336 	list_del(&lip->li_ail);
337 	xfs_trans_ail_cursor_clear(ailp, lip);
338 }
339 
340 static inline uint
341 xfsaild_push_item(
342 	struct xfs_ail		*ailp,
343 	struct xfs_log_item	*lip)
344 {
345 	/*
346 	 * If log item pinning is enabled, skip the push and track the item as
347 	 * pinned. This can help induce head-behind-tail conditions.
348 	 */
349 	if (XFS_TEST_ERROR(false, ailp->ail_mount, XFS_ERRTAG_LOG_ITEM_PIN))
350 		return XFS_ITEM_PINNED;
351 
352 	/*
353 	 * Consider the item pinned if a push callback is not defined so the
354 	 * caller will force the log. This should only happen for intent items
355 	 * as they are unpinned once the associated done item is committed to
356 	 * the on-disk log.
357 	 */
358 	if (!lip->li_ops->iop_push)
359 		return XFS_ITEM_PINNED;
360 	return lip->li_ops->iop_push(lip, &ailp->ail_buf_list);
361 }
362 
363 static long
364 xfsaild_push(
365 	struct xfs_ail		*ailp)
366 {
367 	xfs_mount_t		*mp = ailp->ail_mount;
368 	struct xfs_ail_cursor	cur;
369 	struct xfs_log_item	*lip;
370 	xfs_lsn_t		lsn;
371 	xfs_lsn_t		target;
372 	long			tout;
373 	int			stuck = 0;
374 	int			flushing = 0;
375 	int			count = 0;
376 
377 	/*
378 	 * If we encountered pinned items or did not finish writing out all
379 	 * buffers the last time we ran, force the log first and wait for it
380 	 * before pushing again.
381 	 */
382 	if (ailp->ail_log_flush && ailp->ail_last_pushed_lsn == 0 &&
383 	    (!list_empty_careful(&ailp->ail_buf_list) ||
384 	     xfs_ail_min_lsn(ailp))) {
385 		ailp->ail_log_flush = 0;
386 
387 		XFS_STATS_INC(mp, xs_push_ail_flush);
388 		xfs_log_force(mp, XFS_LOG_SYNC);
389 	}
390 
391 	spin_lock(&ailp->ail_lock);
392 
393 	/* barrier matches the ail_target update in xfs_ail_push() */
394 	smp_rmb();
395 	target = ailp->ail_target;
396 	ailp->ail_target_prev = target;
397 
398 	lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->ail_last_pushed_lsn);
399 	if (!lip) {
400 		/*
401 		 * If the AIL is empty or our push has reached the end we are
402 		 * done now.
403 		 */
404 		xfs_trans_ail_cursor_done(&cur);
405 		spin_unlock(&ailp->ail_lock);
406 		goto out_done;
407 	}
408 
409 	XFS_STATS_INC(mp, xs_push_ail);
410 
411 	lsn = lip->li_lsn;
412 	while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) {
413 		int	lock_result;
414 
415 		/*
416 		 * Note that iop_push may unlock and reacquire the AIL lock.  We
417 		 * rely on the AIL cursor implementation to be able to deal with
418 		 * the dropped lock.
419 		 */
420 		lock_result = xfsaild_push_item(ailp, lip);
421 		switch (lock_result) {
422 		case XFS_ITEM_SUCCESS:
423 			XFS_STATS_INC(mp, xs_push_ail_success);
424 			trace_xfs_ail_push(lip);
425 
426 			ailp->ail_last_pushed_lsn = lsn;
427 			break;
428 
429 		case XFS_ITEM_FLUSHING:
430 			/*
431 			 * The item or its backing buffer is already being
432 			 * flushed.  The typical reason for that is that an
433 			 * inode buffer is locked because we already pushed the
434 			 * updates to it as part of inode clustering.
435 			 *
436 			 * We do not want to to stop flushing just because lots
437 			 * of items are already being flushed, but we need to
438 			 * re-try the flushing relatively soon if most of the
439 			 * AIL is being flushed.
440 			 */
441 			XFS_STATS_INC(mp, xs_push_ail_flushing);
442 			trace_xfs_ail_flushing(lip);
443 
444 			flushing++;
445 			ailp->ail_last_pushed_lsn = lsn;
446 			break;
447 
448 		case XFS_ITEM_PINNED:
449 			XFS_STATS_INC(mp, xs_push_ail_pinned);
450 			trace_xfs_ail_pinned(lip);
451 
452 			stuck++;
453 			ailp->ail_log_flush++;
454 			break;
455 		case XFS_ITEM_LOCKED:
456 			XFS_STATS_INC(mp, xs_push_ail_locked);
457 			trace_xfs_ail_locked(lip);
458 
459 			stuck++;
460 			break;
461 		default:
462 			ASSERT(0);
463 			break;
464 		}
465 
466 		count++;
467 
468 		/*
469 		 * Are there too many items we can't do anything with?
470 		 *
471 		 * If we we are skipping too many items because we can't flush
472 		 * them or they are already being flushed, we back off and
473 		 * given them time to complete whatever operation is being
474 		 * done. i.e. remove pressure from the AIL while we can't make
475 		 * progress so traversals don't slow down further inserts and
476 		 * removals to/from the AIL.
477 		 *
478 		 * The value of 100 is an arbitrary magic number based on
479 		 * observation.
480 		 */
481 		if (stuck > 100)
482 			break;
483 
484 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
485 		if (lip == NULL)
486 			break;
487 		lsn = lip->li_lsn;
488 	}
489 	xfs_trans_ail_cursor_done(&cur);
490 	spin_unlock(&ailp->ail_lock);
491 
492 	if (xfs_buf_delwri_submit_nowait(&ailp->ail_buf_list))
493 		ailp->ail_log_flush++;
494 
495 	if (!count || XFS_LSN_CMP(lsn, target) >= 0) {
496 out_done:
497 		/*
498 		 * We reached the target or the AIL is empty, so wait a bit
499 		 * longer for I/O to complete and remove pushed items from the
500 		 * AIL before we start the next scan from the start of the AIL.
501 		 */
502 		tout = 50;
503 		ailp->ail_last_pushed_lsn = 0;
504 	} else if (((stuck + flushing) * 100) / count > 90) {
505 		/*
506 		 * Either there is a lot of contention on the AIL or we are
507 		 * stuck due to operations in progress. "Stuck" in this case
508 		 * is defined as >90% of the items we tried to push were stuck.
509 		 *
510 		 * Backoff a bit more to allow some I/O to complete before
511 		 * restarting from the start of the AIL. This prevents us from
512 		 * spinning on the same items, and if they are pinned will all
513 		 * the restart to issue a log force to unpin the stuck items.
514 		 */
515 		tout = 20;
516 		ailp->ail_last_pushed_lsn = 0;
517 	} else {
518 		/*
519 		 * Assume we have more work to do in a short while.
520 		 */
521 		tout = 10;
522 	}
523 
524 	return tout;
525 }
526 
527 static int
528 xfsaild(
529 	void		*data)
530 {
531 	struct xfs_ail	*ailp = data;
532 	long		tout = 0;	/* milliseconds */
533 	unsigned int	noreclaim_flag;
534 
535 	noreclaim_flag = memalloc_noreclaim_save();
536 	set_freezable();
537 
538 	while (1) {
539 		if (tout && tout <= 20)
540 			set_current_state(TASK_KILLABLE);
541 		else
542 			set_current_state(TASK_INTERRUPTIBLE);
543 
544 		/*
545 		 * Check kthread_should_stop() after we set the task state to
546 		 * guarantee that we either see the stop bit and exit or the
547 		 * task state is reset to runnable such that it's not scheduled
548 		 * out indefinitely and detects the stop bit at next iteration.
549 		 * A memory barrier is included in above task state set to
550 		 * serialize again kthread_stop().
551 		 */
552 		if (kthread_should_stop()) {
553 			__set_current_state(TASK_RUNNING);
554 
555 			/*
556 			 * The caller forces out the AIL before stopping the
557 			 * thread in the common case, which means the delwri
558 			 * queue is drained. In the shutdown case, the queue may
559 			 * still hold relogged buffers that haven't been
560 			 * submitted because they were pinned since added to the
561 			 * queue.
562 			 *
563 			 * Log I/O error processing stales the underlying buffer
564 			 * and clears the delwri state, expecting the buf to be
565 			 * removed on the next submission attempt. That won't
566 			 * happen if we're shutting down, so this is the last
567 			 * opportunity to release such buffers from the queue.
568 			 */
569 			ASSERT(list_empty(&ailp->ail_buf_list) ||
570 			       XFS_FORCED_SHUTDOWN(ailp->ail_mount));
571 			xfs_buf_delwri_cancel(&ailp->ail_buf_list);
572 			break;
573 		}
574 
575 		spin_lock(&ailp->ail_lock);
576 
577 		/*
578 		 * Idle if the AIL is empty and we are not racing with a target
579 		 * update. We check the AIL after we set the task to a sleep
580 		 * state to guarantee that we either catch an ail_target update
581 		 * or that a wake_up resets the state to TASK_RUNNING.
582 		 * Otherwise, we run the risk of sleeping indefinitely.
583 		 *
584 		 * The barrier matches the ail_target update in xfs_ail_push().
585 		 */
586 		smp_rmb();
587 		if (!xfs_ail_min(ailp) &&
588 		    ailp->ail_target == ailp->ail_target_prev) {
589 			spin_unlock(&ailp->ail_lock);
590 			freezable_schedule();
591 			tout = 0;
592 			continue;
593 		}
594 		spin_unlock(&ailp->ail_lock);
595 
596 		if (tout)
597 			freezable_schedule_timeout(msecs_to_jiffies(tout));
598 
599 		__set_current_state(TASK_RUNNING);
600 
601 		try_to_freeze();
602 
603 		tout = xfsaild_push(ailp);
604 	}
605 
606 	memalloc_noreclaim_restore(noreclaim_flag);
607 	return 0;
608 }
609 
610 /*
611  * This routine is called to move the tail of the AIL forward.  It does this by
612  * trying to flush items in the AIL whose lsns are below the given
613  * threshold_lsn.
614  *
615  * The push is run asynchronously in a workqueue, which means the caller needs
616  * to handle waiting on the async flush for space to become available.
617  * We don't want to interrupt any push that is in progress, hence we only queue
618  * work if we set the pushing bit appropriately.
619  *
620  * We do this unlocked - we only need to know whether there is anything in the
621  * AIL at the time we are called. We don't need to access the contents of
622  * any of the objects, so the lock is not needed.
623  */
624 void
625 xfs_ail_push(
626 	struct xfs_ail		*ailp,
627 	xfs_lsn_t		threshold_lsn)
628 {
629 	struct xfs_log_item	*lip;
630 
631 	lip = xfs_ail_min(ailp);
632 	if (!lip || XFS_FORCED_SHUTDOWN(ailp->ail_mount) ||
633 	    XFS_LSN_CMP(threshold_lsn, ailp->ail_target) <= 0)
634 		return;
635 
636 	/*
637 	 * Ensure that the new target is noticed in push code before it clears
638 	 * the XFS_AIL_PUSHING_BIT.
639 	 */
640 	smp_wmb();
641 	xfs_trans_ail_copy_lsn(ailp, &ailp->ail_target, &threshold_lsn);
642 	smp_wmb();
643 
644 	wake_up_process(ailp->ail_task);
645 }
646 
647 /*
648  * Push out all items in the AIL immediately
649  */
650 void
651 xfs_ail_push_all(
652 	struct xfs_ail  *ailp)
653 {
654 	xfs_lsn_t       threshold_lsn = xfs_ail_max_lsn(ailp);
655 
656 	if (threshold_lsn)
657 		xfs_ail_push(ailp, threshold_lsn);
658 }
659 
660 /*
661  * Push out all items in the AIL immediately and wait until the AIL is empty.
662  */
663 void
664 xfs_ail_push_all_sync(
665 	struct xfs_ail  *ailp)
666 {
667 	struct xfs_log_item	*lip;
668 	DEFINE_WAIT(wait);
669 
670 	spin_lock(&ailp->ail_lock);
671 	while ((lip = xfs_ail_max(ailp)) != NULL) {
672 		prepare_to_wait(&ailp->ail_empty, &wait, TASK_UNINTERRUPTIBLE);
673 		ailp->ail_target = lip->li_lsn;
674 		wake_up_process(ailp->ail_task);
675 		spin_unlock(&ailp->ail_lock);
676 		schedule();
677 		spin_lock(&ailp->ail_lock);
678 	}
679 	spin_unlock(&ailp->ail_lock);
680 
681 	finish_wait(&ailp->ail_empty, &wait);
682 }
683 
684 /*
685  * xfs_trans_ail_update - bulk AIL insertion operation.
686  *
687  * @xfs_trans_ail_update takes an array of log items that all need to be
688  * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
689  * be added.  Otherwise, it will be repositioned  by removing it and re-adding
690  * it to the AIL. If we move the first item in the AIL, update the log tail to
691  * match the new minimum LSN in the AIL.
692  *
693  * This function takes the AIL lock once to execute the update operations on
694  * all the items in the array, and as such should not be called with the AIL
695  * lock held. As a result, once we have the AIL lock, we need to check each log
696  * item LSN to confirm it needs to be moved forward in the AIL.
697  *
698  * To optimise the insert operation, we delete all the items from the AIL in
699  * the first pass, moving them into a temporary list, then splice the temporary
700  * list into the correct position in the AIL. This avoids needing to do an
701  * insert operation on every item.
702  *
703  * This function must be called with the AIL lock held.  The lock is dropped
704  * before returning.
705  */
706 void
707 xfs_trans_ail_update_bulk(
708 	struct xfs_ail		*ailp,
709 	struct xfs_ail_cursor	*cur,
710 	struct xfs_log_item	**log_items,
711 	int			nr_items,
712 	xfs_lsn_t		lsn) __releases(ailp->ail_lock)
713 {
714 	struct xfs_log_item	*mlip;
715 	int			mlip_changed = 0;
716 	int			i;
717 	LIST_HEAD(tmp);
718 
719 	ASSERT(nr_items > 0);		/* Not required, but true. */
720 	mlip = xfs_ail_min(ailp);
721 
722 	for (i = 0; i < nr_items; i++) {
723 		struct xfs_log_item *lip = log_items[i];
724 		if (test_and_set_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
725 			/* check if we really need to move the item */
726 			if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
727 				continue;
728 
729 			trace_xfs_ail_move(lip, lip->li_lsn, lsn);
730 			xfs_ail_delete(ailp, lip);
731 			if (mlip == lip)
732 				mlip_changed = 1;
733 		} else {
734 			trace_xfs_ail_insert(lip, 0, lsn);
735 		}
736 		lip->li_lsn = lsn;
737 		list_add(&lip->li_ail, &tmp);
738 	}
739 
740 	if (!list_empty(&tmp))
741 		xfs_ail_splice(ailp, cur, &tmp, lsn);
742 
743 	if (mlip_changed) {
744 		if (!XFS_FORCED_SHUTDOWN(ailp->ail_mount))
745 			xlog_assign_tail_lsn_locked(ailp->ail_mount);
746 		spin_unlock(&ailp->ail_lock);
747 
748 		xfs_log_space_wake(ailp->ail_mount);
749 	} else {
750 		spin_unlock(&ailp->ail_lock);
751 	}
752 }
753 
754 bool
755 xfs_ail_delete_one(
756 	struct xfs_ail		*ailp,
757 	struct xfs_log_item	*lip)
758 {
759 	struct xfs_log_item	*mlip = xfs_ail_min(ailp);
760 
761 	trace_xfs_ail_delete(lip, mlip->li_lsn, lip->li_lsn);
762 	xfs_ail_delete(ailp, lip);
763 	xfs_clear_li_failed(lip);
764 	clear_bit(XFS_LI_IN_AIL, &lip->li_flags);
765 	lip->li_lsn = 0;
766 
767 	return mlip == lip;
768 }
769 
770 /**
771  * Remove a log items from the AIL
772  *
773  * @xfs_trans_ail_delete_bulk takes an array of log items that all need to
774  * removed from the AIL. The caller is already holding the AIL lock, and done
775  * all the checks necessary to ensure the items passed in via @log_items are
776  * ready for deletion. This includes checking that the items are in the AIL.
777  *
778  * For each log item to be removed, unlink it  from the AIL, clear the IN_AIL
779  * flag from the item and reset the item's lsn to 0. If we remove the first
780  * item in the AIL, update the log tail to match the new minimum LSN in the
781  * AIL.
782  *
783  * This function will not drop the AIL lock until all items are removed from
784  * the AIL to minimise the amount of lock traffic on the AIL. This does not
785  * greatly increase the AIL hold time, but does significantly reduce the amount
786  * of traffic on the lock, especially during IO completion.
787  *
788  * This function must be called with the AIL lock held.  The lock is dropped
789  * before returning.
790  */
791 void
792 xfs_trans_ail_delete(
793 	struct xfs_ail		*ailp,
794 	struct xfs_log_item	*lip,
795 	int			shutdown_type) __releases(ailp->ail_lock)
796 {
797 	struct xfs_mount	*mp = ailp->ail_mount;
798 	bool			mlip_changed;
799 
800 	if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
801 		spin_unlock(&ailp->ail_lock);
802 		if (!XFS_FORCED_SHUTDOWN(mp)) {
803 			xfs_alert_tag(mp, XFS_PTAG_AILDELETE,
804 	"%s: attempting to delete a log item that is not in the AIL",
805 					__func__);
806 			xfs_force_shutdown(mp, shutdown_type);
807 		}
808 		return;
809 	}
810 
811 	mlip_changed = xfs_ail_delete_one(ailp, lip);
812 	if (mlip_changed) {
813 		if (!XFS_FORCED_SHUTDOWN(mp))
814 			xlog_assign_tail_lsn_locked(mp);
815 		if (list_empty(&ailp->ail_head))
816 			wake_up_all(&ailp->ail_empty);
817 	}
818 
819 	spin_unlock(&ailp->ail_lock);
820 	if (mlip_changed)
821 		xfs_log_space_wake(ailp->ail_mount);
822 }
823 
824 int
825 xfs_trans_ail_init(
826 	xfs_mount_t	*mp)
827 {
828 	struct xfs_ail	*ailp;
829 
830 	ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL);
831 	if (!ailp)
832 		return -ENOMEM;
833 
834 	ailp->ail_mount = mp;
835 	INIT_LIST_HEAD(&ailp->ail_head);
836 	INIT_LIST_HEAD(&ailp->ail_cursors);
837 	spin_lock_init(&ailp->ail_lock);
838 	INIT_LIST_HEAD(&ailp->ail_buf_list);
839 	init_waitqueue_head(&ailp->ail_empty);
840 
841 	ailp->ail_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
842 			ailp->ail_mount->m_super->s_id);
843 	if (IS_ERR(ailp->ail_task))
844 		goto out_free_ailp;
845 
846 	mp->m_ail = ailp;
847 	return 0;
848 
849 out_free_ailp:
850 	kmem_free(ailp);
851 	return -ENOMEM;
852 }
853 
854 void
855 xfs_trans_ail_destroy(
856 	xfs_mount_t	*mp)
857 {
858 	struct xfs_ail	*ailp = mp->m_ail;
859 
860 	kthread_stop(ailp->ail_task);
861 	kmem_free(ailp);
862 }
863