1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. 4 * Copyright (C) 2010 Red Hat, Inc. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_mount.h" 14 #include "xfs_extent_busy.h" 15 #include "xfs_quota.h" 16 #include "xfs_trans.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_log.h" 19 #include "xfs_log_priv.h" 20 #include "xfs_trace.h" 21 #include "xfs_error.h" 22 #include "xfs_defer.h" 23 #include "xfs_inode.h" 24 #include "xfs_dquot_item.h" 25 #include "xfs_dquot.h" 26 #include "xfs_icache.h" 27 28 struct kmem_cache *xfs_trans_cache; 29 30 #if defined(CONFIG_TRACEPOINTS) 31 static void 32 xfs_trans_trace_reservations( 33 struct xfs_mount *mp) 34 { 35 struct xfs_trans_res *res; 36 struct xfs_trans_res *end_res; 37 int i; 38 39 res = (struct xfs_trans_res *)M_RES(mp); 40 end_res = (struct xfs_trans_res *)(M_RES(mp) + 1); 41 for (i = 0; res < end_res; i++, res++) 42 trace_xfs_trans_resv_calc(mp, i, res); 43 } 44 #else 45 # define xfs_trans_trace_reservations(mp) 46 #endif 47 48 /* 49 * Initialize the precomputed transaction reservation values 50 * in the mount structure. 51 */ 52 void 53 xfs_trans_init( 54 struct xfs_mount *mp) 55 { 56 xfs_trans_resv_calc(mp, M_RES(mp)); 57 xfs_trans_trace_reservations(mp); 58 } 59 60 /* 61 * Free the transaction structure. If there is more clean up 62 * to do when the structure is freed, add it here. 63 */ 64 STATIC void 65 xfs_trans_free( 66 struct xfs_trans *tp) 67 { 68 xfs_extent_busy_sort(&tp->t_busy); 69 xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false); 70 71 trace_xfs_trans_free(tp, _RET_IP_); 72 xfs_trans_clear_context(tp); 73 if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT)) 74 sb_end_intwrite(tp->t_mountp->m_super); 75 xfs_trans_free_dqinfo(tp); 76 kmem_cache_free(xfs_trans_cache, tp); 77 } 78 79 /* 80 * This is called to create a new transaction which will share the 81 * permanent log reservation of the given transaction. The remaining 82 * unused block and rt extent reservations are also inherited. This 83 * implies that the original transaction is no longer allowed to allocate 84 * blocks. Locks and log items, however, are no inherited. They must 85 * be added to the new transaction explicitly. 86 */ 87 STATIC struct xfs_trans * 88 xfs_trans_dup( 89 struct xfs_trans *tp) 90 { 91 struct xfs_trans *ntp; 92 93 trace_xfs_trans_dup(tp, _RET_IP_); 94 95 ntp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL); 96 97 /* 98 * Initialize the new transaction structure. 99 */ 100 ntp->t_magic = XFS_TRANS_HEADER_MAGIC; 101 ntp->t_mountp = tp->t_mountp; 102 INIT_LIST_HEAD(&ntp->t_items); 103 INIT_LIST_HEAD(&ntp->t_busy); 104 INIT_LIST_HEAD(&ntp->t_dfops); 105 ntp->t_firstblock = NULLFSBLOCK; 106 107 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 108 ASSERT(tp->t_ticket != NULL); 109 110 ntp->t_flags = XFS_TRANS_PERM_LOG_RES | 111 (tp->t_flags & XFS_TRANS_RESERVE) | 112 (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) | 113 (tp->t_flags & XFS_TRANS_RES_FDBLKS); 114 /* We gave our writer reference to the new transaction */ 115 tp->t_flags |= XFS_TRANS_NO_WRITECOUNT; 116 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket); 117 118 ASSERT(tp->t_blk_res >= tp->t_blk_res_used); 119 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used; 120 tp->t_blk_res = tp->t_blk_res_used; 121 122 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used; 123 tp->t_rtx_res = tp->t_rtx_res_used; 124 125 xfs_trans_switch_context(tp, ntp); 126 127 /* move deferred ops over to the new tp */ 128 xfs_defer_move(ntp, tp); 129 130 xfs_trans_dup_dqinfo(tp, ntp); 131 return ntp; 132 } 133 134 /* 135 * This is called to reserve free disk blocks and log space for the 136 * given transaction. This must be done before allocating any resources 137 * within the transaction. 138 * 139 * This will return ENOSPC if there are not enough blocks available. 140 * It will sleep waiting for available log space. 141 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which 142 * is used by long running transactions. If any one of the reservations 143 * fails then they will all be backed out. 144 * 145 * This does not do quota reservations. That typically is done by the 146 * caller afterwards. 147 */ 148 static int 149 xfs_trans_reserve( 150 struct xfs_trans *tp, 151 struct xfs_trans_res *resp, 152 uint blocks, 153 uint rtextents) 154 { 155 struct xfs_mount *mp = tp->t_mountp; 156 int error = 0; 157 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0; 158 159 /* 160 * Attempt to reserve the needed disk blocks by decrementing 161 * the number needed from the number available. This will 162 * fail if the count would go below zero. 163 */ 164 if (blocks > 0) { 165 error = xfs_mod_fdblocks(mp, -((int64_t)blocks), rsvd); 166 if (error != 0) 167 return -ENOSPC; 168 tp->t_blk_res += blocks; 169 } 170 171 /* 172 * Reserve the log space needed for this transaction. 173 */ 174 if (resp->tr_logres > 0) { 175 bool permanent = false; 176 177 ASSERT(tp->t_log_res == 0 || 178 tp->t_log_res == resp->tr_logres); 179 ASSERT(tp->t_log_count == 0 || 180 tp->t_log_count == resp->tr_logcount); 181 182 if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) { 183 tp->t_flags |= XFS_TRANS_PERM_LOG_RES; 184 permanent = true; 185 } else { 186 ASSERT(tp->t_ticket == NULL); 187 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES)); 188 } 189 190 if (tp->t_ticket != NULL) { 191 ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES); 192 error = xfs_log_regrant(mp, tp->t_ticket); 193 } else { 194 error = xfs_log_reserve(mp, resp->tr_logres, 195 resp->tr_logcount, 196 &tp->t_ticket, permanent); 197 } 198 199 if (error) 200 goto undo_blocks; 201 202 tp->t_log_res = resp->tr_logres; 203 tp->t_log_count = resp->tr_logcount; 204 } 205 206 /* 207 * Attempt to reserve the needed realtime extents by decrementing 208 * the number needed from the number available. This will 209 * fail if the count would go below zero. 210 */ 211 if (rtextents > 0) { 212 error = xfs_mod_frextents(mp, -((int64_t)rtextents)); 213 if (error) { 214 error = -ENOSPC; 215 goto undo_log; 216 } 217 tp->t_rtx_res += rtextents; 218 } 219 220 return 0; 221 222 /* 223 * Error cases jump to one of these labels to undo any 224 * reservations which have already been performed. 225 */ 226 undo_log: 227 if (resp->tr_logres > 0) { 228 xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket); 229 tp->t_ticket = NULL; 230 tp->t_log_res = 0; 231 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES; 232 } 233 234 undo_blocks: 235 if (blocks > 0) { 236 xfs_mod_fdblocks(mp, (int64_t)blocks, rsvd); 237 tp->t_blk_res = 0; 238 } 239 return error; 240 } 241 242 int 243 xfs_trans_alloc( 244 struct xfs_mount *mp, 245 struct xfs_trans_res *resp, 246 uint blocks, 247 uint rtextents, 248 uint flags, 249 struct xfs_trans **tpp) 250 { 251 struct xfs_trans *tp; 252 bool want_retry = true; 253 int error; 254 255 /* 256 * Allocate the handle before we do our freeze accounting and setting up 257 * GFP_NOFS allocation context so that we avoid lockdep false positives 258 * by doing GFP_KERNEL allocations inside sb_start_intwrite(). 259 */ 260 retry: 261 tp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL); 262 if (!(flags & XFS_TRANS_NO_WRITECOUNT)) 263 sb_start_intwrite(mp->m_super); 264 xfs_trans_set_context(tp); 265 266 /* 267 * Zero-reservation ("empty") transactions can't modify anything, so 268 * they're allowed to run while we're frozen. 269 */ 270 WARN_ON(resp->tr_logres > 0 && 271 mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE); 272 ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) || 273 xfs_has_lazysbcount(mp)); 274 275 tp->t_magic = XFS_TRANS_HEADER_MAGIC; 276 tp->t_flags = flags; 277 tp->t_mountp = mp; 278 INIT_LIST_HEAD(&tp->t_items); 279 INIT_LIST_HEAD(&tp->t_busy); 280 INIT_LIST_HEAD(&tp->t_dfops); 281 tp->t_firstblock = NULLFSBLOCK; 282 283 error = xfs_trans_reserve(tp, resp, blocks, rtextents); 284 if (error == -ENOSPC && want_retry) { 285 xfs_trans_cancel(tp); 286 287 /* 288 * We weren't able to reserve enough space for the transaction. 289 * Flush the other speculative space allocations to free space. 290 * Do not perform a synchronous scan because callers can hold 291 * other locks. 292 */ 293 xfs_blockgc_flush_all(mp); 294 want_retry = false; 295 goto retry; 296 } 297 if (error) { 298 xfs_trans_cancel(tp); 299 return error; 300 } 301 302 trace_xfs_trans_alloc(tp, _RET_IP_); 303 304 *tpp = tp; 305 return 0; 306 } 307 308 /* 309 * Create an empty transaction with no reservation. This is a defensive 310 * mechanism for routines that query metadata without actually modifying them -- 311 * if the metadata being queried is somehow cross-linked (think a btree block 312 * pointer that points higher in the tree), we risk deadlock. However, blocks 313 * grabbed as part of a transaction can be re-grabbed. The verifiers will 314 * notice the corrupt block and the operation will fail back to userspace 315 * without deadlocking. 316 * 317 * Note the zero-length reservation; this transaction MUST be cancelled without 318 * any dirty data. 319 * 320 * Callers should obtain freeze protection to avoid a conflict with fs freezing 321 * where we can be grabbing buffers at the same time that freeze is trying to 322 * drain the buffer LRU list. 323 */ 324 int 325 xfs_trans_alloc_empty( 326 struct xfs_mount *mp, 327 struct xfs_trans **tpp) 328 { 329 struct xfs_trans_res resv = {0}; 330 331 return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp); 332 } 333 334 /* 335 * Record the indicated change to the given field for application 336 * to the file system's superblock when the transaction commits. 337 * For now, just store the change in the transaction structure. 338 * 339 * Mark the transaction structure to indicate that the superblock 340 * needs to be updated before committing. 341 * 342 * Because we may not be keeping track of allocated/free inodes and 343 * used filesystem blocks in the superblock, we do not mark the 344 * superblock dirty in this transaction if we modify these fields. 345 * We still need to update the transaction deltas so that they get 346 * applied to the incore superblock, but we don't want them to 347 * cause the superblock to get locked and logged if these are the 348 * only fields in the superblock that the transaction modifies. 349 */ 350 void 351 xfs_trans_mod_sb( 352 xfs_trans_t *tp, 353 uint field, 354 int64_t delta) 355 { 356 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY); 357 xfs_mount_t *mp = tp->t_mountp; 358 359 switch (field) { 360 case XFS_TRANS_SB_ICOUNT: 361 tp->t_icount_delta += delta; 362 if (xfs_has_lazysbcount(mp)) 363 flags &= ~XFS_TRANS_SB_DIRTY; 364 break; 365 case XFS_TRANS_SB_IFREE: 366 tp->t_ifree_delta += delta; 367 if (xfs_has_lazysbcount(mp)) 368 flags &= ~XFS_TRANS_SB_DIRTY; 369 break; 370 case XFS_TRANS_SB_FDBLOCKS: 371 /* 372 * Track the number of blocks allocated in the transaction. 373 * Make sure it does not exceed the number reserved. If so, 374 * shutdown as this can lead to accounting inconsistency. 375 */ 376 if (delta < 0) { 377 tp->t_blk_res_used += (uint)-delta; 378 if (tp->t_blk_res_used > tp->t_blk_res) 379 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 380 } else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) { 381 int64_t blkres_delta; 382 383 /* 384 * Return freed blocks directly to the reservation 385 * instead of the global pool, being careful not to 386 * overflow the trans counter. This is used to preserve 387 * reservation across chains of transaction rolls that 388 * repeatedly free and allocate blocks. 389 */ 390 blkres_delta = min_t(int64_t, delta, 391 UINT_MAX - tp->t_blk_res); 392 tp->t_blk_res += blkres_delta; 393 delta -= blkres_delta; 394 } 395 tp->t_fdblocks_delta += delta; 396 if (xfs_has_lazysbcount(mp)) 397 flags &= ~XFS_TRANS_SB_DIRTY; 398 break; 399 case XFS_TRANS_SB_RES_FDBLOCKS: 400 /* 401 * The allocation has already been applied to the 402 * in-core superblock's counter. This should only 403 * be applied to the on-disk superblock. 404 */ 405 tp->t_res_fdblocks_delta += delta; 406 if (xfs_has_lazysbcount(mp)) 407 flags &= ~XFS_TRANS_SB_DIRTY; 408 break; 409 case XFS_TRANS_SB_FREXTENTS: 410 /* 411 * Track the number of blocks allocated in the 412 * transaction. Make sure it does not exceed the 413 * number reserved. 414 */ 415 if (delta < 0) { 416 tp->t_rtx_res_used += (uint)-delta; 417 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res); 418 } 419 tp->t_frextents_delta += delta; 420 break; 421 case XFS_TRANS_SB_RES_FREXTENTS: 422 /* 423 * The allocation has already been applied to the 424 * in-core superblock's counter. This should only 425 * be applied to the on-disk superblock. 426 */ 427 ASSERT(delta < 0); 428 tp->t_res_frextents_delta += delta; 429 break; 430 case XFS_TRANS_SB_DBLOCKS: 431 tp->t_dblocks_delta += delta; 432 break; 433 case XFS_TRANS_SB_AGCOUNT: 434 ASSERT(delta > 0); 435 tp->t_agcount_delta += delta; 436 break; 437 case XFS_TRANS_SB_IMAXPCT: 438 tp->t_imaxpct_delta += delta; 439 break; 440 case XFS_TRANS_SB_REXTSIZE: 441 tp->t_rextsize_delta += delta; 442 break; 443 case XFS_TRANS_SB_RBMBLOCKS: 444 tp->t_rbmblocks_delta += delta; 445 break; 446 case XFS_TRANS_SB_RBLOCKS: 447 tp->t_rblocks_delta += delta; 448 break; 449 case XFS_TRANS_SB_REXTENTS: 450 tp->t_rextents_delta += delta; 451 break; 452 case XFS_TRANS_SB_REXTSLOG: 453 tp->t_rextslog_delta += delta; 454 break; 455 default: 456 ASSERT(0); 457 return; 458 } 459 460 tp->t_flags |= flags; 461 } 462 463 /* 464 * xfs_trans_apply_sb_deltas() is called from the commit code 465 * to bring the superblock buffer into the current transaction 466 * and modify it as requested by earlier calls to xfs_trans_mod_sb(). 467 * 468 * For now we just look at each field allowed to change and change 469 * it if necessary. 470 */ 471 STATIC void 472 xfs_trans_apply_sb_deltas( 473 xfs_trans_t *tp) 474 { 475 struct xfs_dsb *sbp; 476 struct xfs_buf *bp; 477 int whole = 0; 478 479 bp = xfs_trans_getsb(tp); 480 sbp = bp->b_addr; 481 482 /* 483 * Only update the superblock counters if we are logging them 484 */ 485 if (!xfs_has_lazysbcount((tp->t_mountp))) { 486 if (tp->t_icount_delta) 487 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta); 488 if (tp->t_ifree_delta) 489 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta); 490 if (tp->t_fdblocks_delta) 491 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta); 492 if (tp->t_res_fdblocks_delta) 493 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta); 494 } 495 496 /* 497 * Updating frextents requires careful handling because it does not 498 * behave like the lazysb counters because we cannot rely on log 499 * recovery in older kenels to recompute the value from the rtbitmap. 500 * This means that the ondisk frextents must be consistent with the 501 * rtbitmap. 502 * 503 * Therefore, log the frextents change to the ondisk superblock and 504 * update the incore superblock so that future calls to xfs_log_sb 505 * write the correct value ondisk. 506 * 507 * Don't touch m_frextents because it includes incore reservations, 508 * and those are handled by the unreserve function. 509 */ 510 if (tp->t_frextents_delta || tp->t_res_frextents_delta) { 511 struct xfs_mount *mp = tp->t_mountp; 512 int64_t rtxdelta; 513 514 rtxdelta = tp->t_frextents_delta + tp->t_res_frextents_delta; 515 516 spin_lock(&mp->m_sb_lock); 517 be64_add_cpu(&sbp->sb_frextents, rtxdelta); 518 mp->m_sb.sb_frextents += rtxdelta; 519 spin_unlock(&mp->m_sb_lock); 520 } 521 522 if (tp->t_dblocks_delta) { 523 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta); 524 whole = 1; 525 } 526 if (tp->t_agcount_delta) { 527 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta); 528 whole = 1; 529 } 530 if (tp->t_imaxpct_delta) { 531 sbp->sb_imax_pct += tp->t_imaxpct_delta; 532 whole = 1; 533 } 534 if (tp->t_rextsize_delta) { 535 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta); 536 whole = 1; 537 } 538 if (tp->t_rbmblocks_delta) { 539 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta); 540 whole = 1; 541 } 542 if (tp->t_rblocks_delta) { 543 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta); 544 whole = 1; 545 } 546 if (tp->t_rextents_delta) { 547 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta); 548 whole = 1; 549 } 550 if (tp->t_rextslog_delta) { 551 sbp->sb_rextslog += tp->t_rextslog_delta; 552 whole = 1; 553 } 554 555 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF); 556 if (whole) 557 /* 558 * Log the whole thing, the fields are noncontiguous. 559 */ 560 xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1); 561 else 562 /* 563 * Since all the modifiable fields are contiguous, we 564 * can get away with this. 565 */ 566 xfs_trans_log_buf(tp, bp, offsetof(struct xfs_dsb, sb_icount), 567 offsetof(struct xfs_dsb, sb_frextents) + 568 sizeof(sbp->sb_frextents) - 1); 569 } 570 571 /* 572 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and 573 * apply superblock counter changes to the in-core superblock. The 574 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT 575 * applied to the in-core superblock. The idea is that that has already been 576 * done. 577 * 578 * If we are not logging superblock counters, then the inode allocated/free and 579 * used block counts are not updated in the on disk superblock. In this case, 580 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we 581 * still need to update the incore superblock with the changes. 582 * 583 * Deltas for the inode count are +/-64, hence we use a large batch size of 128 584 * so we don't need to take the counter lock on every update. 585 */ 586 #define XFS_ICOUNT_BATCH 128 587 588 void 589 xfs_trans_unreserve_and_mod_sb( 590 struct xfs_trans *tp) 591 { 592 struct xfs_mount *mp = tp->t_mountp; 593 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0; 594 int64_t blkdelta = 0; 595 int64_t rtxdelta = 0; 596 int64_t idelta = 0; 597 int64_t ifreedelta = 0; 598 int error; 599 600 /* calculate deltas */ 601 if (tp->t_blk_res > 0) 602 blkdelta = tp->t_blk_res; 603 if ((tp->t_fdblocks_delta != 0) && 604 (xfs_has_lazysbcount(mp) || 605 (tp->t_flags & XFS_TRANS_SB_DIRTY))) 606 blkdelta += tp->t_fdblocks_delta; 607 608 if (tp->t_rtx_res > 0) 609 rtxdelta = tp->t_rtx_res; 610 if ((tp->t_frextents_delta != 0) && 611 (tp->t_flags & XFS_TRANS_SB_DIRTY)) 612 rtxdelta += tp->t_frextents_delta; 613 614 if (xfs_has_lazysbcount(mp) || 615 (tp->t_flags & XFS_TRANS_SB_DIRTY)) { 616 idelta = tp->t_icount_delta; 617 ifreedelta = tp->t_ifree_delta; 618 } 619 620 /* apply the per-cpu counters */ 621 if (blkdelta) { 622 error = xfs_mod_fdblocks(mp, blkdelta, rsvd); 623 ASSERT(!error); 624 } 625 626 if (idelta) 627 percpu_counter_add_batch(&mp->m_icount, idelta, 628 XFS_ICOUNT_BATCH); 629 630 if (ifreedelta) 631 percpu_counter_add(&mp->m_ifree, ifreedelta); 632 633 if (rtxdelta) { 634 error = xfs_mod_frextents(mp, rtxdelta); 635 ASSERT(!error); 636 } 637 638 if (!(tp->t_flags & XFS_TRANS_SB_DIRTY)) 639 return; 640 641 /* apply remaining deltas */ 642 spin_lock(&mp->m_sb_lock); 643 mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta; 644 mp->m_sb.sb_icount += idelta; 645 mp->m_sb.sb_ifree += ifreedelta; 646 /* 647 * Do not touch sb_frextents here because we are dealing with incore 648 * reservation. sb_frextents is not part of the lazy sb counters so it 649 * must be consistent with the ondisk rtbitmap and must never include 650 * incore reservations. 651 */ 652 mp->m_sb.sb_dblocks += tp->t_dblocks_delta; 653 mp->m_sb.sb_agcount += tp->t_agcount_delta; 654 mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta; 655 mp->m_sb.sb_rextsize += tp->t_rextsize_delta; 656 mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta; 657 mp->m_sb.sb_rblocks += tp->t_rblocks_delta; 658 mp->m_sb.sb_rextents += tp->t_rextents_delta; 659 mp->m_sb.sb_rextslog += tp->t_rextslog_delta; 660 spin_unlock(&mp->m_sb_lock); 661 662 /* 663 * Debug checks outside of the spinlock so they don't lock up the 664 * machine if they fail. 665 */ 666 ASSERT(mp->m_sb.sb_imax_pct >= 0); 667 ASSERT(mp->m_sb.sb_rextslog >= 0); 668 return; 669 } 670 671 /* Add the given log item to the transaction's list of log items. */ 672 void 673 xfs_trans_add_item( 674 struct xfs_trans *tp, 675 struct xfs_log_item *lip) 676 { 677 ASSERT(lip->li_log == tp->t_mountp->m_log); 678 ASSERT(lip->li_ailp == tp->t_mountp->m_ail); 679 ASSERT(list_empty(&lip->li_trans)); 680 ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags)); 681 682 list_add_tail(&lip->li_trans, &tp->t_items); 683 trace_xfs_trans_add_item(tp, _RET_IP_); 684 } 685 686 /* 687 * Unlink the log item from the transaction. the log item is no longer 688 * considered dirty in this transaction, as the linked transaction has 689 * finished, either by abort or commit completion. 690 */ 691 void 692 xfs_trans_del_item( 693 struct xfs_log_item *lip) 694 { 695 clear_bit(XFS_LI_DIRTY, &lip->li_flags); 696 list_del_init(&lip->li_trans); 697 } 698 699 /* Detach and unlock all of the items in a transaction */ 700 static void 701 xfs_trans_free_items( 702 struct xfs_trans *tp, 703 bool abort) 704 { 705 struct xfs_log_item *lip, *next; 706 707 trace_xfs_trans_free_items(tp, _RET_IP_); 708 709 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) { 710 xfs_trans_del_item(lip); 711 if (abort) 712 set_bit(XFS_LI_ABORTED, &lip->li_flags); 713 if (lip->li_ops->iop_release) 714 lip->li_ops->iop_release(lip); 715 } 716 } 717 718 static inline void 719 xfs_log_item_batch_insert( 720 struct xfs_ail *ailp, 721 struct xfs_ail_cursor *cur, 722 struct xfs_log_item **log_items, 723 int nr_items, 724 xfs_lsn_t commit_lsn) 725 { 726 int i; 727 728 spin_lock(&ailp->ail_lock); 729 /* xfs_trans_ail_update_bulk drops ailp->ail_lock */ 730 xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn); 731 732 for (i = 0; i < nr_items; i++) { 733 struct xfs_log_item *lip = log_items[i]; 734 735 if (lip->li_ops->iop_unpin) 736 lip->li_ops->iop_unpin(lip, 0); 737 } 738 } 739 740 /* 741 * Bulk operation version of xfs_trans_committed that takes a log vector of 742 * items to insert into the AIL. This uses bulk AIL insertion techniques to 743 * minimise lock traffic. 744 * 745 * If we are called with the aborted flag set, it is because a log write during 746 * a CIL checkpoint commit has failed. In this case, all the items in the 747 * checkpoint have already gone through iop_committed and iop_committing, which 748 * means that checkpoint commit abort handling is treated exactly the same 749 * as an iclog write error even though we haven't started any IO yet. Hence in 750 * this case all we need to do is iop_committed processing, followed by an 751 * iop_unpin(aborted) call. 752 * 753 * The AIL cursor is used to optimise the insert process. If commit_lsn is not 754 * at the end of the AIL, the insert cursor avoids the need to walk 755 * the AIL to find the insertion point on every xfs_log_item_batch_insert() 756 * call. This saves a lot of needless list walking and is a net win, even 757 * though it slightly increases that amount of AIL lock traffic to set it up 758 * and tear it down. 759 */ 760 void 761 xfs_trans_committed_bulk( 762 struct xfs_ail *ailp, 763 struct xfs_log_vec *log_vector, 764 xfs_lsn_t commit_lsn, 765 bool aborted) 766 { 767 #define LOG_ITEM_BATCH_SIZE 32 768 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE]; 769 struct xfs_log_vec *lv; 770 struct xfs_ail_cursor cur; 771 int i = 0; 772 773 spin_lock(&ailp->ail_lock); 774 xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn); 775 spin_unlock(&ailp->ail_lock); 776 777 /* unpin all the log items */ 778 for (lv = log_vector; lv; lv = lv->lv_next ) { 779 struct xfs_log_item *lip = lv->lv_item; 780 xfs_lsn_t item_lsn; 781 782 if (aborted) 783 set_bit(XFS_LI_ABORTED, &lip->li_flags); 784 785 if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) { 786 lip->li_ops->iop_release(lip); 787 continue; 788 } 789 790 if (lip->li_ops->iop_committed) 791 item_lsn = lip->li_ops->iop_committed(lip, commit_lsn); 792 else 793 item_lsn = commit_lsn; 794 795 /* item_lsn of -1 means the item needs no further processing */ 796 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0) 797 continue; 798 799 /* 800 * if we are aborting the operation, no point in inserting the 801 * object into the AIL as we are in a shutdown situation. 802 */ 803 if (aborted) { 804 ASSERT(xlog_is_shutdown(ailp->ail_log)); 805 if (lip->li_ops->iop_unpin) 806 lip->li_ops->iop_unpin(lip, 1); 807 continue; 808 } 809 810 if (item_lsn != commit_lsn) { 811 812 /* 813 * Not a bulk update option due to unusual item_lsn. 814 * Push into AIL immediately, rechecking the lsn once 815 * we have the ail lock. Then unpin the item. This does 816 * not affect the AIL cursor the bulk insert path is 817 * using. 818 */ 819 spin_lock(&ailp->ail_lock); 820 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) 821 xfs_trans_ail_update(ailp, lip, item_lsn); 822 else 823 spin_unlock(&ailp->ail_lock); 824 if (lip->li_ops->iop_unpin) 825 lip->li_ops->iop_unpin(lip, 0); 826 continue; 827 } 828 829 /* Item is a candidate for bulk AIL insert. */ 830 log_items[i++] = lv->lv_item; 831 if (i >= LOG_ITEM_BATCH_SIZE) { 832 xfs_log_item_batch_insert(ailp, &cur, log_items, 833 LOG_ITEM_BATCH_SIZE, commit_lsn); 834 i = 0; 835 } 836 } 837 838 /* make sure we insert the remainder! */ 839 if (i) 840 xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn); 841 842 spin_lock(&ailp->ail_lock); 843 xfs_trans_ail_cursor_done(&cur); 844 spin_unlock(&ailp->ail_lock); 845 } 846 847 /* 848 * Commit the given transaction to the log. 849 * 850 * XFS disk error handling mechanism is not based on a typical 851 * transaction abort mechanism. Logically after the filesystem 852 * gets marked 'SHUTDOWN', we can't let any new transactions 853 * be durable - ie. committed to disk - because some metadata might 854 * be inconsistent. In such cases, this returns an error, and the 855 * caller may assume that all locked objects joined to the transaction 856 * have already been unlocked as if the commit had succeeded. 857 * Do not reference the transaction structure after this call. 858 */ 859 static int 860 __xfs_trans_commit( 861 struct xfs_trans *tp, 862 bool regrant) 863 { 864 struct xfs_mount *mp = tp->t_mountp; 865 struct xlog *log = mp->m_log; 866 xfs_csn_t commit_seq = 0; 867 int error = 0; 868 int sync = tp->t_flags & XFS_TRANS_SYNC; 869 870 trace_xfs_trans_commit(tp, _RET_IP_); 871 872 /* 873 * Finish deferred items on final commit. Only permanent transactions 874 * should ever have deferred ops. 875 */ 876 WARN_ON_ONCE(!list_empty(&tp->t_dfops) && 877 !(tp->t_flags & XFS_TRANS_PERM_LOG_RES)); 878 if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) { 879 error = xfs_defer_finish_noroll(&tp); 880 if (error) 881 goto out_unreserve; 882 } 883 884 /* 885 * If there is nothing to be logged by the transaction, 886 * then unlock all of the items associated with the 887 * transaction and free the transaction structure. 888 * Also make sure to return any reserved blocks to 889 * the free pool. 890 */ 891 if (!(tp->t_flags & XFS_TRANS_DIRTY)) 892 goto out_unreserve; 893 894 /* 895 * We must check against log shutdown here because we cannot abort log 896 * items and leave them dirty, inconsistent and unpinned in memory while 897 * the log is active. This leaves them open to being written back to 898 * disk, and that will lead to on-disk corruption. 899 */ 900 if (xlog_is_shutdown(log)) { 901 error = -EIO; 902 goto out_unreserve; 903 } 904 905 ASSERT(tp->t_ticket != NULL); 906 907 /* 908 * If we need to update the superblock, then do it now. 909 */ 910 if (tp->t_flags & XFS_TRANS_SB_DIRTY) 911 xfs_trans_apply_sb_deltas(tp); 912 xfs_trans_apply_dquot_deltas(tp); 913 914 xlog_cil_commit(log, tp, &commit_seq, regrant); 915 916 xfs_trans_free(tp); 917 918 /* 919 * If the transaction needs to be synchronous, then force the 920 * log out now and wait for it. 921 */ 922 if (sync) { 923 error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL); 924 XFS_STATS_INC(mp, xs_trans_sync); 925 } else { 926 XFS_STATS_INC(mp, xs_trans_async); 927 } 928 929 return error; 930 931 out_unreserve: 932 xfs_trans_unreserve_and_mod_sb(tp); 933 934 /* 935 * It is indeed possible for the transaction to be not dirty but 936 * the dqinfo portion to be. All that means is that we have some 937 * (non-persistent) quota reservations that need to be unreserved. 938 */ 939 xfs_trans_unreserve_and_mod_dquots(tp); 940 if (tp->t_ticket) { 941 if (regrant && !xlog_is_shutdown(log)) 942 xfs_log_ticket_regrant(log, tp->t_ticket); 943 else 944 xfs_log_ticket_ungrant(log, tp->t_ticket); 945 tp->t_ticket = NULL; 946 } 947 xfs_trans_free_items(tp, !!error); 948 xfs_trans_free(tp); 949 950 XFS_STATS_INC(mp, xs_trans_empty); 951 return error; 952 } 953 954 int 955 xfs_trans_commit( 956 struct xfs_trans *tp) 957 { 958 return __xfs_trans_commit(tp, false); 959 } 960 961 /* 962 * Unlock all of the transaction's items and free the transaction. If the 963 * transaction is dirty, we must shut down the filesystem because there is no 964 * way to restore them to their previous state. 965 * 966 * If the transaction has made a log reservation, make sure to release it as 967 * well. 968 * 969 * This is a high level function (equivalent to xfs_trans_commit()) and so can 970 * be called after the transaction has effectively been aborted due to the mount 971 * being shut down. However, if the mount has not been shut down and the 972 * transaction is dirty we will shut the mount down and, in doing so, that 973 * guarantees that the log is shut down, too. Hence we don't need to be as 974 * careful with shutdown state and dirty items here as we need to be in 975 * xfs_trans_commit(). 976 */ 977 void 978 xfs_trans_cancel( 979 struct xfs_trans *tp) 980 { 981 struct xfs_mount *mp = tp->t_mountp; 982 struct xlog *log = mp->m_log; 983 bool dirty = (tp->t_flags & XFS_TRANS_DIRTY); 984 985 trace_xfs_trans_cancel(tp, _RET_IP_); 986 987 /* 988 * It's never valid to cancel a transaction with deferred ops attached, 989 * because the transaction is effectively dirty. Complain about this 990 * loudly before freeing the in-memory defer items. 991 */ 992 if (!list_empty(&tp->t_dfops)) { 993 ASSERT(xfs_is_shutdown(mp) || list_empty(&tp->t_dfops)); 994 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 995 dirty = true; 996 xfs_defer_cancel(tp); 997 } 998 999 /* 1000 * See if the caller is relying on us to shut down the filesystem. We 1001 * only want an error report if there isn't already a shutdown in 1002 * progress, so we only need to check against the mount shutdown state 1003 * here. 1004 */ 1005 if (dirty && !xfs_is_shutdown(mp)) { 1006 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp); 1007 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1008 } 1009 #ifdef DEBUG 1010 /* Log items need to be consistent until the log is shut down. */ 1011 if (!dirty && !xlog_is_shutdown(log)) { 1012 struct xfs_log_item *lip; 1013 1014 list_for_each_entry(lip, &tp->t_items, li_trans) 1015 ASSERT(!xlog_item_is_intent_done(lip)); 1016 } 1017 #endif 1018 xfs_trans_unreserve_and_mod_sb(tp); 1019 xfs_trans_unreserve_and_mod_dquots(tp); 1020 1021 if (tp->t_ticket) { 1022 xfs_log_ticket_ungrant(log, tp->t_ticket); 1023 tp->t_ticket = NULL; 1024 } 1025 1026 xfs_trans_free_items(tp, dirty); 1027 xfs_trans_free(tp); 1028 } 1029 1030 /* 1031 * Roll from one trans in the sequence of PERMANENT transactions to 1032 * the next: permanent transactions are only flushed out when 1033 * committed with xfs_trans_commit(), but we still want as soon 1034 * as possible to let chunks of it go to the log. So we commit the 1035 * chunk we've been working on and get a new transaction to continue. 1036 */ 1037 int 1038 xfs_trans_roll( 1039 struct xfs_trans **tpp) 1040 { 1041 struct xfs_trans *trans = *tpp; 1042 struct xfs_trans_res tres; 1043 int error; 1044 1045 trace_xfs_trans_roll(trans, _RET_IP_); 1046 1047 /* 1048 * Copy the critical parameters from one trans to the next. 1049 */ 1050 tres.tr_logres = trans->t_log_res; 1051 tres.tr_logcount = trans->t_log_count; 1052 1053 *tpp = xfs_trans_dup(trans); 1054 1055 /* 1056 * Commit the current transaction. 1057 * If this commit failed, then it'd just unlock those items that 1058 * are not marked ihold. That also means that a filesystem shutdown 1059 * is in progress. The caller takes the responsibility to cancel 1060 * the duplicate transaction that gets returned. 1061 */ 1062 error = __xfs_trans_commit(trans, true); 1063 if (error) 1064 return error; 1065 1066 /* 1067 * Reserve space in the log for the next transaction. 1068 * This also pushes items in the "AIL", the list of logged items, 1069 * out to disk if they are taking up space at the tail of the log 1070 * that we want to use. This requires that either nothing be locked 1071 * across this call, or that anything that is locked be logged in 1072 * the prior and the next transactions. 1073 */ 1074 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES; 1075 return xfs_trans_reserve(*tpp, &tres, 0, 0); 1076 } 1077 1078 /* 1079 * Allocate an transaction, lock and join the inode to it, and reserve quota. 1080 * 1081 * The caller must ensure that the on-disk dquots attached to this inode have 1082 * already been allocated and initialized. The caller is responsible for 1083 * releasing ILOCK_EXCL if a new transaction is returned. 1084 */ 1085 int 1086 xfs_trans_alloc_inode( 1087 struct xfs_inode *ip, 1088 struct xfs_trans_res *resv, 1089 unsigned int dblocks, 1090 unsigned int rblocks, 1091 bool force, 1092 struct xfs_trans **tpp) 1093 { 1094 struct xfs_trans *tp; 1095 struct xfs_mount *mp = ip->i_mount; 1096 bool retried = false; 1097 int error; 1098 1099 retry: 1100 error = xfs_trans_alloc(mp, resv, dblocks, 1101 rblocks / mp->m_sb.sb_rextsize, 1102 force ? XFS_TRANS_RESERVE : 0, &tp); 1103 if (error) 1104 return error; 1105 1106 xfs_ilock(ip, XFS_ILOCK_EXCL); 1107 xfs_trans_ijoin(tp, ip, 0); 1108 1109 error = xfs_qm_dqattach_locked(ip, false); 1110 if (error) { 1111 /* Caller should have allocated the dquots! */ 1112 ASSERT(error != -ENOENT); 1113 goto out_cancel; 1114 } 1115 1116 error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force); 1117 if ((error == -EDQUOT || error == -ENOSPC) && !retried) { 1118 xfs_trans_cancel(tp); 1119 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1120 xfs_blockgc_free_quota(ip, 0); 1121 retried = true; 1122 goto retry; 1123 } 1124 if (error) 1125 goto out_cancel; 1126 1127 *tpp = tp; 1128 return 0; 1129 1130 out_cancel: 1131 xfs_trans_cancel(tp); 1132 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1133 return error; 1134 } 1135 1136 /* 1137 * Allocate an transaction in preparation for inode creation by reserving quota 1138 * against the given dquots. Callers are not required to hold any inode locks. 1139 */ 1140 int 1141 xfs_trans_alloc_icreate( 1142 struct xfs_mount *mp, 1143 struct xfs_trans_res *resv, 1144 struct xfs_dquot *udqp, 1145 struct xfs_dquot *gdqp, 1146 struct xfs_dquot *pdqp, 1147 unsigned int dblocks, 1148 struct xfs_trans **tpp) 1149 { 1150 struct xfs_trans *tp; 1151 bool retried = false; 1152 int error; 1153 1154 retry: 1155 error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp); 1156 if (error) 1157 return error; 1158 1159 error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks); 1160 if ((error == -EDQUOT || error == -ENOSPC) && !retried) { 1161 xfs_trans_cancel(tp); 1162 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0); 1163 retried = true; 1164 goto retry; 1165 } 1166 if (error) { 1167 xfs_trans_cancel(tp); 1168 return error; 1169 } 1170 1171 *tpp = tp; 1172 return 0; 1173 } 1174 1175 /* 1176 * Allocate an transaction, lock and join the inode to it, and reserve quota 1177 * in preparation for inode attribute changes that include uid, gid, or prid 1178 * changes. 1179 * 1180 * The caller must ensure that the on-disk dquots attached to this inode have 1181 * already been allocated and initialized. The ILOCK will be dropped when the 1182 * transaction is committed or cancelled. 1183 */ 1184 int 1185 xfs_trans_alloc_ichange( 1186 struct xfs_inode *ip, 1187 struct xfs_dquot *new_udqp, 1188 struct xfs_dquot *new_gdqp, 1189 struct xfs_dquot *new_pdqp, 1190 bool force, 1191 struct xfs_trans **tpp) 1192 { 1193 struct xfs_trans *tp; 1194 struct xfs_mount *mp = ip->i_mount; 1195 struct xfs_dquot *udqp; 1196 struct xfs_dquot *gdqp; 1197 struct xfs_dquot *pdqp; 1198 bool retried = false; 1199 int error; 1200 1201 retry: 1202 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); 1203 if (error) 1204 return error; 1205 1206 xfs_ilock(ip, XFS_ILOCK_EXCL); 1207 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1208 1209 error = xfs_qm_dqattach_locked(ip, false); 1210 if (error) { 1211 /* Caller should have allocated the dquots! */ 1212 ASSERT(error != -ENOENT); 1213 goto out_cancel; 1214 } 1215 1216 /* 1217 * For each quota type, skip quota reservations if the inode's dquots 1218 * now match the ones that came from the caller, or the caller didn't 1219 * pass one in. The inode's dquots can change if we drop the ILOCK to 1220 * perform a blockgc scan, so we must preserve the caller's arguments. 1221 */ 1222 udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL; 1223 gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL; 1224 pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL; 1225 if (udqp || gdqp || pdqp) { 1226 unsigned int qflags = XFS_QMOPT_RES_REGBLKS; 1227 1228 if (force) 1229 qflags |= XFS_QMOPT_FORCE_RES; 1230 1231 /* 1232 * Reserve enough quota to handle blocks on disk and reserved 1233 * for a delayed allocation. We'll actually transfer the 1234 * delalloc reservation between dquots at chown time, even 1235 * though that part is only semi-transactional. 1236 */ 1237 error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp, 1238 pdqp, ip->i_nblocks + ip->i_delayed_blks, 1239 1, qflags); 1240 if ((error == -EDQUOT || error == -ENOSPC) && !retried) { 1241 xfs_trans_cancel(tp); 1242 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0); 1243 retried = true; 1244 goto retry; 1245 } 1246 if (error) 1247 goto out_cancel; 1248 } 1249 1250 *tpp = tp; 1251 return 0; 1252 1253 out_cancel: 1254 xfs_trans_cancel(tp); 1255 return error; 1256 } 1257 1258 /* 1259 * Allocate an transaction, lock and join the directory and child inodes to it, 1260 * and reserve quota for a directory update. If there isn't sufficient space, 1261 * @dblocks will be set to zero for a reservationless directory update and 1262 * @nospace_error will be set to a negative errno describing the space 1263 * constraint we hit. 1264 * 1265 * The caller must ensure that the on-disk dquots attached to this inode have 1266 * already been allocated and initialized. The ILOCKs will be dropped when the 1267 * transaction is committed or cancelled. 1268 */ 1269 int 1270 xfs_trans_alloc_dir( 1271 struct xfs_inode *dp, 1272 struct xfs_trans_res *resv, 1273 struct xfs_inode *ip, 1274 unsigned int *dblocks, 1275 struct xfs_trans **tpp, 1276 int *nospace_error) 1277 { 1278 struct xfs_trans *tp; 1279 struct xfs_mount *mp = ip->i_mount; 1280 unsigned int resblks; 1281 bool retried = false; 1282 int error; 1283 1284 retry: 1285 *nospace_error = 0; 1286 resblks = *dblocks; 1287 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp); 1288 if (error == -ENOSPC) { 1289 *nospace_error = error; 1290 resblks = 0; 1291 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp); 1292 } 1293 if (error) 1294 return error; 1295 1296 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); 1297 1298 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1299 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1300 1301 error = xfs_qm_dqattach_locked(dp, false); 1302 if (error) { 1303 /* Caller should have allocated the dquots! */ 1304 ASSERT(error != -ENOENT); 1305 goto out_cancel; 1306 } 1307 1308 error = xfs_qm_dqattach_locked(ip, false); 1309 if (error) { 1310 /* Caller should have allocated the dquots! */ 1311 ASSERT(error != -ENOENT); 1312 goto out_cancel; 1313 } 1314 1315 if (resblks == 0) 1316 goto done; 1317 1318 error = xfs_trans_reserve_quota_nblks(tp, dp, resblks, 0, false); 1319 if (error == -EDQUOT || error == -ENOSPC) { 1320 if (!retried) { 1321 xfs_trans_cancel(tp); 1322 xfs_blockgc_free_quota(dp, 0); 1323 retried = true; 1324 goto retry; 1325 } 1326 1327 *nospace_error = error; 1328 resblks = 0; 1329 error = 0; 1330 } 1331 if (error) 1332 goto out_cancel; 1333 1334 done: 1335 *tpp = tp; 1336 *dblocks = resblks; 1337 return 0; 1338 1339 out_cancel: 1340 xfs_trans_cancel(tp); 1341 return error; 1342 } 1343