xref: /openbmc/linux/fs/xfs/xfs_trans_ail.c (revision 25985edc)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * Copyright (c) 2008 Dave Chinner
4  * All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it would be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write the Free Software Foundation,
17  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
18  */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_types.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_error.h"
30 
31 STATIC void xfs_ail_splice(struct xfs_ail *, struct list_head *, xfs_lsn_t);
32 STATIC void xfs_ail_delete(struct xfs_ail *, xfs_log_item_t *);
33 STATIC xfs_log_item_t * xfs_ail_min(struct xfs_ail *);
34 STATIC xfs_log_item_t * xfs_ail_next(struct xfs_ail *, xfs_log_item_t *);
35 
36 #ifdef DEBUG
37 STATIC void xfs_ail_check(struct xfs_ail *, xfs_log_item_t *);
38 #else
39 #define	xfs_ail_check(a,l)
40 #endif /* DEBUG */
41 
42 
43 /*
44  * This is called by the log manager code to determine the LSN
45  * of the tail of the log.  This is exactly the LSN of the first
46  * item in the AIL.  If the AIL is empty, then this function
47  * returns 0.
48  *
49  * We need the AIL lock in order to get a coherent read of the
50  * lsn of the last item in the AIL.
51  */
52 xfs_lsn_t
53 xfs_trans_ail_tail(
54 	struct xfs_ail	*ailp)
55 {
56 	xfs_lsn_t	lsn;
57 	xfs_log_item_t	*lip;
58 
59 	spin_lock(&ailp->xa_lock);
60 	lip = xfs_ail_min(ailp);
61 	if (lip == NULL) {
62 		lsn = (xfs_lsn_t)0;
63 	} else {
64 		lsn = lip->li_lsn;
65 	}
66 	spin_unlock(&ailp->xa_lock);
67 
68 	return lsn;
69 }
70 
71 /*
72  * xfs_trans_push_ail
73  *
74  * This routine is called to move the tail of the AIL forward.  It does this by
75  * trying to flush items in the AIL whose lsns are below the given
76  * threshold_lsn.
77  *
78  * the push is run asynchronously in a separate thread, so we return the tail
79  * of the log right now instead of the tail after the push. This means we will
80  * either continue right away, or we will sleep waiting on the async thread to
81  * do its work.
82  *
83  * We do this unlocked - we only need to know whether there is anything in the
84  * AIL at the time we are called. We don't need to access the contents of
85  * any of the objects, so the lock is not needed.
86  */
87 void
88 xfs_trans_ail_push(
89 	struct xfs_ail	*ailp,
90 	xfs_lsn_t	threshold_lsn)
91 {
92 	xfs_log_item_t	*lip;
93 
94 	lip = xfs_ail_min(ailp);
95 	if (lip && !XFS_FORCED_SHUTDOWN(ailp->xa_mount)) {
96 		if (XFS_LSN_CMP(threshold_lsn, ailp->xa_target) > 0)
97 			xfsaild_wakeup(ailp, threshold_lsn);
98 	}
99 }
100 
101 /*
102  * AIL traversal cursor initialisation.
103  *
104  * The cursor keeps track of where our current traversal is up
105  * to by tracking the next ƣtem in the list for us. However, for
106  * this to be safe, removing an object from the AIL needs to invalidate
107  * any cursor that points to it. hence the traversal cursor needs to
108  * be linked to the struct xfs_ail so that deletion can search all the
109  * active cursors for invalidation.
110  *
111  * We don't link the push cursor because it is embedded in the struct
112  * xfs_ail and hence easily findable.
113  */
114 STATIC void
115 xfs_trans_ail_cursor_init(
116 	struct xfs_ail		*ailp,
117 	struct xfs_ail_cursor	*cur)
118 {
119 	cur->item = NULL;
120 	if (cur == &ailp->xa_cursors)
121 		return;
122 
123 	cur->next = ailp->xa_cursors.next;
124 	ailp->xa_cursors.next = cur;
125 }
126 
127 /*
128  * Set the cursor to the next item, because when we look
129  * up the cursor the current item may have been freed.
130  */
131 STATIC void
132 xfs_trans_ail_cursor_set(
133 	struct xfs_ail		*ailp,
134 	struct xfs_ail_cursor	*cur,
135 	struct xfs_log_item	*lip)
136 {
137 	if (lip)
138 		cur->item = xfs_ail_next(ailp, lip);
139 }
140 
141 /*
142  * Get the next item in the traversal and advance the cursor.
143  * If the cursor was invalidated (inidicated by a lip of 1),
144  * restart the traversal.
145  */
146 struct xfs_log_item *
147 xfs_trans_ail_cursor_next(
148 	struct xfs_ail		*ailp,
149 	struct xfs_ail_cursor	*cur)
150 {
151 	struct xfs_log_item	*lip = cur->item;
152 
153 	if ((__psint_t)lip & 1)
154 		lip = xfs_ail_min(ailp);
155 	xfs_trans_ail_cursor_set(ailp, cur, lip);
156 	return lip;
157 }
158 
159 /*
160  * Now that the traversal is complete, we need to remove the cursor
161  * from the list of traversing cursors. Avoid removing the embedded
162  * push cursor, but use the fact it is always present to make the
163  * list deletion simple.
164  */
165 void
166 xfs_trans_ail_cursor_done(
167 	struct xfs_ail		*ailp,
168 	struct xfs_ail_cursor	*done)
169 {
170 	struct xfs_ail_cursor	*prev = NULL;
171 	struct xfs_ail_cursor	*cur;
172 
173 	done->item = NULL;
174 	if (done == &ailp->xa_cursors)
175 		return;
176 	prev = &ailp->xa_cursors;
177 	for (cur = prev->next; cur; prev = cur, cur = prev->next) {
178 		if (cur == done) {
179 			prev->next = cur->next;
180 			break;
181 		}
182 	}
183 	ASSERT(cur);
184 }
185 
186 /*
187  * Invalidate any cursor that is pointing to this item. This is
188  * called when an item is removed from the AIL. Any cursor pointing
189  * to this object is now invalid and the traversal needs to be
190  * terminated so it doesn't reference a freed object. We set the
191  * cursor item to a value of 1 so we can distinguish between an
192  * invalidation and the end of the list when getting the next item
193  * from the cursor.
194  */
195 STATIC void
196 xfs_trans_ail_cursor_clear(
197 	struct xfs_ail		*ailp,
198 	struct xfs_log_item	*lip)
199 {
200 	struct xfs_ail_cursor	*cur;
201 
202 	/* need to search all cursors */
203 	for (cur = &ailp->xa_cursors; cur; cur = cur->next) {
204 		if (cur->item == lip)
205 			cur->item = (struct xfs_log_item *)
206 					((__psint_t)cur->item | 1);
207 	}
208 }
209 
210 /*
211  * Return the item in the AIL with the current lsn.
212  * Return the current tree generation number for use
213  * in calls to xfs_trans_next_ail().
214  */
215 xfs_log_item_t *
216 xfs_trans_ail_cursor_first(
217 	struct xfs_ail		*ailp,
218 	struct xfs_ail_cursor	*cur,
219 	xfs_lsn_t		lsn)
220 {
221 	xfs_log_item_t		*lip;
222 
223 	xfs_trans_ail_cursor_init(ailp, cur);
224 	lip = xfs_ail_min(ailp);
225 	if (lsn == 0)
226 		goto out;
227 
228 	list_for_each_entry(lip, &ailp->xa_ail, li_ail) {
229 		if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
230 			goto out;
231 	}
232 	lip = NULL;
233 out:
234 	xfs_trans_ail_cursor_set(ailp, cur, lip);
235 	return lip;
236 }
237 
238 /*
239  * xfsaild_push does the work of pushing on the AIL.  Returning a timeout of
240  * zero indicates that the caller should sleep until woken.
241  */
242 long
243 xfsaild_push(
244 	struct xfs_ail	*ailp,
245 	xfs_lsn_t	*last_lsn)
246 {
247 	long		tout = 0;
248 	xfs_lsn_t	last_pushed_lsn = *last_lsn;
249 	xfs_lsn_t	target =  ailp->xa_target;
250 	xfs_lsn_t	lsn;
251 	xfs_log_item_t	*lip;
252 	int		flush_log, count, stuck;
253 	xfs_mount_t	*mp = ailp->xa_mount;
254 	struct xfs_ail_cursor	*cur = &ailp->xa_cursors;
255 	int		push_xfsbufd = 0;
256 
257 	spin_lock(&ailp->xa_lock);
258 	xfs_trans_ail_cursor_init(ailp, cur);
259 	lip = xfs_trans_ail_cursor_first(ailp, cur, *last_lsn);
260 	if (!lip || XFS_FORCED_SHUTDOWN(mp)) {
261 		/*
262 		 * AIL is empty or our push has reached the end.
263 		 */
264 		xfs_trans_ail_cursor_done(ailp, cur);
265 		spin_unlock(&ailp->xa_lock);
266 		*last_lsn = 0;
267 		return tout;
268 	}
269 
270 	XFS_STATS_INC(xs_push_ail);
271 
272 	/*
273 	 * While the item we are looking at is below the given threshold
274 	 * try to flush it out. We'd like not to stop until we've at least
275 	 * tried to push on everything in the AIL with an LSN less than
276 	 * the given threshold.
277 	 *
278 	 * However, we will stop after a certain number of pushes and wait
279 	 * for a reduced timeout to fire before pushing further. This
280 	 * prevents use from spinning when we can't do anything or there is
281 	 * lots of contention on the AIL lists.
282 	 */
283 	lsn = lip->li_lsn;
284 	flush_log = stuck = count = 0;
285 	while ((XFS_LSN_CMP(lip->li_lsn, target) < 0)) {
286 		int	lock_result;
287 		/*
288 		 * If we can lock the item without sleeping, unlock the AIL
289 		 * lock and flush the item.  Then re-grab the AIL lock so we
290 		 * can look for the next item on the AIL. List changes are
291 		 * handled by the AIL lookup functions internally
292 		 *
293 		 * If we can't lock the item, either its holder will flush it
294 		 * or it is already being flushed or it is being relogged.  In
295 		 * any of these case it is being taken care of and we can just
296 		 * skip to the next item in the list.
297 		 */
298 		lock_result = IOP_TRYLOCK(lip);
299 		spin_unlock(&ailp->xa_lock);
300 		switch (lock_result) {
301 		case XFS_ITEM_SUCCESS:
302 			XFS_STATS_INC(xs_push_ail_success);
303 			IOP_PUSH(lip);
304 			last_pushed_lsn = lsn;
305 			break;
306 
307 		case XFS_ITEM_PUSHBUF:
308 			XFS_STATS_INC(xs_push_ail_pushbuf);
309 			IOP_PUSHBUF(lip);
310 			last_pushed_lsn = lsn;
311 			push_xfsbufd = 1;
312 			break;
313 
314 		case XFS_ITEM_PINNED:
315 			XFS_STATS_INC(xs_push_ail_pinned);
316 			stuck++;
317 			flush_log = 1;
318 			break;
319 
320 		case XFS_ITEM_LOCKED:
321 			XFS_STATS_INC(xs_push_ail_locked);
322 			last_pushed_lsn = lsn;
323 			stuck++;
324 			break;
325 
326 		default:
327 			ASSERT(0);
328 			break;
329 		}
330 
331 		spin_lock(&ailp->xa_lock);
332 		/* should we bother continuing? */
333 		if (XFS_FORCED_SHUTDOWN(mp))
334 			break;
335 		ASSERT(mp->m_log);
336 
337 		count++;
338 
339 		/*
340 		 * Are there too many items we can't do anything with?
341 		 * If we we are skipping too many items because we can't flush
342 		 * them or they are already being flushed, we back off and
343 		 * given them time to complete whatever operation is being
344 		 * done. i.e. remove pressure from the AIL while we can't make
345 		 * progress so traversals don't slow down further inserts and
346 		 * removals to/from the AIL.
347 		 *
348 		 * The value of 100 is an arbitrary magic number based on
349 		 * observation.
350 		 */
351 		if (stuck > 100)
352 			break;
353 
354 		lip = xfs_trans_ail_cursor_next(ailp, cur);
355 		if (lip == NULL)
356 			break;
357 		lsn = lip->li_lsn;
358 	}
359 	xfs_trans_ail_cursor_done(ailp, cur);
360 	spin_unlock(&ailp->xa_lock);
361 
362 	if (flush_log) {
363 		/*
364 		 * If something we need to push out was pinned, then
365 		 * push out the log so it will become unpinned and
366 		 * move forward in the AIL.
367 		 */
368 		XFS_STATS_INC(xs_push_ail_flush);
369 		xfs_log_force(mp, 0);
370 	}
371 
372 	if (push_xfsbufd) {
373 		/* we've got delayed write buffers to flush */
374 		wake_up_process(mp->m_ddev_targp->bt_task);
375 	}
376 
377 	if (!count) {
378 		/* We're past our target or empty, so idle */
379 		last_pushed_lsn = 0;
380 	} else if (XFS_LSN_CMP(lsn, target) >= 0) {
381 		/*
382 		 * We reached the target so wait a bit longer for I/O to
383 		 * complete and remove pushed items from the AIL before we
384 		 * start the next scan from the start of the AIL.
385 		 */
386 		tout = 50;
387 		last_pushed_lsn = 0;
388 	} else if ((stuck * 100) / count > 90) {
389 		/*
390 		 * Either there is a lot of contention on the AIL or we
391 		 * are stuck due to operations in progress. "Stuck" in this
392 		 * case is defined as >90% of the items we tried to push
393 		 * were stuck.
394 		 *
395 		 * Backoff a bit more to allow some I/O to complete before
396 		 * continuing from where we were.
397 		 */
398 		tout = 20;
399 	} else {
400 		/* more to do, but wait a short while before continuing */
401 		tout = 10;
402 	}
403 	*last_lsn = last_pushed_lsn;
404 	return tout;
405 }
406 
407 
408 /*
409  * This is to be called when an item is unlocked that may have
410  * been in the AIL.  It will wake up the first member of the AIL
411  * wait list if this item's unlocking might allow it to progress.
412  * If the item is in the AIL, then we need to get the AIL lock
413  * while doing our checking so we don't race with someone going
414  * to sleep waiting for this event in xfs_trans_push_ail().
415  */
416 void
417 xfs_trans_unlocked_item(
418 	struct xfs_ail	*ailp,
419 	xfs_log_item_t	*lip)
420 {
421 	xfs_log_item_t	*min_lip;
422 
423 	/*
424 	 * If we're forcibly shutting down, we may have
425 	 * unlocked log items arbitrarily. The last thing
426 	 * we want to do is to move the tail of the log
427 	 * over some potentially valid data.
428 	 */
429 	if (!(lip->li_flags & XFS_LI_IN_AIL) ||
430 	    XFS_FORCED_SHUTDOWN(ailp->xa_mount)) {
431 		return;
432 	}
433 
434 	/*
435 	 * This is the one case where we can call into xfs_ail_min()
436 	 * without holding the AIL lock because we only care about the
437 	 * case where we are at the tail of the AIL.  If the object isn't
438 	 * at the tail, it doesn't matter what result we get back.  This
439 	 * is slightly racy because since we were just unlocked, we could
440 	 * go to sleep between the call to xfs_ail_min and the call to
441 	 * xfs_log_move_tail, have someone else lock us, commit to us disk,
442 	 * move us out of the tail of the AIL, and then we wake up.  However,
443 	 * the call to xfs_log_move_tail() doesn't do anything if there's
444 	 * not enough free space to wake people up so we're safe calling it.
445 	 */
446 	min_lip = xfs_ail_min(ailp);
447 
448 	if (min_lip == lip)
449 		xfs_log_move_tail(ailp->xa_mount, 1);
450 }	/* xfs_trans_unlocked_item */
451 
452 /*
453  * xfs_trans_ail_update - bulk AIL insertion operation.
454  *
455  * @xfs_trans_ail_update takes an array of log items that all need to be
456  * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
457  * be added.  Otherwise, it will be repositioned  by removing it and re-adding
458  * it to the AIL. If we move the first item in the AIL, update the log tail to
459  * match the new minimum LSN in the AIL.
460  *
461  * This function takes the AIL lock once to execute the update operations on
462  * all the items in the array, and as such should not be called with the AIL
463  * lock held. As a result, once we have the AIL lock, we need to check each log
464  * item LSN to confirm it needs to be moved forward in the AIL.
465  *
466  * To optimise the insert operation, we delete all the items from the AIL in
467  * the first pass, moving them into a temporary list, then splice the temporary
468  * list into the correct position in the AIL. This avoids needing to do an
469  * insert operation on every item.
470  *
471  * This function must be called with the AIL lock held.  The lock is dropped
472  * before returning.
473  */
474 void
475 xfs_trans_ail_update_bulk(
476 	struct xfs_ail		*ailp,
477 	struct xfs_log_item	**log_items,
478 	int			nr_items,
479 	xfs_lsn_t		lsn) __releases(ailp->xa_lock)
480 {
481 	xfs_log_item_t		*mlip;
482 	xfs_lsn_t		tail_lsn;
483 	int			mlip_changed = 0;
484 	int			i;
485 	LIST_HEAD(tmp);
486 
487 	mlip = xfs_ail_min(ailp);
488 
489 	for (i = 0; i < nr_items; i++) {
490 		struct xfs_log_item *lip = log_items[i];
491 		if (lip->li_flags & XFS_LI_IN_AIL) {
492 			/* check if we really need to move the item */
493 			if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
494 				continue;
495 
496 			xfs_ail_delete(ailp, lip);
497 			if (mlip == lip)
498 				mlip_changed = 1;
499 		} else {
500 			lip->li_flags |= XFS_LI_IN_AIL;
501 		}
502 		lip->li_lsn = lsn;
503 		list_add(&lip->li_ail, &tmp);
504 	}
505 
506 	xfs_ail_splice(ailp, &tmp, lsn);
507 
508 	if (!mlip_changed) {
509 		spin_unlock(&ailp->xa_lock);
510 		return;
511 	}
512 
513 	/*
514 	 * It is not safe to access mlip after the AIL lock is dropped, so we
515 	 * must get a copy of li_lsn before we do so.  This is especially
516 	 * important on 32-bit platforms where accessing and updating 64-bit
517 	 * values like li_lsn is not atomic.
518 	 */
519 	mlip = xfs_ail_min(ailp);
520 	tail_lsn = mlip->li_lsn;
521 	spin_unlock(&ailp->xa_lock);
522 	xfs_log_move_tail(ailp->xa_mount, tail_lsn);
523 }
524 
525 /*
526  * xfs_trans_ail_delete_bulk - remove multiple log items from the AIL
527  *
528  * @xfs_trans_ail_delete_bulk takes an array of log items that all need to
529  * removed from the AIL. The caller is already holding the AIL lock, and done
530  * all the checks necessary to ensure the items passed in via @log_items are
531  * ready for deletion. This includes checking that the items are in the AIL.
532  *
533  * For each log item to be removed, unlink it  from the AIL, clear the IN_AIL
534  * flag from the item and reset the item's lsn to 0. If we remove the first
535  * item in the AIL, update the log tail to match the new minimum LSN in the
536  * AIL.
537  *
538  * This function will not drop the AIL lock until all items are removed from
539  * the AIL to minimise the amount of lock traffic on the AIL. This does not
540  * greatly increase the AIL hold time, but does significantly reduce the amount
541  * of traffic on the lock, especially during IO completion.
542  *
543  * This function must be called with the AIL lock held.  The lock is dropped
544  * before returning.
545  */
546 void
547 xfs_trans_ail_delete_bulk(
548 	struct xfs_ail		*ailp,
549 	struct xfs_log_item	**log_items,
550 	int			nr_items) __releases(ailp->xa_lock)
551 {
552 	xfs_log_item_t		*mlip;
553 	xfs_lsn_t		tail_lsn;
554 	int			mlip_changed = 0;
555 	int			i;
556 
557 	mlip = xfs_ail_min(ailp);
558 
559 	for (i = 0; i < nr_items; i++) {
560 		struct xfs_log_item *lip = log_items[i];
561 		if (!(lip->li_flags & XFS_LI_IN_AIL)) {
562 			struct xfs_mount	*mp = ailp->xa_mount;
563 
564 			spin_unlock(&ailp->xa_lock);
565 			if (!XFS_FORCED_SHUTDOWN(mp)) {
566 				xfs_alert_tag(mp, XFS_PTAG_AILDELETE,
567 		"%s: attempting to delete a log item that is not in the AIL",
568 						__func__);
569 				xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
570 			}
571 			return;
572 		}
573 
574 		xfs_ail_delete(ailp, lip);
575 		lip->li_flags &= ~XFS_LI_IN_AIL;
576 		lip->li_lsn = 0;
577 		if (mlip == lip)
578 			mlip_changed = 1;
579 	}
580 
581 	if (!mlip_changed) {
582 		spin_unlock(&ailp->xa_lock);
583 		return;
584 	}
585 
586 	/*
587 	 * It is not safe to access mlip after the AIL lock is dropped, so we
588 	 * must get a copy of li_lsn before we do so.  This is especially
589 	 * important on 32-bit platforms where accessing and updating 64-bit
590 	 * values like li_lsn is not atomic. It is possible we've emptied the
591 	 * AIL here, so if that is the case, pass an LSN of 0 to the tail move.
592 	 */
593 	mlip = xfs_ail_min(ailp);
594 	tail_lsn = mlip ? mlip->li_lsn : 0;
595 	spin_unlock(&ailp->xa_lock);
596 	xfs_log_move_tail(ailp->xa_mount, tail_lsn);
597 }
598 
599 /*
600  * The active item list (AIL) is a doubly linked list of log
601  * items sorted by ascending lsn.  The base of the list is
602  * a forw/back pointer pair embedded in the xfs mount structure.
603  * The base is initialized with both pointers pointing to the
604  * base.  This case always needs to be distinguished, because
605  * the base has no lsn to look at.  We almost always insert
606  * at the end of the list, so on inserts we search from the
607  * end of the list to find where the new item belongs.
608  */
609 
610 /*
611  * Initialize the doubly linked list to point only to itself.
612  */
613 int
614 xfs_trans_ail_init(
615 	xfs_mount_t	*mp)
616 {
617 	struct xfs_ail	*ailp;
618 	int		error;
619 
620 	ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL);
621 	if (!ailp)
622 		return ENOMEM;
623 
624 	ailp->xa_mount = mp;
625 	INIT_LIST_HEAD(&ailp->xa_ail);
626 	spin_lock_init(&ailp->xa_lock);
627 	error = xfsaild_start(ailp);
628 	if (error)
629 		goto out_free_ailp;
630 	mp->m_ail = ailp;
631 	return 0;
632 
633 out_free_ailp:
634 	kmem_free(ailp);
635 	return error;
636 }
637 
638 void
639 xfs_trans_ail_destroy(
640 	xfs_mount_t	*mp)
641 {
642 	struct xfs_ail	*ailp = mp->m_ail;
643 
644 	xfsaild_stop(ailp);
645 	kmem_free(ailp);
646 }
647 
648 /*
649  * splice the log item list into the AIL at the given LSN.
650  */
651 STATIC void
652 xfs_ail_splice(
653 	struct xfs_ail	*ailp,
654 	struct list_head *list,
655 	xfs_lsn_t	lsn)
656 {
657 	xfs_log_item_t	*next_lip;
658 
659 	/*
660 	 * If the list is empty, just insert the item.
661 	 */
662 	if (list_empty(&ailp->xa_ail)) {
663 		list_splice(list, &ailp->xa_ail);
664 		return;
665 	}
666 
667 	list_for_each_entry_reverse(next_lip, &ailp->xa_ail, li_ail) {
668 		if (XFS_LSN_CMP(next_lip->li_lsn, lsn) <= 0)
669 			break;
670 	}
671 
672 	ASSERT((&next_lip->li_ail == &ailp->xa_ail) ||
673 	       (XFS_LSN_CMP(next_lip->li_lsn, lsn) <= 0));
674 
675 	list_splice_init(list, &next_lip->li_ail);
676 	return;
677 }
678 
679 /*
680  * Delete the given item from the AIL.  Return a pointer to the item.
681  */
682 STATIC void
683 xfs_ail_delete(
684 	struct xfs_ail	*ailp,
685 	xfs_log_item_t	*lip)
686 {
687 	xfs_ail_check(ailp, lip);
688 	list_del(&lip->li_ail);
689 	xfs_trans_ail_cursor_clear(ailp, lip);
690 }
691 
692 /*
693  * Return a pointer to the first item in the AIL.
694  * If the AIL is empty, then return NULL.
695  */
696 STATIC xfs_log_item_t *
697 xfs_ail_min(
698 	struct xfs_ail	*ailp)
699 {
700 	if (list_empty(&ailp->xa_ail))
701 		return NULL;
702 
703 	return list_first_entry(&ailp->xa_ail, xfs_log_item_t, li_ail);
704 }
705 
706 /*
707  * Return a pointer to the item which follows
708  * the given item in the AIL.  If the given item
709  * is the last item in the list, then return NULL.
710  */
711 STATIC xfs_log_item_t *
712 xfs_ail_next(
713 	struct xfs_ail	*ailp,
714 	xfs_log_item_t	*lip)
715 {
716 	if (lip->li_ail.next == &ailp->xa_ail)
717 		return NULL;
718 
719 	return list_first_entry(&lip->li_ail, xfs_log_item_t, li_ail);
720 }
721 
722 #ifdef DEBUG
723 /*
724  * Check that the list is sorted as it should be.
725  */
726 STATIC void
727 xfs_ail_check(
728 	struct xfs_ail	*ailp,
729 	xfs_log_item_t	*lip)
730 {
731 	xfs_log_item_t	*prev_lip;
732 
733 	if (list_empty(&ailp->xa_ail))
734 		return;
735 
736 	/*
737 	 * Check the next and previous entries are valid.
738 	 */
739 	ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0);
740 	prev_lip = list_entry(lip->li_ail.prev, xfs_log_item_t, li_ail);
741 	if (&prev_lip->li_ail != &ailp->xa_ail)
742 		ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0);
743 
744 	prev_lip = list_entry(lip->li_ail.next, xfs_log_item_t, li_ail);
745 	if (&prev_lip->li_ail != &ailp->xa_ail)
746 		ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) >= 0);
747 
748 
749 #ifdef XFS_TRANS_DEBUG
750 	/*
751 	 * Walk the list checking lsn ordering, and that every entry has the
752 	 * XFS_LI_IN_AIL flag set. This is really expensive, so only do it
753 	 * when specifically debugging the transaction subsystem.
754 	 */
755 	prev_lip = list_entry(&ailp->xa_ail, xfs_log_item_t, li_ail);
756 	list_for_each_entry(lip, &ailp->xa_ail, li_ail) {
757 		if (&prev_lip->li_ail != &ailp->xa_ail)
758 			ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0);
759 		ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0);
760 		prev_lip = lip;
761 	}
762 #endif /* XFS_TRANS_DEBUG */
763 }
764 #endif /* DEBUG */
765