xref: /openbmc/linux/fs/xfs/xfs_trans_ail.c (revision 04eb94d526423ff082efce61f4f26b0369d0bfdd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * Copyright (c) 2008 Dave Chinner
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_trace.h"
17 #include "xfs_errortag.h"
18 #include "xfs_error.h"
19 #include "xfs_log.h"
20 
21 #ifdef DEBUG
22 /*
23  * Check that the list is sorted as it should be.
24  *
25  * Called with the ail lock held, but we don't want to assert fail with it
26  * held otherwise we'll lock everything up and won't be able to debug the
27  * cause. Hence we sample and check the state under the AIL lock and return if
28  * everything is fine, otherwise we drop the lock and run the ASSERT checks.
29  * Asserts may not be fatal, so pick the lock back up and continue onwards.
30  */
31 STATIC void
32 xfs_ail_check(
33 	struct xfs_ail		*ailp,
34 	struct xfs_log_item	*lip)
35 {
36 	struct xfs_log_item	*prev_lip;
37 	struct xfs_log_item	*next_lip;
38 	xfs_lsn_t		prev_lsn = NULLCOMMITLSN;
39 	xfs_lsn_t		next_lsn = NULLCOMMITLSN;
40 	xfs_lsn_t		lsn;
41 	bool			in_ail;
42 
43 
44 	if (list_empty(&ailp->ail_head))
45 		return;
46 
47 	/*
48 	 * Sample then check the next and previous entries are valid.
49 	 */
50 	in_ail = test_bit(XFS_LI_IN_AIL, &lip->li_flags);
51 	prev_lip = list_entry(lip->li_ail.prev, struct xfs_log_item, li_ail);
52 	if (&prev_lip->li_ail != &ailp->ail_head)
53 		prev_lsn = prev_lip->li_lsn;
54 	next_lip = list_entry(lip->li_ail.next, struct xfs_log_item, li_ail);
55 	if (&next_lip->li_ail != &ailp->ail_head)
56 		next_lsn = next_lip->li_lsn;
57 	lsn = lip->li_lsn;
58 
59 	if (in_ail &&
60 	    (prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0) &&
61 	    (next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0))
62 		return;
63 
64 	spin_unlock(&ailp->ail_lock);
65 	ASSERT(in_ail);
66 	ASSERT(prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0);
67 	ASSERT(next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0);
68 	spin_lock(&ailp->ail_lock);
69 }
70 #else /* !DEBUG */
71 #define	xfs_ail_check(a,l)
72 #endif /* DEBUG */
73 
74 /*
75  * Return a pointer to the last item in the AIL.  If the AIL is empty, then
76  * return NULL.
77  */
78 static struct xfs_log_item *
79 xfs_ail_max(
80 	struct xfs_ail  *ailp)
81 {
82 	if (list_empty(&ailp->ail_head))
83 		return NULL;
84 
85 	return list_entry(ailp->ail_head.prev, struct xfs_log_item, li_ail);
86 }
87 
88 /*
89  * Return a pointer to the item which follows the given item in the AIL.  If
90  * the given item is the last item in the list, then return NULL.
91  */
92 static struct xfs_log_item *
93 xfs_ail_next(
94 	struct xfs_ail		*ailp,
95 	struct xfs_log_item	*lip)
96 {
97 	if (lip->li_ail.next == &ailp->ail_head)
98 		return NULL;
99 
100 	return list_first_entry(&lip->li_ail, struct xfs_log_item, li_ail);
101 }
102 
103 /*
104  * This is called by the log manager code to determine the LSN of the tail of
105  * the log.  This is exactly the LSN of the first item in the AIL.  If the AIL
106  * is empty, then this function returns 0.
107  *
108  * We need the AIL lock in order to get a coherent read of the lsn of the last
109  * item in the AIL.
110  */
111 xfs_lsn_t
112 xfs_ail_min_lsn(
113 	struct xfs_ail		*ailp)
114 {
115 	xfs_lsn_t		lsn = 0;
116 	struct xfs_log_item	*lip;
117 
118 	spin_lock(&ailp->ail_lock);
119 	lip = xfs_ail_min(ailp);
120 	if (lip)
121 		lsn = lip->li_lsn;
122 	spin_unlock(&ailp->ail_lock);
123 
124 	return lsn;
125 }
126 
127 /*
128  * Return the maximum lsn held in the AIL, or zero if the AIL is empty.
129  */
130 static xfs_lsn_t
131 xfs_ail_max_lsn(
132 	struct xfs_ail		*ailp)
133 {
134 	xfs_lsn_t       	lsn = 0;
135 	struct xfs_log_item	*lip;
136 
137 	spin_lock(&ailp->ail_lock);
138 	lip = xfs_ail_max(ailp);
139 	if (lip)
140 		lsn = lip->li_lsn;
141 	spin_unlock(&ailp->ail_lock);
142 
143 	return lsn;
144 }
145 
146 /*
147  * The cursor keeps track of where our current traversal is up to by tracking
148  * the next item in the list for us. However, for this to be safe, removing an
149  * object from the AIL needs to invalidate any cursor that points to it. hence
150  * the traversal cursor needs to be linked to the struct xfs_ail so that
151  * deletion can search all the active cursors for invalidation.
152  */
153 STATIC void
154 xfs_trans_ail_cursor_init(
155 	struct xfs_ail		*ailp,
156 	struct xfs_ail_cursor	*cur)
157 {
158 	cur->item = NULL;
159 	list_add_tail(&cur->list, &ailp->ail_cursors);
160 }
161 
162 /*
163  * Get the next item in the traversal and advance the cursor.  If the cursor
164  * was invalidated (indicated by a lip of 1), restart the traversal.
165  */
166 struct xfs_log_item *
167 xfs_trans_ail_cursor_next(
168 	struct xfs_ail		*ailp,
169 	struct xfs_ail_cursor	*cur)
170 {
171 	struct xfs_log_item	*lip = cur->item;
172 
173 	if ((uintptr_t)lip & 1)
174 		lip = xfs_ail_min(ailp);
175 	if (lip)
176 		cur->item = xfs_ail_next(ailp, lip);
177 	return lip;
178 }
179 
180 /*
181  * When the traversal is complete, we need to remove the cursor from the list
182  * of traversing cursors.
183  */
184 void
185 xfs_trans_ail_cursor_done(
186 	struct xfs_ail_cursor	*cur)
187 {
188 	cur->item = NULL;
189 	list_del_init(&cur->list);
190 }
191 
192 /*
193  * Invalidate any cursor that is pointing to this item. This is called when an
194  * item is removed from the AIL. Any cursor pointing to this object is now
195  * invalid and the traversal needs to be terminated so it doesn't reference a
196  * freed object. We set the low bit of the cursor item pointer so we can
197  * distinguish between an invalidation and the end of the list when getting the
198  * next item from the cursor.
199  */
200 STATIC void
201 xfs_trans_ail_cursor_clear(
202 	struct xfs_ail		*ailp,
203 	struct xfs_log_item	*lip)
204 {
205 	struct xfs_ail_cursor	*cur;
206 
207 	list_for_each_entry(cur, &ailp->ail_cursors, list) {
208 		if (cur->item == lip)
209 			cur->item = (struct xfs_log_item *)
210 					((uintptr_t)cur->item | 1);
211 	}
212 }
213 
214 /*
215  * Find the first item in the AIL with the given @lsn by searching in ascending
216  * LSN order and initialise the cursor to point to the next item for a
217  * ascending traversal.  Pass a @lsn of zero to initialise the cursor to the
218  * first item in the AIL. Returns NULL if the list is empty.
219  */
220 struct xfs_log_item *
221 xfs_trans_ail_cursor_first(
222 	struct xfs_ail		*ailp,
223 	struct xfs_ail_cursor	*cur,
224 	xfs_lsn_t		lsn)
225 {
226 	struct xfs_log_item	*lip;
227 
228 	xfs_trans_ail_cursor_init(ailp, cur);
229 
230 	if (lsn == 0) {
231 		lip = xfs_ail_min(ailp);
232 		goto out;
233 	}
234 
235 	list_for_each_entry(lip, &ailp->ail_head, li_ail) {
236 		if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
237 			goto out;
238 	}
239 	return NULL;
240 
241 out:
242 	if (lip)
243 		cur->item = xfs_ail_next(ailp, lip);
244 	return lip;
245 }
246 
247 static struct xfs_log_item *
248 __xfs_trans_ail_cursor_last(
249 	struct xfs_ail		*ailp,
250 	xfs_lsn_t		lsn)
251 {
252 	struct xfs_log_item	*lip;
253 
254 	list_for_each_entry_reverse(lip, &ailp->ail_head, li_ail) {
255 		if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
256 			return lip;
257 	}
258 	return NULL;
259 }
260 
261 /*
262  * Find the last item in the AIL with the given @lsn by searching in descending
263  * LSN order and initialise the cursor to point to that item.  If there is no
264  * item with the value of @lsn, then it sets the cursor to the last item with an
265  * LSN lower than @lsn.  Returns NULL if the list is empty.
266  */
267 struct xfs_log_item *
268 xfs_trans_ail_cursor_last(
269 	struct xfs_ail		*ailp,
270 	struct xfs_ail_cursor	*cur,
271 	xfs_lsn_t		lsn)
272 {
273 	xfs_trans_ail_cursor_init(ailp, cur);
274 	cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
275 	return cur->item;
276 }
277 
278 /*
279  * Splice the log item list into the AIL at the given LSN. We splice to the
280  * tail of the given LSN to maintain insert order for push traversals. The
281  * cursor is optional, allowing repeated updates to the same LSN to avoid
282  * repeated traversals.  This should not be called with an empty list.
283  */
284 static void
285 xfs_ail_splice(
286 	struct xfs_ail		*ailp,
287 	struct xfs_ail_cursor	*cur,
288 	struct list_head	*list,
289 	xfs_lsn_t		lsn)
290 {
291 	struct xfs_log_item	*lip;
292 
293 	ASSERT(!list_empty(list));
294 
295 	/*
296 	 * Use the cursor to determine the insertion point if one is
297 	 * provided.  If not, or if the one we got is not valid,
298 	 * find the place in the AIL where the items belong.
299 	 */
300 	lip = cur ? cur->item : NULL;
301 	if (!lip || (uintptr_t)lip & 1)
302 		lip = __xfs_trans_ail_cursor_last(ailp, lsn);
303 
304 	/*
305 	 * If a cursor is provided, we know we're processing the AIL
306 	 * in lsn order, and future items to be spliced in will
307 	 * follow the last one being inserted now.  Update the
308 	 * cursor to point to that last item, now while we have a
309 	 * reliable pointer to it.
310 	 */
311 	if (cur)
312 		cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);
313 
314 	/*
315 	 * Finally perform the splice.  Unless the AIL was empty,
316 	 * lip points to the item in the AIL _after_ which the new
317 	 * items should go.  If lip is null the AIL was empty, so
318 	 * the new items go at the head of the AIL.
319 	 */
320 	if (lip)
321 		list_splice(list, &lip->li_ail);
322 	else
323 		list_splice(list, &ailp->ail_head);
324 }
325 
326 /*
327  * Delete the given item from the AIL.  Return a pointer to the item.
328  */
329 static void
330 xfs_ail_delete(
331 	struct xfs_ail		*ailp,
332 	struct xfs_log_item	*lip)
333 {
334 	xfs_ail_check(ailp, lip);
335 	list_del(&lip->li_ail);
336 	xfs_trans_ail_cursor_clear(ailp, lip);
337 }
338 
339 static inline uint
340 xfsaild_push_item(
341 	struct xfs_ail		*ailp,
342 	struct xfs_log_item	*lip)
343 {
344 	/*
345 	 * If log item pinning is enabled, skip the push and track the item as
346 	 * pinned. This can help induce head-behind-tail conditions.
347 	 */
348 	if (XFS_TEST_ERROR(false, ailp->ail_mount, XFS_ERRTAG_LOG_ITEM_PIN))
349 		return XFS_ITEM_PINNED;
350 
351 	/*
352 	 * Consider the item pinned if a push callback is not defined so the
353 	 * caller will force the log. This should only happen for intent items
354 	 * as they are unpinned once the associated done item is committed to
355 	 * the on-disk log.
356 	 */
357 	if (!lip->li_ops->iop_push)
358 		return XFS_ITEM_PINNED;
359 	return lip->li_ops->iop_push(lip, &ailp->ail_buf_list);
360 }
361 
362 static long
363 xfsaild_push(
364 	struct xfs_ail		*ailp)
365 {
366 	xfs_mount_t		*mp = ailp->ail_mount;
367 	struct xfs_ail_cursor	cur;
368 	struct xfs_log_item	*lip;
369 	xfs_lsn_t		lsn;
370 	xfs_lsn_t		target;
371 	long			tout;
372 	int			stuck = 0;
373 	int			flushing = 0;
374 	int			count = 0;
375 
376 	/*
377 	 * If we encountered pinned items or did not finish writing out all
378 	 * buffers the last time we ran, force the log first and wait for it
379 	 * before pushing again.
380 	 */
381 	if (ailp->ail_log_flush && ailp->ail_last_pushed_lsn == 0 &&
382 	    (!list_empty_careful(&ailp->ail_buf_list) ||
383 	     xfs_ail_min_lsn(ailp))) {
384 		ailp->ail_log_flush = 0;
385 
386 		XFS_STATS_INC(mp, xs_push_ail_flush);
387 		xfs_log_force(mp, XFS_LOG_SYNC);
388 	}
389 
390 	spin_lock(&ailp->ail_lock);
391 
392 	/* barrier matches the ail_target update in xfs_ail_push() */
393 	smp_rmb();
394 	target = ailp->ail_target;
395 	ailp->ail_target_prev = target;
396 
397 	lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->ail_last_pushed_lsn);
398 	if (!lip) {
399 		/*
400 		 * If the AIL is empty or our push has reached the end we are
401 		 * done now.
402 		 */
403 		xfs_trans_ail_cursor_done(&cur);
404 		spin_unlock(&ailp->ail_lock);
405 		goto out_done;
406 	}
407 
408 	XFS_STATS_INC(mp, xs_push_ail);
409 
410 	lsn = lip->li_lsn;
411 	while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) {
412 		int	lock_result;
413 
414 		/*
415 		 * Note that iop_push may unlock and reacquire the AIL lock.  We
416 		 * rely on the AIL cursor implementation to be able to deal with
417 		 * the dropped lock.
418 		 */
419 		lock_result = xfsaild_push_item(ailp, lip);
420 		switch (lock_result) {
421 		case XFS_ITEM_SUCCESS:
422 			XFS_STATS_INC(mp, xs_push_ail_success);
423 			trace_xfs_ail_push(lip);
424 
425 			ailp->ail_last_pushed_lsn = lsn;
426 			break;
427 
428 		case XFS_ITEM_FLUSHING:
429 			/*
430 			 * The item or its backing buffer is already beeing
431 			 * flushed.  The typical reason for that is that an
432 			 * inode buffer is locked because we already pushed the
433 			 * updates to it as part of inode clustering.
434 			 *
435 			 * We do not want to to stop flushing just because lots
436 			 * of items are already beeing flushed, but we need to
437 			 * re-try the flushing relatively soon if most of the
438 			 * AIL is beeing flushed.
439 			 */
440 			XFS_STATS_INC(mp, xs_push_ail_flushing);
441 			trace_xfs_ail_flushing(lip);
442 
443 			flushing++;
444 			ailp->ail_last_pushed_lsn = lsn;
445 			break;
446 
447 		case XFS_ITEM_PINNED:
448 			XFS_STATS_INC(mp, xs_push_ail_pinned);
449 			trace_xfs_ail_pinned(lip);
450 
451 			stuck++;
452 			ailp->ail_log_flush++;
453 			break;
454 		case XFS_ITEM_LOCKED:
455 			XFS_STATS_INC(mp, xs_push_ail_locked);
456 			trace_xfs_ail_locked(lip);
457 
458 			stuck++;
459 			break;
460 		default:
461 			ASSERT(0);
462 			break;
463 		}
464 
465 		count++;
466 
467 		/*
468 		 * Are there too many items we can't do anything with?
469 		 *
470 		 * If we we are skipping too many items because we can't flush
471 		 * them or they are already being flushed, we back off and
472 		 * given them time to complete whatever operation is being
473 		 * done. i.e. remove pressure from the AIL while we can't make
474 		 * progress so traversals don't slow down further inserts and
475 		 * removals to/from the AIL.
476 		 *
477 		 * The value of 100 is an arbitrary magic number based on
478 		 * observation.
479 		 */
480 		if (stuck > 100)
481 			break;
482 
483 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
484 		if (lip == NULL)
485 			break;
486 		lsn = lip->li_lsn;
487 	}
488 	xfs_trans_ail_cursor_done(&cur);
489 	spin_unlock(&ailp->ail_lock);
490 
491 	if (xfs_buf_delwri_submit_nowait(&ailp->ail_buf_list))
492 		ailp->ail_log_flush++;
493 
494 	if (!count || XFS_LSN_CMP(lsn, target) >= 0) {
495 out_done:
496 		/*
497 		 * We reached the target or the AIL is empty, so wait a bit
498 		 * longer for I/O to complete and remove pushed items from the
499 		 * AIL before we start the next scan from the start of the AIL.
500 		 */
501 		tout = 50;
502 		ailp->ail_last_pushed_lsn = 0;
503 	} else if (((stuck + flushing) * 100) / count > 90) {
504 		/*
505 		 * Either there is a lot of contention on the AIL or we are
506 		 * stuck due to operations in progress. "Stuck" in this case
507 		 * is defined as >90% of the items we tried to push were stuck.
508 		 *
509 		 * Backoff a bit more to allow some I/O to complete before
510 		 * restarting from the start of the AIL. This prevents us from
511 		 * spinning on the same items, and if they are pinned will all
512 		 * the restart to issue a log force to unpin the stuck items.
513 		 */
514 		tout = 20;
515 		ailp->ail_last_pushed_lsn = 0;
516 	} else {
517 		/*
518 		 * Assume we have more work to do in a short while.
519 		 */
520 		tout = 10;
521 	}
522 
523 	return tout;
524 }
525 
526 static int
527 xfsaild(
528 	void		*data)
529 {
530 	struct xfs_ail	*ailp = data;
531 	long		tout = 0;	/* milliseconds */
532 
533 	current->flags |= PF_MEMALLOC;
534 	set_freezable();
535 
536 	while (1) {
537 		if (tout && tout <= 20)
538 			set_current_state(TASK_KILLABLE);
539 		else
540 			set_current_state(TASK_INTERRUPTIBLE);
541 
542 		/*
543 		 * Check kthread_should_stop() after we set the task state to
544 		 * guarantee that we either see the stop bit and exit or the
545 		 * task state is reset to runnable such that it's not scheduled
546 		 * out indefinitely and detects the stop bit at next iteration.
547 		 * A memory barrier is included in above task state set to
548 		 * serialize again kthread_stop().
549 		 */
550 		if (kthread_should_stop()) {
551 			__set_current_state(TASK_RUNNING);
552 
553 			/*
554 			 * The caller forces out the AIL before stopping the
555 			 * thread in the common case, which means the delwri
556 			 * queue is drained. In the shutdown case, the queue may
557 			 * still hold relogged buffers that haven't been
558 			 * submitted because they were pinned since added to the
559 			 * queue.
560 			 *
561 			 * Log I/O error processing stales the underlying buffer
562 			 * and clears the delwri state, expecting the buf to be
563 			 * removed on the next submission attempt. That won't
564 			 * happen if we're shutting down, so this is the last
565 			 * opportunity to release such buffers from the queue.
566 			 */
567 			ASSERT(list_empty(&ailp->ail_buf_list) ||
568 			       XFS_FORCED_SHUTDOWN(ailp->ail_mount));
569 			xfs_buf_delwri_cancel(&ailp->ail_buf_list);
570 			break;
571 		}
572 
573 		spin_lock(&ailp->ail_lock);
574 
575 		/*
576 		 * Idle if the AIL is empty and we are not racing with a target
577 		 * update. We check the AIL after we set the task to a sleep
578 		 * state to guarantee that we either catch an ail_target update
579 		 * or that a wake_up resets the state to TASK_RUNNING.
580 		 * Otherwise, we run the risk of sleeping indefinitely.
581 		 *
582 		 * The barrier matches the ail_target update in xfs_ail_push().
583 		 */
584 		smp_rmb();
585 		if (!xfs_ail_min(ailp) &&
586 		    ailp->ail_target == ailp->ail_target_prev) {
587 			spin_unlock(&ailp->ail_lock);
588 			freezable_schedule();
589 			tout = 0;
590 			continue;
591 		}
592 		spin_unlock(&ailp->ail_lock);
593 
594 		if (tout)
595 			freezable_schedule_timeout(msecs_to_jiffies(tout));
596 
597 		__set_current_state(TASK_RUNNING);
598 
599 		try_to_freeze();
600 
601 		tout = xfsaild_push(ailp);
602 	}
603 
604 	return 0;
605 }
606 
607 /*
608  * This routine is called to move the tail of the AIL forward.  It does this by
609  * trying to flush items in the AIL whose lsns are below the given
610  * threshold_lsn.
611  *
612  * The push is run asynchronously in a workqueue, which means the caller needs
613  * to handle waiting on the async flush for space to become available.
614  * We don't want to interrupt any push that is in progress, hence we only queue
615  * work if we set the pushing bit approriately.
616  *
617  * We do this unlocked - we only need to know whether there is anything in the
618  * AIL at the time we are called. We don't need to access the contents of
619  * any of the objects, so the lock is not needed.
620  */
621 void
622 xfs_ail_push(
623 	struct xfs_ail		*ailp,
624 	xfs_lsn_t		threshold_lsn)
625 {
626 	struct xfs_log_item	*lip;
627 
628 	lip = xfs_ail_min(ailp);
629 	if (!lip || XFS_FORCED_SHUTDOWN(ailp->ail_mount) ||
630 	    XFS_LSN_CMP(threshold_lsn, ailp->ail_target) <= 0)
631 		return;
632 
633 	/*
634 	 * Ensure that the new target is noticed in push code before it clears
635 	 * the XFS_AIL_PUSHING_BIT.
636 	 */
637 	smp_wmb();
638 	xfs_trans_ail_copy_lsn(ailp, &ailp->ail_target, &threshold_lsn);
639 	smp_wmb();
640 
641 	wake_up_process(ailp->ail_task);
642 }
643 
644 /*
645  * Push out all items in the AIL immediately
646  */
647 void
648 xfs_ail_push_all(
649 	struct xfs_ail  *ailp)
650 {
651 	xfs_lsn_t       threshold_lsn = xfs_ail_max_lsn(ailp);
652 
653 	if (threshold_lsn)
654 		xfs_ail_push(ailp, threshold_lsn);
655 }
656 
657 /*
658  * Push out all items in the AIL immediately and wait until the AIL is empty.
659  */
660 void
661 xfs_ail_push_all_sync(
662 	struct xfs_ail  *ailp)
663 {
664 	struct xfs_log_item	*lip;
665 	DEFINE_WAIT(wait);
666 
667 	spin_lock(&ailp->ail_lock);
668 	while ((lip = xfs_ail_max(ailp)) != NULL) {
669 		prepare_to_wait(&ailp->ail_empty, &wait, TASK_UNINTERRUPTIBLE);
670 		ailp->ail_target = lip->li_lsn;
671 		wake_up_process(ailp->ail_task);
672 		spin_unlock(&ailp->ail_lock);
673 		schedule();
674 		spin_lock(&ailp->ail_lock);
675 	}
676 	spin_unlock(&ailp->ail_lock);
677 
678 	finish_wait(&ailp->ail_empty, &wait);
679 }
680 
681 /*
682  * xfs_trans_ail_update - bulk AIL insertion operation.
683  *
684  * @xfs_trans_ail_update takes an array of log items that all need to be
685  * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
686  * be added.  Otherwise, it will be repositioned  by removing it and re-adding
687  * it to the AIL. If we move the first item in the AIL, update the log tail to
688  * match the new minimum LSN in the AIL.
689  *
690  * This function takes the AIL lock once to execute the update operations on
691  * all the items in the array, and as such should not be called with the AIL
692  * lock held. As a result, once we have the AIL lock, we need to check each log
693  * item LSN to confirm it needs to be moved forward in the AIL.
694  *
695  * To optimise the insert operation, we delete all the items from the AIL in
696  * the first pass, moving them into a temporary list, then splice the temporary
697  * list into the correct position in the AIL. This avoids needing to do an
698  * insert operation on every item.
699  *
700  * This function must be called with the AIL lock held.  The lock is dropped
701  * before returning.
702  */
703 void
704 xfs_trans_ail_update_bulk(
705 	struct xfs_ail		*ailp,
706 	struct xfs_ail_cursor	*cur,
707 	struct xfs_log_item	**log_items,
708 	int			nr_items,
709 	xfs_lsn_t		lsn) __releases(ailp->ail_lock)
710 {
711 	struct xfs_log_item	*mlip;
712 	int			mlip_changed = 0;
713 	int			i;
714 	LIST_HEAD(tmp);
715 
716 	ASSERT(nr_items > 0);		/* Not required, but true. */
717 	mlip = xfs_ail_min(ailp);
718 
719 	for (i = 0; i < nr_items; i++) {
720 		struct xfs_log_item *lip = log_items[i];
721 		if (test_and_set_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
722 			/* check if we really need to move the item */
723 			if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
724 				continue;
725 
726 			trace_xfs_ail_move(lip, lip->li_lsn, lsn);
727 			xfs_ail_delete(ailp, lip);
728 			if (mlip == lip)
729 				mlip_changed = 1;
730 		} else {
731 			trace_xfs_ail_insert(lip, 0, lsn);
732 		}
733 		lip->li_lsn = lsn;
734 		list_add(&lip->li_ail, &tmp);
735 	}
736 
737 	if (!list_empty(&tmp))
738 		xfs_ail_splice(ailp, cur, &tmp, lsn);
739 
740 	if (mlip_changed) {
741 		if (!XFS_FORCED_SHUTDOWN(ailp->ail_mount))
742 			xlog_assign_tail_lsn_locked(ailp->ail_mount);
743 		spin_unlock(&ailp->ail_lock);
744 
745 		xfs_log_space_wake(ailp->ail_mount);
746 	} else {
747 		spin_unlock(&ailp->ail_lock);
748 	}
749 }
750 
751 bool
752 xfs_ail_delete_one(
753 	struct xfs_ail		*ailp,
754 	struct xfs_log_item	*lip)
755 {
756 	struct xfs_log_item	*mlip = xfs_ail_min(ailp);
757 
758 	trace_xfs_ail_delete(lip, mlip->li_lsn, lip->li_lsn);
759 	xfs_ail_delete(ailp, lip);
760 	xfs_clear_li_failed(lip);
761 	clear_bit(XFS_LI_IN_AIL, &lip->li_flags);
762 	lip->li_lsn = 0;
763 
764 	return mlip == lip;
765 }
766 
767 /**
768  * Remove a log items from the AIL
769  *
770  * @xfs_trans_ail_delete_bulk takes an array of log items that all need to
771  * removed from the AIL. The caller is already holding the AIL lock, and done
772  * all the checks necessary to ensure the items passed in via @log_items are
773  * ready for deletion. This includes checking that the items are in the AIL.
774  *
775  * For each log item to be removed, unlink it  from the AIL, clear the IN_AIL
776  * flag from the item and reset the item's lsn to 0. If we remove the first
777  * item in the AIL, update the log tail to match the new minimum LSN in the
778  * AIL.
779  *
780  * This function will not drop the AIL lock until all items are removed from
781  * the AIL to minimise the amount of lock traffic on the AIL. This does not
782  * greatly increase the AIL hold time, but does significantly reduce the amount
783  * of traffic on the lock, especially during IO completion.
784  *
785  * This function must be called with the AIL lock held.  The lock is dropped
786  * before returning.
787  */
788 void
789 xfs_trans_ail_delete(
790 	struct xfs_ail		*ailp,
791 	struct xfs_log_item	*lip,
792 	int			shutdown_type) __releases(ailp->ail_lock)
793 {
794 	struct xfs_mount	*mp = ailp->ail_mount;
795 	bool			mlip_changed;
796 
797 	if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
798 		spin_unlock(&ailp->ail_lock);
799 		if (!XFS_FORCED_SHUTDOWN(mp)) {
800 			xfs_alert_tag(mp, XFS_PTAG_AILDELETE,
801 	"%s: attempting to delete a log item that is not in the AIL",
802 					__func__);
803 			xfs_force_shutdown(mp, shutdown_type);
804 		}
805 		return;
806 	}
807 
808 	mlip_changed = xfs_ail_delete_one(ailp, lip);
809 	if (mlip_changed) {
810 		if (!XFS_FORCED_SHUTDOWN(mp))
811 			xlog_assign_tail_lsn_locked(mp);
812 		if (list_empty(&ailp->ail_head))
813 			wake_up_all(&ailp->ail_empty);
814 	}
815 
816 	spin_unlock(&ailp->ail_lock);
817 	if (mlip_changed)
818 		xfs_log_space_wake(ailp->ail_mount);
819 }
820 
821 int
822 xfs_trans_ail_init(
823 	xfs_mount_t	*mp)
824 {
825 	struct xfs_ail	*ailp;
826 
827 	ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL);
828 	if (!ailp)
829 		return -ENOMEM;
830 
831 	ailp->ail_mount = mp;
832 	INIT_LIST_HEAD(&ailp->ail_head);
833 	INIT_LIST_HEAD(&ailp->ail_cursors);
834 	spin_lock_init(&ailp->ail_lock);
835 	INIT_LIST_HEAD(&ailp->ail_buf_list);
836 	init_waitqueue_head(&ailp->ail_empty);
837 
838 	ailp->ail_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
839 			ailp->ail_mount->m_fsname);
840 	if (IS_ERR(ailp->ail_task))
841 		goto out_free_ailp;
842 
843 	mp->m_ail = ailp;
844 	return 0;
845 
846 out_free_ailp:
847 	kmem_free(ailp);
848 	return -ENOMEM;
849 }
850 
851 void
852 xfs_trans_ail_destroy(
853 	xfs_mount_t	*mp)
854 {
855 	struct xfs_ail	*ailp = mp->m_ail;
856 
857 	kthread_stop(ailp->ail_task);
858 	kmem_free(ailp);
859 }
860