1 /* 2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. 3 * Copyright (C) 2010 Red Hat, Inc. 4 * All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it would be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 */ 19 #include "xfs.h" 20 #include "xfs_fs.h" 21 #include "xfs_types.h" 22 #include "xfs_log.h" 23 #include "xfs_trans.h" 24 #include "xfs_sb.h" 25 #include "xfs_ag.h" 26 #include "xfs_mount.h" 27 #include "xfs_error.h" 28 #include "xfs_da_btree.h" 29 #include "xfs_bmap_btree.h" 30 #include "xfs_alloc_btree.h" 31 #include "xfs_ialloc_btree.h" 32 #include "xfs_dinode.h" 33 #include "xfs_inode.h" 34 #include "xfs_btree.h" 35 #include "xfs_ialloc.h" 36 #include "xfs_alloc.h" 37 #include "xfs_extent_busy.h" 38 #include "xfs_bmap.h" 39 #include "xfs_quota.h" 40 #include "xfs_qm.h" 41 #include "xfs_trans_priv.h" 42 #include "xfs_trans_space.h" 43 #include "xfs_inode_item.h" 44 #include "xfs_log_priv.h" 45 #include "xfs_buf_item.h" 46 #include "xfs_trace.h" 47 48 kmem_zone_t *xfs_trans_zone; 49 kmem_zone_t *xfs_log_item_desc_zone; 50 51 /* 52 * A buffer has a format structure overhead in the log in addition 53 * to the data, so we need to take this into account when reserving 54 * space in a transaction for a buffer. Round the space required up 55 * to a multiple of 128 bytes so that we don't change the historical 56 * reservation that has been used for this overhead. 57 */ 58 STATIC uint 59 xfs_buf_log_overhead(void) 60 { 61 return round_up(sizeof(struct xlog_op_header) + 62 sizeof(struct xfs_buf_log_format), 128); 63 } 64 65 /* 66 * Calculate out transaction log reservation per item in bytes. 67 * 68 * The nbufs argument is used to indicate the number of items that 69 * will be changed in a transaction. size is used to tell how many 70 * bytes should be reserved per item. 71 */ 72 STATIC uint 73 xfs_calc_buf_res( 74 uint nbufs, 75 uint size) 76 { 77 return nbufs * (size + xfs_buf_log_overhead()); 78 } 79 80 /* 81 * Various log reservation values. 82 * 83 * These are based on the size of the file system block because that is what 84 * most transactions manipulate. Each adds in an additional 128 bytes per 85 * item logged to try to account for the overhead of the transaction mechanism. 86 * 87 * Note: Most of the reservations underestimate the number of allocation 88 * groups into which they could free extents in the xfs_bmap_finish() call. 89 * This is because the number in the worst case is quite high and quite 90 * unusual. In order to fix this we need to change xfs_bmap_finish() to free 91 * extents in only a single AG at a time. This will require changes to the 92 * EFI code as well, however, so that the EFI for the extents not freed is 93 * logged again in each transaction. See SGI PV #261917. 94 * 95 * Reservation functions here avoid a huge stack in xfs_trans_init due to 96 * register overflow from temporaries in the calculations. 97 */ 98 99 100 /* 101 * In a write transaction we can allocate a maximum of 2 102 * extents. This gives: 103 * the inode getting the new extents: inode size 104 * the inode's bmap btree: max depth * block size 105 * the agfs of the ags from which the extents are allocated: 2 * sector 106 * the superblock free block counter: sector size 107 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size 108 * And the bmap_finish transaction can free bmap blocks in a join: 109 * the agfs of the ags containing the blocks: 2 * sector size 110 * the agfls of the ags containing the blocks: 2 * sector size 111 * the super block free block counter: sector size 112 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size 113 */ 114 STATIC uint 115 xfs_calc_write_reservation( 116 struct xfs_mount *mp) 117 { 118 return XFS_DQUOT_LOGRES(mp) + 119 MAX((xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) + 120 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK), 121 XFS_FSB_TO_B(mp, 1)) + 122 xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) + 123 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 2), 124 XFS_FSB_TO_B(mp, 1))), 125 (xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) + 126 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 2), 127 XFS_FSB_TO_B(mp, 1)))); 128 } 129 130 /* 131 * In truncating a file we free up to two extents at once. We can modify: 132 * the inode being truncated: inode size 133 * the inode's bmap btree: (max depth + 1) * block size 134 * And the bmap_finish transaction can free the blocks and bmap blocks: 135 * the agf for each of the ags: 4 * sector size 136 * the agfl for each of the ags: 4 * sector size 137 * the super block to reflect the freed blocks: sector size 138 * worst case split in allocation btrees per extent assuming 4 extents: 139 * 4 exts * 2 trees * (2 * max depth - 1) * block size 140 * the inode btree: max depth * blocksize 141 * the allocation btrees: 2 trees * (max depth - 1) * block size 142 */ 143 STATIC uint 144 xfs_calc_itruncate_reservation( 145 struct xfs_mount *mp) 146 { 147 return XFS_DQUOT_LOGRES(mp) + 148 MAX((xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) + 149 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1, 150 XFS_FSB_TO_B(mp, 1))), 151 (xfs_calc_buf_res(9, mp->m_sb.sb_sectsize) + 152 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 4), 153 XFS_FSB_TO_B(mp, 1)) + 154 xfs_calc_buf_res(5, 0) + 155 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1), 156 XFS_FSB_TO_B(mp, 1)) + 157 xfs_calc_buf_res(2 + XFS_IALLOC_BLOCKS(mp) + 158 mp->m_in_maxlevels, 0))); 159 } 160 161 /* 162 * In renaming a files we can modify: 163 * the four inodes involved: 4 * inode size 164 * the two directory btrees: 2 * (max depth + v2) * dir block size 165 * the two directory bmap btrees: 2 * max depth * block size 166 * And the bmap_finish transaction can free dir and bmap blocks (two sets 167 * of bmap blocks) giving: 168 * the agf for the ags in which the blocks live: 3 * sector size 169 * the agfl for the ags in which the blocks live: 3 * sector size 170 * the superblock for the free block count: sector size 171 * the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size 172 */ 173 STATIC uint 174 xfs_calc_rename_reservation( 175 struct xfs_mount *mp) 176 { 177 return XFS_DQUOT_LOGRES(mp) + 178 MAX((xfs_calc_buf_res(4, mp->m_sb.sb_inodesize) + 179 xfs_calc_buf_res(2 * XFS_DIROP_LOG_COUNT(mp), 180 XFS_FSB_TO_B(mp, 1))), 181 (xfs_calc_buf_res(7, mp->m_sb.sb_sectsize) + 182 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 3), 183 XFS_FSB_TO_B(mp, 1)))); 184 } 185 186 /* 187 * For creating a link to an inode: 188 * the parent directory inode: inode size 189 * the linked inode: inode size 190 * the directory btree could split: (max depth + v2) * dir block size 191 * the directory bmap btree could join or split: (max depth + v2) * blocksize 192 * And the bmap_finish transaction can free some bmap blocks giving: 193 * the agf for the ag in which the blocks live: sector size 194 * the agfl for the ag in which the blocks live: sector size 195 * the superblock for the free block count: sector size 196 * the allocation btrees: 2 trees * (2 * max depth - 1) * block size 197 */ 198 STATIC uint 199 xfs_calc_link_reservation( 200 struct xfs_mount *mp) 201 { 202 return XFS_DQUOT_LOGRES(mp) + 203 MAX((xfs_calc_buf_res(2, mp->m_sb.sb_inodesize) + 204 xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp), 205 XFS_FSB_TO_B(mp, 1))), 206 (xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) + 207 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1), 208 XFS_FSB_TO_B(mp, 1)))); 209 } 210 211 /* 212 * For removing a directory entry we can modify: 213 * the parent directory inode: inode size 214 * the removed inode: inode size 215 * the directory btree could join: (max depth + v2) * dir block size 216 * the directory bmap btree could join or split: (max depth + v2) * blocksize 217 * And the bmap_finish transaction can free the dir and bmap blocks giving: 218 * the agf for the ag in which the blocks live: 2 * sector size 219 * the agfl for the ag in which the blocks live: 2 * sector size 220 * the superblock for the free block count: sector size 221 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size 222 */ 223 STATIC uint 224 xfs_calc_remove_reservation( 225 struct xfs_mount *mp) 226 { 227 return XFS_DQUOT_LOGRES(mp) + 228 MAX((xfs_calc_buf_res(2, mp->m_sb.sb_inodesize) + 229 xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp), 230 XFS_FSB_TO_B(mp, 1))), 231 (xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) + 232 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 2), 233 XFS_FSB_TO_B(mp, 1)))); 234 } 235 236 /* 237 * For symlink we can modify: 238 * the parent directory inode: inode size 239 * the new inode: inode size 240 * the inode btree entry: 1 block 241 * the directory btree: (max depth + v2) * dir block size 242 * the directory inode's bmap btree: (max depth + v2) * block size 243 * the blocks for the symlink: 1 kB 244 * Or in the first xact we allocate some inodes giving: 245 * the agi and agf of the ag getting the new inodes: 2 * sectorsize 246 * the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize 247 * the inode btree: max depth * blocksize 248 * the allocation btrees: 2 trees * (2 * max depth - 1) * block size 249 */ 250 STATIC uint 251 xfs_calc_symlink_reservation( 252 struct xfs_mount *mp) 253 { 254 return XFS_DQUOT_LOGRES(mp) + 255 MAX((xfs_calc_buf_res(2, mp->m_sb.sb_inodesize) + 256 xfs_calc_buf_res(1, XFS_FSB_TO_B(mp, 1)) + 257 xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp), 258 XFS_FSB_TO_B(mp, 1)) + 259 xfs_calc_buf_res(1, 1024)), 260 (xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) + 261 xfs_calc_buf_res(XFS_IALLOC_BLOCKS(mp), 262 XFS_FSB_TO_B(mp, 1)) + 263 xfs_calc_buf_res(mp->m_in_maxlevels, 264 XFS_FSB_TO_B(mp, 1)) + 265 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1), 266 XFS_FSB_TO_B(mp, 1)))); 267 } 268 269 /* 270 * For create we can modify: 271 * the parent directory inode: inode size 272 * the new inode: inode size 273 * the inode btree entry: block size 274 * the superblock for the nlink flag: sector size 275 * the directory btree: (max depth + v2) * dir block size 276 * the directory inode's bmap btree: (max depth + v2) * block size 277 * Or in the first xact we allocate some inodes giving: 278 * the agi and agf of the ag getting the new inodes: 2 * sectorsize 279 * the superblock for the nlink flag: sector size 280 * the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize 281 * the inode btree: max depth * blocksize 282 * the allocation btrees: 2 trees * (max depth - 1) * block size 283 */ 284 STATIC uint 285 xfs_calc_create_reservation( 286 struct xfs_mount *mp) 287 { 288 return XFS_DQUOT_LOGRES(mp) + 289 MAX((xfs_calc_buf_res(2, mp->m_sb.sb_inodesize) + 290 xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) + 291 (uint)XFS_FSB_TO_B(mp, 1) + 292 xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp), 293 XFS_FSB_TO_B(mp, 1))), 294 (xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) + 295 mp->m_sb.sb_sectsize + 296 xfs_calc_buf_res(XFS_IALLOC_BLOCKS(mp), 297 XFS_FSB_TO_B(mp, 1)) + 298 xfs_calc_buf_res(mp->m_in_maxlevels, 299 XFS_FSB_TO_B(mp, 1)) + 300 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1), 301 XFS_FSB_TO_B(mp, 1)))); 302 } 303 304 /* 305 * Making a new directory is the same as creating a new file. 306 */ 307 STATIC uint 308 xfs_calc_mkdir_reservation( 309 struct xfs_mount *mp) 310 { 311 return xfs_calc_create_reservation(mp); 312 } 313 314 /* 315 * In freeing an inode we can modify: 316 * the inode being freed: inode size 317 * the super block free inode counter: sector size 318 * the agi hash list and counters: sector size 319 * the inode btree entry: block size 320 * the on disk inode before ours in the agi hash list: inode cluster size 321 * the inode btree: max depth * blocksize 322 * the allocation btrees: 2 trees * (max depth - 1) * block size 323 */ 324 STATIC uint 325 xfs_calc_ifree_reservation( 326 struct xfs_mount *mp) 327 { 328 return XFS_DQUOT_LOGRES(mp) + 329 xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) + 330 xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) + 331 xfs_calc_buf_res(1, XFS_FSB_TO_B(mp, 1)) + 332 MAX((__uint16_t)XFS_FSB_TO_B(mp, 1), 333 XFS_INODE_CLUSTER_SIZE(mp)) + 334 xfs_calc_buf_res(1, 0) + 335 xfs_calc_buf_res(2 + XFS_IALLOC_BLOCKS(mp) + 336 mp->m_in_maxlevels, 0) + 337 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1), 338 XFS_FSB_TO_B(mp, 1)); 339 } 340 341 /* 342 * When only changing the inode we log the inode and possibly the superblock 343 * We also add a bit of slop for the transaction stuff. 344 */ 345 STATIC uint 346 xfs_calc_ichange_reservation( 347 struct xfs_mount *mp) 348 { 349 return XFS_DQUOT_LOGRES(mp) + 350 mp->m_sb.sb_inodesize + 351 mp->m_sb.sb_sectsize + 352 512; 353 354 } 355 356 /* 357 * Growing the data section of the filesystem. 358 * superblock 359 * agi and agf 360 * allocation btrees 361 */ 362 STATIC uint 363 xfs_calc_growdata_reservation( 364 struct xfs_mount *mp) 365 { 366 return xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) + 367 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1), 368 XFS_FSB_TO_B(mp, 1)); 369 } 370 371 /* 372 * Growing the rt section of the filesystem. 373 * In the first set of transactions (ALLOC) we allocate space to the 374 * bitmap or summary files. 375 * superblock: sector size 376 * agf of the ag from which the extent is allocated: sector size 377 * bmap btree for bitmap/summary inode: max depth * blocksize 378 * bitmap/summary inode: inode size 379 * allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize 380 */ 381 STATIC uint 382 xfs_calc_growrtalloc_reservation( 383 struct xfs_mount *mp) 384 { 385 return xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) + 386 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK), 387 XFS_FSB_TO_B(mp, 1)) + 388 xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) + 389 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1), 390 XFS_FSB_TO_B(mp, 1)); 391 } 392 393 /* 394 * Growing the rt section of the filesystem. 395 * In the second set of transactions (ZERO) we zero the new metadata blocks. 396 * one bitmap/summary block: blocksize 397 */ 398 STATIC uint 399 xfs_calc_growrtzero_reservation( 400 struct xfs_mount *mp) 401 { 402 return xfs_calc_buf_res(1, mp->m_sb.sb_blocksize); 403 } 404 405 /* 406 * Growing the rt section of the filesystem. 407 * In the third set of transactions (FREE) we update metadata without 408 * allocating any new blocks. 409 * superblock: sector size 410 * bitmap inode: inode size 411 * summary inode: inode size 412 * one bitmap block: blocksize 413 * summary blocks: new summary size 414 */ 415 STATIC uint 416 xfs_calc_growrtfree_reservation( 417 struct xfs_mount *mp) 418 { 419 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) + 420 xfs_calc_buf_res(2, mp->m_sb.sb_inodesize) + 421 xfs_calc_buf_res(1, mp->m_sb.sb_blocksize) + 422 xfs_calc_buf_res(1, mp->m_rsumsize); 423 } 424 425 /* 426 * Logging the inode modification timestamp on a synchronous write. 427 * inode 428 */ 429 STATIC uint 430 xfs_calc_swrite_reservation( 431 struct xfs_mount *mp) 432 { 433 return xfs_calc_buf_res(1, mp->m_sb.sb_inodesize); 434 } 435 436 /* 437 * Logging the inode mode bits when writing a setuid/setgid file 438 * inode 439 */ 440 STATIC uint 441 xfs_calc_writeid_reservation(xfs_mount_t *mp) 442 { 443 return xfs_calc_buf_res(1, mp->m_sb.sb_inodesize); 444 } 445 446 /* 447 * Converting the inode from non-attributed to attributed. 448 * the inode being converted: inode size 449 * agf block and superblock (for block allocation) 450 * the new block (directory sized) 451 * bmap blocks for the new directory block 452 * allocation btrees 453 */ 454 STATIC uint 455 xfs_calc_addafork_reservation( 456 struct xfs_mount *mp) 457 { 458 return XFS_DQUOT_LOGRES(mp) + 459 xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) + 460 xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) + 461 xfs_calc_buf_res(1, mp->m_dirblksize) + 462 xfs_calc_buf_res(XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1, 463 XFS_FSB_TO_B(mp, 1)) + 464 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1), 465 XFS_FSB_TO_B(mp, 1)); 466 } 467 468 /* 469 * Removing the attribute fork of a file 470 * the inode being truncated: inode size 471 * the inode's bmap btree: max depth * block size 472 * And the bmap_finish transaction can free the blocks and bmap blocks: 473 * the agf for each of the ags: 4 * sector size 474 * the agfl for each of the ags: 4 * sector size 475 * the super block to reflect the freed blocks: sector size 476 * worst case split in allocation btrees per extent assuming 4 extents: 477 * 4 exts * 2 trees * (2 * max depth - 1) * block size 478 */ 479 STATIC uint 480 xfs_calc_attrinval_reservation( 481 struct xfs_mount *mp) 482 { 483 return MAX((xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) + 484 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK), 485 XFS_FSB_TO_B(mp, 1))), 486 (xfs_calc_buf_res(9, mp->m_sb.sb_sectsize) + 487 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 4), 488 XFS_FSB_TO_B(mp, 1)))); 489 } 490 491 /* 492 * Setting an attribute at mount time. 493 * the inode getting the attribute 494 * the superblock for allocations 495 * the agfs extents are allocated from 496 * the attribute btree * max depth 497 * the inode allocation btree 498 * Since attribute transaction space is dependent on the size of the attribute, 499 * the calculation is done partially at mount time and partially at runtime(see 500 * below). 501 */ 502 STATIC uint 503 xfs_calc_attrsetm_reservation( 504 struct xfs_mount *mp) 505 { 506 return XFS_DQUOT_LOGRES(mp) + 507 xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) + 508 xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) + 509 xfs_calc_buf_res(XFS_DA_NODE_MAXDEPTH, XFS_FSB_TO_B(mp, 1)); 510 } 511 512 /* 513 * Setting an attribute at runtime, transaction space unit per block. 514 * the superblock for allocations: sector size 515 * the inode bmap btree could join or split: max depth * block size 516 * Since the runtime attribute transaction space is dependent on the total 517 * blocks needed for the 1st bmap, here we calculate out the space unit for 518 * one block so that the caller could figure out the total space according 519 * to the attibute extent length in blocks by: ext * XFS_ATTRSETRT_LOG_RES(mp). 520 */ 521 STATIC uint 522 xfs_calc_attrsetrt_reservation( 523 struct xfs_mount *mp) 524 { 525 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) + 526 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK), 527 XFS_FSB_TO_B(mp, 1)); 528 } 529 530 /* 531 * Removing an attribute. 532 * the inode: inode size 533 * the attribute btree could join: max depth * block size 534 * the inode bmap btree could join or split: max depth * block size 535 * And the bmap_finish transaction can free the attr blocks freed giving: 536 * the agf for the ag in which the blocks live: 2 * sector size 537 * the agfl for the ag in which the blocks live: 2 * sector size 538 * the superblock for the free block count: sector size 539 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size 540 */ 541 STATIC uint 542 xfs_calc_attrrm_reservation( 543 struct xfs_mount *mp) 544 { 545 return XFS_DQUOT_LOGRES(mp) + 546 MAX((xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) + 547 xfs_calc_buf_res(XFS_DA_NODE_MAXDEPTH, 548 XFS_FSB_TO_B(mp, 1)) + 549 (uint)XFS_FSB_TO_B(mp, 550 XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) + 551 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK), 0)), 552 (xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) + 553 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 2), 554 XFS_FSB_TO_B(mp, 1)))); 555 } 556 557 /* 558 * Clearing a bad agino number in an agi hash bucket. 559 */ 560 STATIC uint 561 xfs_calc_clear_agi_bucket_reservation( 562 struct xfs_mount *mp) 563 { 564 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize); 565 } 566 567 /* 568 * Clearing the quotaflags in the superblock. 569 * the super block for changing quota flags: sector size 570 */ 571 STATIC uint 572 xfs_calc_qm_sbchange_reservation( 573 struct xfs_mount *mp) 574 { 575 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize); 576 } 577 578 /* 579 * Adjusting quota limits. 580 * the xfs_disk_dquot_t: sizeof(struct xfs_disk_dquot) 581 */ 582 STATIC uint 583 xfs_calc_qm_setqlim_reservation( 584 struct xfs_mount *mp) 585 { 586 return xfs_calc_buf_res(1, sizeof(struct xfs_disk_dquot)); 587 } 588 589 /* 590 * Allocating quota on disk if needed. 591 * the write transaction log space: XFS_WRITE_LOG_RES(mp) 592 * the unit of quota allocation: one system block size 593 */ 594 STATIC uint 595 xfs_calc_qm_dqalloc_reservation( 596 struct xfs_mount *mp) 597 { 598 return XFS_WRITE_LOG_RES(mp) + 599 xfs_calc_buf_res(1, 600 XFS_FSB_TO_B(mp, XFS_DQUOT_CLUSTER_SIZE_FSB) - 1); 601 } 602 603 /* 604 * Turning off quotas. 605 * the xfs_qoff_logitem_t: sizeof(struct xfs_qoff_logitem) * 2 606 * the superblock for the quota flags: sector size 607 */ 608 STATIC uint 609 xfs_calc_qm_quotaoff_reservation( 610 struct xfs_mount *mp) 611 { 612 return sizeof(struct xfs_qoff_logitem) * 2 + 613 xfs_calc_buf_res(1, mp->m_sb.sb_sectsize); 614 } 615 616 /* 617 * End of turning off quotas. 618 * the xfs_qoff_logitem_t: sizeof(struct xfs_qoff_logitem) * 2 619 */ 620 STATIC uint 621 xfs_calc_qm_quotaoff_end_reservation( 622 struct xfs_mount *mp) 623 { 624 return sizeof(struct xfs_qoff_logitem) * 2; 625 } 626 627 /* 628 * Syncing the incore super block changes to disk. 629 * the super block to reflect the changes: sector size 630 */ 631 STATIC uint 632 xfs_calc_sb_reservation( 633 struct xfs_mount *mp) 634 { 635 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize); 636 } 637 638 /* 639 * Initialize the precomputed transaction reservation values 640 * in the mount structure. 641 */ 642 void 643 xfs_trans_init( 644 struct xfs_mount *mp) 645 { 646 struct xfs_trans_reservations *resp = &mp->m_reservations; 647 648 resp->tr_write = xfs_calc_write_reservation(mp); 649 resp->tr_itruncate = xfs_calc_itruncate_reservation(mp); 650 resp->tr_rename = xfs_calc_rename_reservation(mp); 651 resp->tr_link = xfs_calc_link_reservation(mp); 652 resp->tr_remove = xfs_calc_remove_reservation(mp); 653 resp->tr_symlink = xfs_calc_symlink_reservation(mp); 654 resp->tr_create = xfs_calc_create_reservation(mp); 655 resp->tr_mkdir = xfs_calc_mkdir_reservation(mp); 656 resp->tr_ifree = xfs_calc_ifree_reservation(mp); 657 resp->tr_ichange = xfs_calc_ichange_reservation(mp); 658 resp->tr_growdata = xfs_calc_growdata_reservation(mp); 659 resp->tr_swrite = xfs_calc_swrite_reservation(mp); 660 resp->tr_writeid = xfs_calc_writeid_reservation(mp); 661 resp->tr_addafork = xfs_calc_addafork_reservation(mp); 662 resp->tr_attrinval = xfs_calc_attrinval_reservation(mp); 663 resp->tr_attrsetm = xfs_calc_attrsetm_reservation(mp); 664 resp->tr_attrsetrt = xfs_calc_attrsetrt_reservation(mp); 665 resp->tr_attrrm = xfs_calc_attrrm_reservation(mp); 666 resp->tr_clearagi = xfs_calc_clear_agi_bucket_reservation(mp); 667 resp->tr_growrtalloc = xfs_calc_growrtalloc_reservation(mp); 668 resp->tr_growrtzero = xfs_calc_growrtzero_reservation(mp); 669 resp->tr_growrtfree = xfs_calc_growrtfree_reservation(mp); 670 resp->tr_qm_sbchange = xfs_calc_qm_sbchange_reservation(mp); 671 resp->tr_qm_setqlim = xfs_calc_qm_setqlim_reservation(mp); 672 resp->tr_qm_dqalloc = xfs_calc_qm_dqalloc_reservation(mp); 673 resp->tr_qm_quotaoff = xfs_calc_qm_quotaoff_reservation(mp); 674 resp->tr_qm_equotaoff = xfs_calc_qm_quotaoff_end_reservation(mp); 675 resp->tr_sb = xfs_calc_sb_reservation(mp); 676 } 677 678 /* 679 * This routine is called to allocate a transaction structure. 680 * The type parameter indicates the type of the transaction. These 681 * are enumerated in xfs_trans.h. 682 * 683 * Dynamically allocate the transaction structure from the transaction 684 * zone, initialize it, and return it to the caller. 685 */ 686 xfs_trans_t * 687 xfs_trans_alloc( 688 xfs_mount_t *mp, 689 uint type) 690 { 691 xfs_trans_t *tp; 692 693 sb_start_intwrite(mp->m_super); 694 tp = _xfs_trans_alloc(mp, type, KM_SLEEP); 695 tp->t_flags |= XFS_TRANS_FREEZE_PROT; 696 return tp; 697 } 698 699 xfs_trans_t * 700 _xfs_trans_alloc( 701 xfs_mount_t *mp, 702 uint type, 703 xfs_km_flags_t memflags) 704 { 705 xfs_trans_t *tp; 706 707 WARN_ON(mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE); 708 atomic_inc(&mp->m_active_trans); 709 710 tp = kmem_zone_zalloc(xfs_trans_zone, memflags); 711 tp->t_magic = XFS_TRANS_MAGIC; 712 tp->t_type = type; 713 tp->t_mountp = mp; 714 INIT_LIST_HEAD(&tp->t_items); 715 INIT_LIST_HEAD(&tp->t_busy); 716 return tp; 717 } 718 719 /* 720 * Free the transaction structure. If there is more clean up 721 * to do when the structure is freed, add it here. 722 */ 723 STATIC void 724 xfs_trans_free( 725 struct xfs_trans *tp) 726 { 727 xfs_extent_busy_sort(&tp->t_busy); 728 xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false); 729 730 atomic_dec(&tp->t_mountp->m_active_trans); 731 if (tp->t_flags & XFS_TRANS_FREEZE_PROT) 732 sb_end_intwrite(tp->t_mountp->m_super); 733 xfs_trans_free_dqinfo(tp); 734 kmem_zone_free(xfs_trans_zone, tp); 735 } 736 737 /* 738 * This is called to create a new transaction which will share the 739 * permanent log reservation of the given transaction. The remaining 740 * unused block and rt extent reservations are also inherited. This 741 * implies that the original transaction is no longer allowed to allocate 742 * blocks. Locks and log items, however, are no inherited. They must 743 * be added to the new transaction explicitly. 744 */ 745 xfs_trans_t * 746 xfs_trans_dup( 747 xfs_trans_t *tp) 748 { 749 xfs_trans_t *ntp; 750 751 ntp = kmem_zone_zalloc(xfs_trans_zone, KM_SLEEP); 752 753 /* 754 * Initialize the new transaction structure. 755 */ 756 ntp->t_magic = XFS_TRANS_MAGIC; 757 ntp->t_type = tp->t_type; 758 ntp->t_mountp = tp->t_mountp; 759 INIT_LIST_HEAD(&ntp->t_items); 760 INIT_LIST_HEAD(&ntp->t_busy); 761 762 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 763 ASSERT(tp->t_ticket != NULL); 764 765 ntp->t_flags = XFS_TRANS_PERM_LOG_RES | 766 (tp->t_flags & XFS_TRANS_RESERVE) | 767 (tp->t_flags & XFS_TRANS_FREEZE_PROT); 768 /* We gave our writer reference to the new transaction */ 769 tp->t_flags &= ~XFS_TRANS_FREEZE_PROT; 770 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket); 771 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used; 772 tp->t_blk_res = tp->t_blk_res_used; 773 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used; 774 tp->t_rtx_res = tp->t_rtx_res_used; 775 ntp->t_pflags = tp->t_pflags; 776 777 xfs_trans_dup_dqinfo(tp, ntp); 778 779 atomic_inc(&tp->t_mountp->m_active_trans); 780 return ntp; 781 } 782 783 /* 784 * This is called to reserve free disk blocks and log space for the 785 * given transaction. This must be done before allocating any resources 786 * within the transaction. 787 * 788 * This will return ENOSPC if there are not enough blocks available. 789 * It will sleep waiting for available log space. 790 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which 791 * is used by long running transactions. If any one of the reservations 792 * fails then they will all be backed out. 793 * 794 * This does not do quota reservations. That typically is done by the 795 * caller afterwards. 796 */ 797 int 798 xfs_trans_reserve( 799 xfs_trans_t *tp, 800 uint blocks, 801 uint logspace, 802 uint rtextents, 803 uint flags, 804 uint logcount) 805 { 806 int error = 0; 807 int rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0; 808 809 /* Mark this thread as being in a transaction */ 810 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS); 811 812 /* 813 * Attempt to reserve the needed disk blocks by decrementing 814 * the number needed from the number available. This will 815 * fail if the count would go below zero. 816 */ 817 if (blocks > 0) { 818 error = xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS, 819 -((int64_t)blocks), rsvd); 820 if (error != 0) { 821 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 822 return (XFS_ERROR(ENOSPC)); 823 } 824 tp->t_blk_res += blocks; 825 } 826 827 /* 828 * Reserve the log space needed for this transaction. 829 */ 830 if (logspace > 0) { 831 bool permanent = false; 832 833 ASSERT(tp->t_log_res == 0 || tp->t_log_res == logspace); 834 ASSERT(tp->t_log_count == 0 || tp->t_log_count == logcount); 835 836 if (flags & XFS_TRANS_PERM_LOG_RES) { 837 tp->t_flags |= XFS_TRANS_PERM_LOG_RES; 838 permanent = true; 839 } else { 840 ASSERT(tp->t_ticket == NULL); 841 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES)); 842 } 843 844 if (tp->t_ticket != NULL) { 845 ASSERT(flags & XFS_TRANS_PERM_LOG_RES); 846 error = xfs_log_regrant(tp->t_mountp, tp->t_ticket); 847 } else { 848 error = xfs_log_reserve(tp->t_mountp, logspace, 849 logcount, &tp->t_ticket, 850 XFS_TRANSACTION, permanent, 851 tp->t_type); 852 } 853 854 if (error) 855 goto undo_blocks; 856 857 tp->t_log_res = logspace; 858 tp->t_log_count = logcount; 859 } 860 861 /* 862 * Attempt to reserve the needed realtime extents by decrementing 863 * the number needed from the number available. This will 864 * fail if the count would go below zero. 865 */ 866 if (rtextents > 0) { 867 error = xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FREXTENTS, 868 -((int64_t)rtextents), rsvd); 869 if (error) { 870 error = XFS_ERROR(ENOSPC); 871 goto undo_log; 872 } 873 tp->t_rtx_res += rtextents; 874 } 875 876 return 0; 877 878 /* 879 * Error cases jump to one of these labels to undo any 880 * reservations which have already been performed. 881 */ 882 undo_log: 883 if (logspace > 0) { 884 int log_flags; 885 886 if (flags & XFS_TRANS_PERM_LOG_RES) { 887 log_flags = XFS_LOG_REL_PERM_RESERV; 888 } else { 889 log_flags = 0; 890 } 891 xfs_log_done(tp->t_mountp, tp->t_ticket, NULL, log_flags); 892 tp->t_ticket = NULL; 893 tp->t_log_res = 0; 894 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES; 895 } 896 897 undo_blocks: 898 if (blocks > 0) { 899 xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS, 900 (int64_t)blocks, rsvd); 901 tp->t_blk_res = 0; 902 } 903 904 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 905 906 return error; 907 } 908 909 /* 910 * Record the indicated change to the given field for application 911 * to the file system's superblock when the transaction commits. 912 * For now, just store the change in the transaction structure. 913 * 914 * Mark the transaction structure to indicate that the superblock 915 * needs to be updated before committing. 916 * 917 * Because we may not be keeping track of allocated/free inodes and 918 * used filesystem blocks in the superblock, we do not mark the 919 * superblock dirty in this transaction if we modify these fields. 920 * We still need to update the transaction deltas so that they get 921 * applied to the incore superblock, but we don't want them to 922 * cause the superblock to get locked and logged if these are the 923 * only fields in the superblock that the transaction modifies. 924 */ 925 void 926 xfs_trans_mod_sb( 927 xfs_trans_t *tp, 928 uint field, 929 int64_t delta) 930 { 931 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY); 932 xfs_mount_t *mp = tp->t_mountp; 933 934 switch (field) { 935 case XFS_TRANS_SB_ICOUNT: 936 tp->t_icount_delta += delta; 937 if (xfs_sb_version_haslazysbcount(&mp->m_sb)) 938 flags &= ~XFS_TRANS_SB_DIRTY; 939 break; 940 case XFS_TRANS_SB_IFREE: 941 tp->t_ifree_delta += delta; 942 if (xfs_sb_version_haslazysbcount(&mp->m_sb)) 943 flags &= ~XFS_TRANS_SB_DIRTY; 944 break; 945 case XFS_TRANS_SB_FDBLOCKS: 946 /* 947 * Track the number of blocks allocated in the 948 * transaction. Make sure it does not exceed the 949 * number reserved. 950 */ 951 if (delta < 0) { 952 tp->t_blk_res_used += (uint)-delta; 953 ASSERT(tp->t_blk_res_used <= tp->t_blk_res); 954 } 955 tp->t_fdblocks_delta += delta; 956 if (xfs_sb_version_haslazysbcount(&mp->m_sb)) 957 flags &= ~XFS_TRANS_SB_DIRTY; 958 break; 959 case XFS_TRANS_SB_RES_FDBLOCKS: 960 /* 961 * The allocation has already been applied to the 962 * in-core superblock's counter. This should only 963 * be applied to the on-disk superblock. 964 */ 965 ASSERT(delta < 0); 966 tp->t_res_fdblocks_delta += delta; 967 if (xfs_sb_version_haslazysbcount(&mp->m_sb)) 968 flags &= ~XFS_TRANS_SB_DIRTY; 969 break; 970 case XFS_TRANS_SB_FREXTENTS: 971 /* 972 * Track the number of blocks allocated in the 973 * transaction. Make sure it does not exceed the 974 * number reserved. 975 */ 976 if (delta < 0) { 977 tp->t_rtx_res_used += (uint)-delta; 978 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res); 979 } 980 tp->t_frextents_delta += delta; 981 break; 982 case XFS_TRANS_SB_RES_FREXTENTS: 983 /* 984 * The allocation has already been applied to the 985 * in-core superblock's counter. This should only 986 * be applied to the on-disk superblock. 987 */ 988 ASSERT(delta < 0); 989 tp->t_res_frextents_delta += delta; 990 break; 991 case XFS_TRANS_SB_DBLOCKS: 992 ASSERT(delta > 0); 993 tp->t_dblocks_delta += delta; 994 break; 995 case XFS_TRANS_SB_AGCOUNT: 996 ASSERT(delta > 0); 997 tp->t_agcount_delta += delta; 998 break; 999 case XFS_TRANS_SB_IMAXPCT: 1000 tp->t_imaxpct_delta += delta; 1001 break; 1002 case XFS_TRANS_SB_REXTSIZE: 1003 tp->t_rextsize_delta += delta; 1004 break; 1005 case XFS_TRANS_SB_RBMBLOCKS: 1006 tp->t_rbmblocks_delta += delta; 1007 break; 1008 case XFS_TRANS_SB_RBLOCKS: 1009 tp->t_rblocks_delta += delta; 1010 break; 1011 case XFS_TRANS_SB_REXTENTS: 1012 tp->t_rextents_delta += delta; 1013 break; 1014 case XFS_TRANS_SB_REXTSLOG: 1015 tp->t_rextslog_delta += delta; 1016 break; 1017 default: 1018 ASSERT(0); 1019 return; 1020 } 1021 1022 tp->t_flags |= flags; 1023 } 1024 1025 /* 1026 * xfs_trans_apply_sb_deltas() is called from the commit code 1027 * to bring the superblock buffer into the current transaction 1028 * and modify it as requested by earlier calls to xfs_trans_mod_sb(). 1029 * 1030 * For now we just look at each field allowed to change and change 1031 * it if necessary. 1032 */ 1033 STATIC void 1034 xfs_trans_apply_sb_deltas( 1035 xfs_trans_t *tp) 1036 { 1037 xfs_dsb_t *sbp; 1038 xfs_buf_t *bp; 1039 int whole = 0; 1040 1041 bp = xfs_trans_getsb(tp, tp->t_mountp, 0); 1042 sbp = XFS_BUF_TO_SBP(bp); 1043 1044 /* 1045 * Check that superblock mods match the mods made to AGF counters. 1046 */ 1047 ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) == 1048 (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta + 1049 tp->t_ag_btree_delta)); 1050 1051 /* 1052 * Only update the superblock counters if we are logging them 1053 */ 1054 if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) { 1055 if (tp->t_icount_delta) 1056 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta); 1057 if (tp->t_ifree_delta) 1058 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta); 1059 if (tp->t_fdblocks_delta) 1060 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta); 1061 if (tp->t_res_fdblocks_delta) 1062 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta); 1063 } 1064 1065 if (tp->t_frextents_delta) 1066 be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta); 1067 if (tp->t_res_frextents_delta) 1068 be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta); 1069 1070 if (tp->t_dblocks_delta) { 1071 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta); 1072 whole = 1; 1073 } 1074 if (tp->t_agcount_delta) { 1075 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta); 1076 whole = 1; 1077 } 1078 if (tp->t_imaxpct_delta) { 1079 sbp->sb_imax_pct += tp->t_imaxpct_delta; 1080 whole = 1; 1081 } 1082 if (tp->t_rextsize_delta) { 1083 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta); 1084 whole = 1; 1085 } 1086 if (tp->t_rbmblocks_delta) { 1087 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta); 1088 whole = 1; 1089 } 1090 if (tp->t_rblocks_delta) { 1091 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta); 1092 whole = 1; 1093 } 1094 if (tp->t_rextents_delta) { 1095 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta); 1096 whole = 1; 1097 } 1098 if (tp->t_rextslog_delta) { 1099 sbp->sb_rextslog += tp->t_rextslog_delta; 1100 whole = 1; 1101 } 1102 1103 if (whole) 1104 /* 1105 * Log the whole thing, the fields are noncontiguous. 1106 */ 1107 xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1); 1108 else 1109 /* 1110 * Since all the modifiable fields are contiguous, we 1111 * can get away with this. 1112 */ 1113 xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount), 1114 offsetof(xfs_dsb_t, sb_frextents) + 1115 sizeof(sbp->sb_frextents) - 1); 1116 } 1117 1118 /* 1119 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations 1120 * and apply superblock counter changes to the in-core superblock. The 1121 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT 1122 * applied to the in-core superblock. The idea is that that has already been 1123 * done. 1124 * 1125 * This is done efficiently with a single call to xfs_mod_incore_sb_batch(). 1126 * However, we have to ensure that we only modify each superblock field only 1127 * once because the application of the delta values may not be atomic. That can 1128 * lead to ENOSPC races occurring if we have two separate modifcations of the 1129 * free space counter to put back the entire reservation and then take away 1130 * what we used. 1131 * 1132 * If we are not logging superblock counters, then the inode allocated/free and 1133 * used block counts are not updated in the on disk superblock. In this case, 1134 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we 1135 * still need to update the incore superblock with the changes. 1136 */ 1137 void 1138 xfs_trans_unreserve_and_mod_sb( 1139 xfs_trans_t *tp) 1140 { 1141 xfs_mod_sb_t msb[9]; /* If you add cases, add entries */ 1142 xfs_mod_sb_t *msbp; 1143 xfs_mount_t *mp = tp->t_mountp; 1144 /* REFERENCED */ 1145 int error; 1146 int rsvd; 1147 int64_t blkdelta = 0; 1148 int64_t rtxdelta = 0; 1149 int64_t idelta = 0; 1150 int64_t ifreedelta = 0; 1151 1152 msbp = msb; 1153 rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0; 1154 1155 /* calculate deltas */ 1156 if (tp->t_blk_res > 0) 1157 blkdelta = tp->t_blk_res; 1158 if ((tp->t_fdblocks_delta != 0) && 1159 (xfs_sb_version_haslazysbcount(&mp->m_sb) || 1160 (tp->t_flags & XFS_TRANS_SB_DIRTY))) 1161 blkdelta += tp->t_fdblocks_delta; 1162 1163 if (tp->t_rtx_res > 0) 1164 rtxdelta = tp->t_rtx_res; 1165 if ((tp->t_frextents_delta != 0) && 1166 (tp->t_flags & XFS_TRANS_SB_DIRTY)) 1167 rtxdelta += tp->t_frextents_delta; 1168 1169 if (xfs_sb_version_haslazysbcount(&mp->m_sb) || 1170 (tp->t_flags & XFS_TRANS_SB_DIRTY)) { 1171 idelta = tp->t_icount_delta; 1172 ifreedelta = tp->t_ifree_delta; 1173 } 1174 1175 /* apply the per-cpu counters */ 1176 if (blkdelta) { 1177 error = xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS, 1178 blkdelta, rsvd); 1179 if (error) 1180 goto out; 1181 } 1182 1183 if (idelta) { 1184 error = xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT, 1185 idelta, rsvd); 1186 if (error) 1187 goto out_undo_fdblocks; 1188 } 1189 1190 if (ifreedelta) { 1191 error = xfs_icsb_modify_counters(mp, XFS_SBS_IFREE, 1192 ifreedelta, rsvd); 1193 if (error) 1194 goto out_undo_icount; 1195 } 1196 1197 /* apply remaining deltas */ 1198 if (rtxdelta != 0) { 1199 msbp->msb_field = XFS_SBS_FREXTENTS; 1200 msbp->msb_delta = rtxdelta; 1201 msbp++; 1202 } 1203 1204 if (tp->t_flags & XFS_TRANS_SB_DIRTY) { 1205 if (tp->t_dblocks_delta != 0) { 1206 msbp->msb_field = XFS_SBS_DBLOCKS; 1207 msbp->msb_delta = tp->t_dblocks_delta; 1208 msbp++; 1209 } 1210 if (tp->t_agcount_delta != 0) { 1211 msbp->msb_field = XFS_SBS_AGCOUNT; 1212 msbp->msb_delta = tp->t_agcount_delta; 1213 msbp++; 1214 } 1215 if (tp->t_imaxpct_delta != 0) { 1216 msbp->msb_field = XFS_SBS_IMAX_PCT; 1217 msbp->msb_delta = tp->t_imaxpct_delta; 1218 msbp++; 1219 } 1220 if (tp->t_rextsize_delta != 0) { 1221 msbp->msb_field = XFS_SBS_REXTSIZE; 1222 msbp->msb_delta = tp->t_rextsize_delta; 1223 msbp++; 1224 } 1225 if (tp->t_rbmblocks_delta != 0) { 1226 msbp->msb_field = XFS_SBS_RBMBLOCKS; 1227 msbp->msb_delta = tp->t_rbmblocks_delta; 1228 msbp++; 1229 } 1230 if (tp->t_rblocks_delta != 0) { 1231 msbp->msb_field = XFS_SBS_RBLOCKS; 1232 msbp->msb_delta = tp->t_rblocks_delta; 1233 msbp++; 1234 } 1235 if (tp->t_rextents_delta != 0) { 1236 msbp->msb_field = XFS_SBS_REXTENTS; 1237 msbp->msb_delta = tp->t_rextents_delta; 1238 msbp++; 1239 } 1240 if (tp->t_rextslog_delta != 0) { 1241 msbp->msb_field = XFS_SBS_REXTSLOG; 1242 msbp->msb_delta = tp->t_rextslog_delta; 1243 msbp++; 1244 } 1245 } 1246 1247 /* 1248 * If we need to change anything, do it. 1249 */ 1250 if (msbp > msb) { 1251 error = xfs_mod_incore_sb_batch(tp->t_mountp, msb, 1252 (uint)(msbp - msb), rsvd); 1253 if (error) 1254 goto out_undo_ifreecount; 1255 } 1256 1257 return; 1258 1259 out_undo_ifreecount: 1260 if (ifreedelta) 1261 xfs_icsb_modify_counters(mp, XFS_SBS_IFREE, -ifreedelta, rsvd); 1262 out_undo_icount: 1263 if (idelta) 1264 xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT, -idelta, rsvd); 1265 out_undo_fdblocks: 1266 if (blkdelta) 1267 xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS, -blkdelta, rsvd); 1268 out: 1269 ASSERT(error == 0); 1270 return; 1271 } 1272 1273 /* 1274 * Add the given log item to the transaction's list of log items. 1275 * 1276 * The log item will now point to its new descriptor with its li_desc field. 1277 */ 1278 void 1279 xfs_trans_add_item( 1280 struct xfs_trans *tp, 1281 struct xfs_log_item *lip) 1282 { 1283 struct xfs_log_item_desc *lidp; 1284 1285 ASSERT(lip->li_mountp == tp->t_mountp); 1286 ASSERT(lip->li_ailp == tp->t_mountp->m_ail); 1287 1288 lidp = kmem_zone_zalloc(xfs_log_item_desc_zone, KM_SLEEP | KM_NOFS); 1289 1290 lidp->lid_item = lip; 1291 lidp->lid_flags = 0; 1292 list_add_tail(&lidp->lid_trans, &tp->t_items); 1293 1294 lip->li_desc = lidp; 1295 } 1296 1297 STATIC void 1298 xfs_trans_free_item_desc( 1299 struct xfs_log_item_desc *lidp) 1300 { 1301 list_del_init(&lidp->lid_trans); 1302 kmem_zone_free(xfs_log_item_desc_zone, lidp); 1303 } 1304 1305 /* 1306 * Unlink and free the given descriptor. 1307 */ 1308 void 1309 xfs_trans_del_item( 1310 struct xfs_log_item *lip) 1311 { 1312 xfs_trans_free_item_desc(lip->li_desc); 1313 lip->li_desc = NULL; 1314 } 1315 1316 /* 1317 * Unlock all of the items of a transaction and free all the descriptors 1318 * of that transaction. 1319 */ 1320 void 1321 xfs_trans_free_items( 1322 struct xfs_trans *tp, 1323 xfs_lsn_t commit_lsn, 1324 int flags) 1325 { 1326 struct xfs_log_item_desc *lidp, *next; 1327 1328 list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) { 1329 struct xfs_log_item *lip = lidp->lid_item; 1330 1331 lip->li_desc = NULL; 1332 1333 if (commit_lsn != NULLCOMMITLSN) 1334 IOP_COMMITTING(lip, commit_lsn); 1335 if (flags & XFS_TRANS_ABORT) 1336 lip->li_flags |= XFS_LI_ABORTED; 1337 IOP_UNLOCK(lip); 1338 1339 xfs_trans_free_item_desc(lidp); 1340 } 1341 } 1342 1343 static inline void 1344 xfs_log_item_batch_insert( 1345 struct xfs_ail *ailp, 1346 struct xfs_ail_cursor *cur, 1347 struct xfs_log_item **log_items, 1348 int nr_items, 1349 xfs_lsn_t commit_lsn) 1350 { 1351 int i; 1352 1353 spin_lock(&ailp->xa_lock); 1354 /* xfs_trans_ail_update_bulk drops ailp->xa_lock */ 1355 xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn); 1356 1357 for (i = 0; i < nr_items; i++) 1358 IOP_UNPIN(log_items[i], 0); 1359 } 1360 1361 /* 1362 * Bulk operation version of xfs_trans_committed that takes a log vector of 1363 * items to insert into the AIL. This uses bulk AIL insertion techniques to 1364 * minimise lock traffic. 1365 * 1366 * If we are called with the aborted flag set, it is because a log write during 1367 * a CIL checkpoint commit has failed. In this case, all the items in the 1368 * checkpoint have already gone through IOP_COMMITED and IOP_UNLOCK, which 1369 * means that checkpoint commit abort handling is treated exactly the same 1370 * as an iclog write error even though we haven't started any IO yet. Hence in 1371 * this case all we need to do is IOP_COMMITTED processing, followed by an 1372 * IOP_UNPIN(aborted) call. 1373 * 1374 * The AIL cursor is used to optimise the insert process. If commit_lsn is not 1375 * at the end of the AIL, the insert cursor avoids the need to walk 1376 * the AIL to find the insertion point on every xfs_log_item_batch_insert() 1377 * call. This saves a lot of needless list walking and is a net win, even 1378 * though it slightly increases that amount of AIL lock traffic to set it up 1379 * and tear it down. 1380 */ 1381 void 1382 xfs_trans_committed_bulk( 1383 struct xfs_ail *ailp, 1384 struct xfs_log_vec *log_vector, 1385 xfs_lsn_t commit_lsn, 1386 int aborted) 1387 { 1388 #define LOG_ITEM_BATCH_SIZE 32 1389 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE]; 1390 struct xfs_log_vec *lv; 1391 struct xfs_ail_cursor cur; 1392 int i = 0; 1393 1394 spin_lock(&ailp->xa_lock); 1395 xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn); 1396 spin_unlock(&ailp->xa_lock); 1397 1398 /* unpin all the log items */ 1399 for (lv = log_vector; lv; lv = lv->lv_next ) { 1400 struct xfs_log_item *lip = lv->lv_item; 1401 xfs_lsn_t item_lsn; 1402 1403 if (aborted) 1404 lip->li_flags |= XFS_LI_ABORTED; 1405 item_lsn = IOP_COMMITTED(lip, commit_lsn); 1406 1407 /* item_lsn of -1 means the item needs no further processing */ 1408 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0) 1409 continue; 1410 1411 /* 1412 * if we are aborting the operation, no point in inserting the 1413 * object into the AIL as we are in a shutdown situation. 1414 */ 1415 if (aborted) { 1416 ASSERT(XFS_FORCED_SHUTDOWN(ailp->xa_mount)); 1417 IOP_UNPIN(lip, 1); 1418 continue; 1419 } 1420 1421 if (item_lsn != commit_lsn) { 1422 1423 /* 1424 * Not a bulk update option due to unusual item_lsn. 1425 * Push into AIL immediately, rechecking the lsn once 1426 * we have the ail lock. Then unpin the item. This does 1427 * not affect the AIL cursor the bulk insert path is 1428 * using. 1429 */ 1430 spin_lock(&ailp->xa_lock); 1431 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) 1432 xfs_trans_ail_update(ailp, lip, item_lsn); 1433 else 1434 spin_unlock(&ailp->xa_lock); 1435 IOP_UNPIN(lip, 0); 1436 continue; 1437 } 1438 1439 /* Item is a candidate for bulk AIL insert. */ 1440 log_items[i++] = lv->lv_item; 1441 if (i >= LOG_ITEM_BATCH_SIZE) { 1442 xfs_log_item_batch_insert(ailp, &cur, log_items, 1443 LOG_ITEM_BATCH_SIZE, commit_lsn); 1444 i = 0; 1445 } 1446 } 1447 1448 /* make sure we insert the remainder! */ 1449 if (i) 1450 xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn); 1451 1452 spin_lock(&ailp->xa_lock); 1453 xfs_trans_ail_cursor_done(ailp, &cur); 1454 spin_unlock(&ailp->xa_lock); 1455 } 1456 1457 /* 1458 * Commit the given transaction to the log. 1459 * 1460 * XFS disk error handling mechanism is not based on a typical 1461 * transaction abort mechanism. Logically after the filesystem 1462 * gets marked 'SHUTDOWN', we can't let any new transactions 1463 * be durable - ie. committed to disk - because some metadata might 1464 * be inconsistent. In such cases, this returns an error, and the 1465 * caller may assume that all locked objects joined to the transaction 1466 * have already been unlocked as if the commit had succeeded. 1467 * Do not reference the transaction structure after this call. 1468 */ 1469 int 1470 xfs_trans_commit( 1471 struct xfs_trans *tp, 1472 uint flags) 1473 { 1474 struct xfs_mount *mp = tp->t_mountp; 1475 xfs_lsn_t commit_lsn = -1; 1476 int error = 0; 1477 int log_flags = 0; 1478 int sync = tp->t_flags & XFS_TRANS_SYNC; 1479 1480 /* 1481 * Determine whether this commit is releasing a permanent 1482 * log reservation or not. 1483 */ 1484 if (flags & XFS_TRANS_RELEASE_LOG_RES) { 1485 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1486 log_flags = XFS_LOG_REL_PERM_RESERV; 1487 } 1488 1489 /* 1490 * If there is nothing to be logged by the transaction, 1491 * then unlock all of the items associated with the 1492 * transaction and free the transaction structure. 1493 * Also make sure to return any reserved blocks to 1494 * the free pool. 1495 */ 1496 if (!(tp->t_flags & XFS_TRANS_DIRTY)) 1497 goto out_unreserve; 1498 1499 if (XFS_FORCED_SHUTDOWN(mp)) { 1500 error = XFS_ERROR(EIO); 1501 goto out_unreserve; 1502 } 1503 1504 ASSERT(tp->t_ticket != NULL); 1505 1506 /* 1507 * If we need to update the superblock, then do it now. 1508 */ 1509 if (tp->t_flags & XFS_TRANS_SB_DIRTY) 1510 xfs_trans_apply_sb_deltas(tp); 1511 xfs_trans_apply_dquot_deltas(tp); 1512 1513 error = xfs_log_commit_cil(mp, tp, &commit_lsn, flags); 1514 if (error == ENOMEM) { 1515 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 1516 error = XFS_ERROR(EIO); 1517 goto out_unreserve; 1518 } 1519 1520 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 1521 xfs_trans_free(tp); 1522 1523 /* 1524 * If the transaction needs to be synchronous, then force the 1525 * log out now and wait for it. 1526 */ 1527 if (sync) { 1528 if (!error) { 1529 error = _xfs_log_force_lsn(mp, commit_lsn, 1530 XFS_LOG_SYNC, NULL); 1531 } 1532 XFS_STATS_INC(xs_trans_sync); 1533 } else { 1534 XFS_STATS_INC(xs_trans_async); 1535 } 1536 1537 return error; 1538 1539 out_unreserve: 1540 xfs_trans_unreserve_and_mod_sb(tp); 1541 1542 /* 1543 * It is indeed possible for the transaction to be not dirty but 1544 * the dqinfo portion to be. All that means is that we have some 1545 * (non-persistent) quota reservations that need to be unreserved. 1546 */ 1547 xfs_trans_unreserve_and_mod_dquots(tp); 1548 if (tp->t_ticket) { 1549 commit_lsn = xfs_log_done(mp, tp->t_ticket, NULL, log_flags); 1550 if (commit_lsn == -1 && !error) 1551 error = XFS_ERROR(EIO); 1552 } 1553 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 1554 xfs_trans_free_items(tp, NULLCOMMITLSN, error ? XFS_TRANS_ABORT : 0); 1555 xfs_trans_free(tp); 1556 1557 XFS_STATS_INC(xs_trans_empty); 1558 return error; 1559 } 1560 1561 /* 1562 * Unlock all of the transaction's items and free the transaction. 1563 * The transaction must not have modified any of its items, because 1564 * there is no way to restore them to their previous state. 1565 * 1566 * If the transaction has made a log reservation, make sure to release 1567 * it as well. 1568 */ 1569 void 1570 xfs_trans_cancel( 1571 xfs_trans_t *tp, 1572 int flags) 1573 { 1574 int log_flags; 1575 xfs_mount_t *mp = tp->t_mountp; 1576 1577 /* 1578 * See if the caller is being too lazy to figure out if 1579 * the transaction really needs an abort. 1580 */ 1581 if ((flags & XFS_TRANS_ABORT) && !(tp->t_flags & XFS_TRANS_DIRTY)) 1582 flags &= ~XFS_TRANS_ABORT; 1583 /* 1584 * See if the caller is relying on us to shut down the 1585 * filesystem. This happens in paths where we detect 1586 * corruption and decide to give up. 1587 */ 1588 if ((tp->t_flags & XFS_TRANS_DIRTY) && !XFS_FORCED_SHUTDOWN(mp)) { 1589 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp); 1590 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1591 } 1592 #ifdef DEBUG 1593 if (!(flags & XFS_TRANS_ABORT) && !XFS_FORCED_SHUTDOWN(mp)) { 1594 struct xfs_log_item_desc *lidp; 1595 1596 list_for_each_entry(lidp, &tp->t_items, lid_trans) 1597 ASSERT(!(lidp->lid_item->li_type == XFS_LI_EFD)); 1598 } 1599 #endif 1600 xfs_trans_unreserve_and_mod_sb(tp); 1601 xfs_trans_unreserve_and_mod_dquots(tp); 1602 1603 if (tp->t_ticket) { 1604 if (flags & XFS_TRANS_RELEASE_LOG_RES) { 1605 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1606 log_flags = XFS_LOG_REL_PERM_RESERV; 1607 } else { 1608 log_flags = 0; 1609 } 1610 xfs_log_done(mp, tp->t_ticket, NULL, log_flags); 1611 } 1612 1613 /* mark this thread as no longer being in a transaction */ 1614 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 1615 1616 xfs_trans_free_items(tp, NULLCOMMITLSN, flags); 1617 xfs_trans_free(tp); 1618 } 1619 1620 /* 1621 * Roll from one trans in the sequence of PERMANENT transactions to 1622 * the next: permanent transactions are only flushed out when 1623 * committed with XFS_TRANS_RELEASE_LOG_RES, but we still want as soon 1624 * as possible to let chunks of it go to the log. So we commit the 1625 * chunk we've been working on and get a new transaction to continue. 1626 */ 1627 int 1628 xfs_trans_roll( 1629 struct xfs_trans **tpp, 1630 struct xfs_inode *dp) 1631 { 1632 struct xfs_trans *trans; 1633 unsigned int logres, count; 1634 int error; 1635 1636 /* 1637 * Ensure that the inode is always logged. 1638 */ 1639 trans = *tpp; 1640 xfs_trans_log_inode(trans, dp, XFS_ILOG_CORE); 1641 1642 /* 1643 * Copy the critical parameters from one trans to the next. 1644 */ 1645 logres = trans->t_log_res; 1646 count = trans->t_log_count; 1647 *tpp = xfs_trans_dup(trans); 1648 1649 /* 1650 * Commit the current transaction. 1651 * If this commit failed, then it'd just unlock those items that 1652 * are not marked ihold. That also means that a filesystem shutdown 1653 * is in progress. The caller takes the responsibility to cancel 1654 * the duplicate transaction that gets returned. 1655 */ 1656 error = xfs_trans_commit(trans, 0); 1657 if (error) 1658 return (error); 1659 1660 trans = *tpp; 1661 1662 /* 1663 * transaction commit worked ok so we can drop the extra ticket 1664 * reference that we gained in xfs_trans_dup() 1665 */ 1666 xfs_log_ticket_put(trans->t_ticket); 1667 1668 1669 /* 1670 * Reserve space in the log for th next transaction. 1671 * This also pushes items in the "AIL", the list of logged items, 1672 * out to disk if they are taking up space at the tail of the log 1673 * that we want to use. This requires that either nothing be locked 1674 * across this call, or that anything that is locked be logged in 1675 * the prior and the next transactions. 1676 */ 1677 error = xfs_trans_reserve(trans, 0, logres, 0, 1678 XFS_TRANS_PERM_LOG_RES, count); 1679 /* 1680 * Ensure that the inode is in the new transaction and locked. 1681 */ 1682 if (error) 1683 return error; 1684 1685 xfs_trans_ijoin(trans, dp, 0); 1686 return 0; 1687 } 1688