1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. 4 * Copyright (C) 2010 Red Hat, Inc. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_mount.h" 14 #include "xfs_extent_busy.h" 15 #include "xfs_quota.h" 16 #include "xfs_trans.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_log.h" 19 #include "xfs_log_priv.h" 20 #include "xfs_trace.h" 21 #include "xfs_error.h" 22 #include "xfs_defer.h" 23 #include "xfs_inode.h" 24 #include "xfs_dquot_item.h" 25 #include "xfs_dquot.h" 26 #include "xfs_icache.h" 27 28 struct kmem_cache *xfs_trans_cache; 29 30 #if defined(CONFIG_TRACEPOINTS) 31 static void 32 xfs_trans_trace_reservations( 33 struct xfs_mount *mp) 34 { 35 struct xfs_trans_res resv; 36 struct xfs_trans_res *res; 37 struct xfs_trans_res *end_res; 38 int i; 39 40 res = (struct xfs_trans_res *)M_RES(mp); 41 end_res = (struct xfs_trans_res *)(M_RES(mp) + 1); 42 for (i = 0; res < end_res; i++, res++) 43 trace_xfs_trans_resv_calc(mp, i, res); 44 xfs_log_get_max_trans_res(mp, &resv); 45 trace_xfs_trans_resv_calc(mp, -1, &resv); 46 } 47 #else 48 # define xfs_trans_trace_reservations(mp) 49 #endif 50 51 /* 52 * Initialize the precomputed transaction reservation values 53 * in the mount structure. 54 */ 55 void 56 xfs_trans_init( 57 struct xfs_mount *mp) 58 { 59 xfs_trans_resv_calc(mp, M_RES(mp)); 60 xfs_trans_trace_reservations(mp); 61 } 62 63 /* 64 * Free the transaction structure. If there is more clean up 65 * to do when the structure is freed, add it here. 66 */ 67 STATIC void 68 xfs_trans_free( 69 struct xfs_trans *tp) 70 { 71 xfs_extent_busy_sort(&tp->t_busy); 72 xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false); 73 74 trace_xfs_trans_free(tp, _RET_IP_); 75 xfs_trans_clear_context(tp); 76 if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT)) 77 sb_end_intwrite(tp->t_mountp->m_super); 78 xfs_trans_free_dqinfo(tp); 79 kmem_cache_free(xfs_trans_cache, tp); 80 } 81 82 /* 83 * This is called to create a new transaction which will share the 84 * permanent log reservation of the given transaction. The remaining 85 * unused block and rt extent reservations are also inherited. This 86 * implies that the original transaction is no longer allowed to allocate 87 * blocks. Locks and log items, however, are no inherited. They must 88 * be added to the new transaction explicitly. 89 */ 90 STATIC struct xfs_trans * 91 xfs_trans_dup( 92 struct xfs_trans *tp) 93 { 94 struct xfs_trans *ntp; 95 96 trace_xfs_trans_dup(tp, _RET_IP_); 97 98 ntp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL); 99 100 /* 101 * Initialize the new transaction structure. 102 */ 103 ntp->t_magic = XFS_TRANS_HEADER_MAGIC; 104 ntp->t_mountp = tp->t_mountp; 105 INIT_LIST_HEAD(&ntp->t_items); 106 INIT_LIST_HEAD(&ntp->t_busy); 107 INIT_LIST_HEAD(&ntp->t_dfops); 108 ntp->t_firstblock = NULLFSBLOCK; 109 110 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 111 ASSERT(tp->t_ticket != NULL); 112 113 ntp->t_flags = XFS_TRANS_PERM_LOG_RES | 114 (tp->t_flags & XFS_TRANS_RESERVE) | 115 (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) | 116 (tp->t_flags & XFS_TRANS_RES_FDBLKS); 117 /* We gave our writer reference to the new transaction */ 118 tp->t_flags |= XFS_TRANS_NO_WRITECOUNT; 119 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket); 120 121 ASSERT(tp->t_blk_res >= tp->t_blk_res_used); 122 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used; 123 tp->t_blk_res = tp->t_blk_res_used; 124 125 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used; 126 tp->t_rtx_res = tp->t_rtx_res_used; 127 128 xfs_trans_switch_context(tp, ntp); 129 130 /* move deferred ops over to the new tp */ 131 xfs_defer_move(ntp, tp); 132 133 xfs_trans_dup_dqinfo(tp, ntp); 134 return ntp; 135 } 136 137 /* 138 * This is called to reserve free disk blocks and log space for the 139 * given transaction. This must be done before allocating any resources 140 * within the transaction. 141 * 142 * This will return ENOSPC if there are not enough blocks available. 143 * It will sleep waiting for available log space. 144 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which 145 * is used by long running transactions. If any one of the reservations 146 * fails then they will all be backed out. 147 * 148 * This does not do quota reservations. That typically is done by the 149 * caller afterwards. 150 */ 151 static int 152 xfs_trans_reserve( 153 struct xfs_trans *tp, 154 struct xfs_trans_res *resp, 155 uint blocks, 156 uint rtextents) 157 { 158 struct xfs_mount *mp = tp->t_mountp; 159 int error = 0; 160 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0; 161 162 /* 163 * Attempt to reserve the needed disk blocks by decrementing 164 * the number needed from the number available. This will 165 * fail if the count would go below zero. 166 */ 167 if (blocks > 0) { 168 error = xfs_mod_fdblocks(mp, -((int64_t)blocks), rsvd); 169 if (error != 0) 170 return -ENOSPC; 171 tp->t_blk_res += blocks; 172 } 173 174 /* 175 * Reserve the log space needed for this transaction. 176 */ 177 if (resp->tr_logres > 0) { 178 bool permanent = false; 179 180 ASSERT(tp->t_log_res == 0 || 181 tp->t_log_res == resp->tr_logres); 182 ASSERT(tp->t_log_count == 0 || 183 tp->t_log_count == resp->tr_logcount); 184 185 if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) { 186 tp->t_flags |= XFS_TRANS_PERM_LOG_RES; 187 permanent = true; 188 } else { 189 ASSERT(tp->t_ticket == NULL); 190 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES)); 191 } 192 193 if (tp->t_ticket != NULL) { 194 ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES); 195 error = xfs_log_regrant(mp, tp->t_ticket); 196 } else { 197 error = xfs_log_reserve(mp, 198 resp->tr_logres, 199 resp->tr_logcount, 200 &tp->t_ticket, XFS_TRANSACTION, 201 permanent); 202 } 203 204 if (error) 205 goto undo_blocks; 206 207 tp->t_log_res = resp->tr_logres; 208 tp->t_log_count = resp->tr_logcount; 209 } 210 211 /* 212 * Attempt to reserve the needed realtime extents by decrementing 213 * the number needed from the number available. This will 214 * fail if the count would go below zero. 215 */ 216 if (rtextents > 0) { 217 error = xfs_mod_frextents(mp, -((int64_t)rtextents)); 218 if (error) { 219 error = -ENOSPC; 220 goto undo_log; 221 } 222 tp->t_rtx_res += rtextents; 223 } 224 225 return 0; 226 227 /* 228 * Error cases jump to one of these labels to undo any 229 * reservations which have already been performed. 230 */ 231 undo_log: 232 if (resp->tr_logres > 0) { 233 xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket); 234 tp->t_ticket = NULL; 235 tp->t_log_res = 0; 236 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES; 237 } 238 239 undo_blocks: 240 if (blocks > 0) { 241 xfs_mod_fdblocks(mp, (int64_t)blocks, rsvd); 242 tp->t_blk_res = 0; 243 } 244 return error; 245 } 246 247 int 248 xfs_trans_alloc( 249 struct xfs_mount *mp, 250 struct xfs_trans_res *resp, 251 uint blocks, 252 uint rtextents, 253 uint flags, 254 struct xfs_trans **tpp) 255 { 256 struct xfs_trans *tp; 257 bool want_retry = true; 258 int error; 259 260 /* 261 * Allocate the handle before we do our freeze accounting and setting up 262 * GFP_NOFS allocation context so that we avoid lockdep false positives 263 * by doing GFP_KERNEL allocations inside sb_start_intwrite(). 264 */ 265 retry: 266 tp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL); 267 if (!(flags & XFS_TRANS_NO_WRITECOUNT)) 268 sb_start_intwrite(mp->m_super); 269 xfs_trans_set_context(tp); 270 271 /* 272 * Zero-reservation ("empty") transactions can't modify anything, so 273 * they're allowed to run while we're frozen. 274 */ 275 WARN_ON(resp->tr_logres > 0 && 276 mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE); 277 ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) || 278 xfs_has_lazysbcount(mp)); 279 280 tp->t_magic = XFS_TRANS_HEADER_MAGIC; 281 tp->t_flags = flags; 282 tp->t_mountp = mp; 283 INIT_LIST_HEAD(&tp->t_items); 284 INIT_LIST_HEAD(&tp->t_busy); 285 INIT_LIST_HEAD(&tp->t_dfops); 286 tp->t_firstblock = NULLFSBLOCK; 287 288 error = xfs_trans_reserve(tp, resp, blocks, rtextents); 289 if (error == -ENOSPC && want_retry) { 290 xfs_trans_cancel(tp); 291 292 /* 293 * We weren't able to reserve enough space for the transaction. 294 * Flush the other speculative space allocations to free space. 295 * Do not perform a synchronous scan because callers can hold 296 * other locks. 297 */ 298 xfs_blockgc_flush_all(mp); 299 want_retry = false; 300 goto retry; 301 } 302 if (error) { 303 xfs_trans_cancel(tp); 304 return error; 305 } 306 307 trace_xfs_trans_alloc(tp, _RET_IP_); 308 309 *tpp = tp; 310 return 0; 311 } 312 313 /* 314 * Create an empty transaction with no reservation. This is a defensive 315 * mechanism for routines that query metadata without actually modifying them -- 316 * if the metadata being queried is somehow cross-linked (think a btree block 317 * pointer that points higher in the tree), we risk deadlock. However, blocks 318 * grabbed as part of a transaction can be re-grabbed. The verifiers will 319 * notice the corrupt block and the operation will fail back to userspace 320 * without deadlocking. 321 * 322 * Note the zero-length reservation; this transaction MUST be cancelled without 323 * any dirty data. 324 * 325 * Callers should obtain freeze protection to avoid a conflict with fs freezing 326 * where we can be grabbing buffers at the same time that freeze is trying to 327 * drain the buffer LRU list. 328 */ 329 int 330 xfs_trans_alloc_empty( 331 struct xfs_mount *mp, 332 struct xfs_trans **tpp) 333 { 334 struct xfs_trans_res resv = {0}; 335 336 return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp); 337 } 338 339 /* 340 * Record the indicated change to the given field for application 341 * to the file system's superblock when the transaction commits. 342 * For now, just store the change in the transaction structure. 343 * 344 * Mark the transaction structure to indicate that the superblock 345 * needs to be updated before committing. 346 * 347 * Because we may not be keeping track of allocated/free inodes and 348 * used filesystem blocks in the superblock, we do not mark the 349 * superblock dirty in this transaction if we modify these fields. 350 * We still need to update the transaction deltas so that they get 351 * applied to the incore superblock, but we don't want them to 352 * cause the superblock to get locked and logged if these are the 353 * only fields in the superblock that the transaction modifies. 354 */ 355 void 356 xfs_trans_mod_sb( 357 xfs_trans_t *tp, 358 uint field, 359 int64_t delta) 360 { 361 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY); 362 xfs_mount_t *mp = tp->t_mountp; 363 364 switch (field) { 365 case XFS_TRANS_SB_ICOUNT: 366 tp->t_icount_delta += delta; 367 if (xfs_has_lazysbcount(mp)) 368 flags &= ~XFS_TRANS_SB_DIRTY; 369 break; 370 case XFS_TRANS_SB_IFREE: 371 tp->t_ifree_delta += delta; 372 if (xfs_has_lazysbcount(mp)) 373 flags &= ~XFS_TRANS_SB_DIRTY; 374 break; 375 case XFS_TRANS_SB_FDBLOCKS: 376 /* 377 * Track the number of blocks allocated in the transaction. 378 * Make sure it does not exceed the number reserved. If so, 379 * shutdown as this can lead to accounting inconsistency. 380 */ 381 if (delta < 0) { 382 tp->t_blk_res_used += (uint)-delta; 383 if (tp->t_blk_res_used > tp->t_blk_res) 384 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 385 } else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) { 386 int64_t blkres_delta; 387 388 /* 389 * Return freed blocks directly to the reservation 390 * instead of the global pool, being careful not to 391 * overflow the trans counter. This is used to preserve 392 * reservation across chains of transaction rolls that 393 * repeatedly free and allocate blocks. 394 */ 395 blkres_delta = min_t(int64_t, delta, 396 UINT_MAX - tp->t_blk_res); 397 tp->t_blk_res += blkres_delta; 398 delta -= blkres_delta; 399 } 400 tp->t_fdblocks_delta += delta; 401 if (xfs_has_lazysbcount(mp)) 402 flags &= ~XFS_TRANS_SB_DIRTY; 403 break; 404 case XFS_TRANS_SB_RES_FDBLOCKS: 405 /* 406 * The allocation has already been applied to the 407 * in-core superblock's counter. This should only 408 * be applied to the on-disk superblock. 409 */ 410 tp->t_res_fdblocks_delta += delta; 411 if (xfs_has_lazysbcount(mp)) 412 flags &= ~XFS_TRANS_SB_DIRTY; 413 break; 414 case XFS_TRANS_SB_FREXTENTS: 415 /* 416 * Track the number of blocks allocated in the 417 * transaction. Make sure it does not exceed the 418 * number reserved. 419 */ 420 if (delta < 0) { 421 tp->t_rtx_res_used += (uint)-delta; 422 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res); 423 } 424 tp->t_frextents_delta += delta; 425 break; 426 case XFS_TRANS_SB_RES_FREXTENTS: 427 /* 428 * The allocation has already been applied to the 429 * in-core superblock's counter. This should only 430 * be applied to the on-disk superblock. 431 */ 432 ASSERT(delta < 0); 433 tp->t_res_frextents_delta += delta; 434 break; 435 case XFS_TRANS_SB_DBLOCKS: 436 tp->t_dblocks_delta += delta; 437 break; 438 case XFS_TRANS_SB_AGCOUNT: 439 ASSERT(delta > 0); 440 tp->t_agcount_delta += delta; 441 break; 442 case XFS_TRANS_SB_IMAXPCT: 443 tp->t_imaxpct_delta += delta; 444 break; 445 case XFS_TRANS_SB_REXTSIZE: 446 tp->t_rextsize_delta += delta; 447 break; 448 case XFS_TRANS_SB_RBMBLOCKS: 449 tp->t_rbmblocks_delta += delta; 450 break; 451 case XFS_TRANS_SB_RBLOCKS: 452 tp->t_rblocks_delta += delta; 453 break; 454 case XFS_TRANS_SB_REXTENTS: 455 tp->t_rextents_delta += delta; 456 break; 457 case XFS_TRANS_SB_REXTSLOG: 458 tp->t_rextslog_delta += delta; 459 break; 460 default: 461 ASSERT(0); 462 return; 463 } 464 465 tp->t_flags |= flags; 466 } 467 468 /* 469 * xfs_trans_apply_sb_deltas() is called from the commit code 470 * to bring the superblock buffer into the current transaction 471 * and modify it as requested by earlier calls to xfs_trans_mod_sb(). 472 * 473 * For now we just look at each field allowed to change and change 474 * it if necessary. 475 */ 476 STATIC void 477 xfs_trans_apply_sb_deltas( 478 xfs_trans_t *tp) 479 { 480 struct xfs_dsb *sbp; 481 struct xfs_buf *bp; 482 int whole = 0; 483 484 bp = xfs_trans_getsb(tp); 485 sbp = bp->b_addr; 486 487 /* 488 * Only update the superblock counters if we are logging them 489 */ 490 if (!xfs_has_lazysbcount((tp->t_mountp))) { 491 if (tp->t_icount_delta) 492 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta); 493 if (tp->t_ifree_delta) 494 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta); 495 if (tp->t_fdblocks_delta) 496 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta); 497 if (tp->t_res_fdblocks_delta) 498 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta); 499 } 500 501 if (tp->t_frextents_delta) 502 be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta); 503 if (tp->t_res_frextents_delta) 504 be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta); 505 506 if (tp->t_dblocks_delta) { 507 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta); 508 whole = 1; 509 } 510 if (tp->t_agcount_delta) { 511 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta); 512 whole = 1; 513 } 514 if (tp->t_imaxpct_delta) { 515 sbp->sb_imax_pct += tp->t_imaxpct_delta; 516 whole = 1; 517 } 518 if (tp->t_rextsize_delta) { 519 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta); 520 whole = 1; 521 } 522 if (tp->t_rbmblocks_delta) { 523 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta); 524 whole = 1; 525 } 526 if (tp->t_rblocks_delta) { 527 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta); 528 whole = 1; 529 } 530 if (tp->t_rextents_delta) { 531 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta); 532 whole = 1; 533 } 534 if (tp->t_rextslog_delta) { 535 sbp->sb_rextslog += tp->t_rextslog_delta; 536 whole = 1; 537 } 538 539 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF); 540 if (whole) 541 /* 542 * Log the whole thing, the fields are noncontiguous. 543 */ 544 xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1); 545 else 546 /* 547 * Since all the modifiable fields are contiguous, we 548 * can get away with this. 549 */ 550 xfs_trans_log_buf(tp, bp, offsetof(struct xfs_dsb, sb_icount), 551 offsetof(struct xfs_dsb, sb_frextents) + 552 sizeof(sbp->sb_frextents) - 1); 553 } 554 555 /* 556 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and 557 * apply superblock counter changes to the in-core superblock. The 558 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT 559 * applied to the in-core superblock. The idea is that that has already been 560 * done. 561 * 562 * If we are not logging superblock counters, then the inode allocated/free and 563 * used block counts are not updated in the on disk superblock. In this case, 564 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we 565 * still need to update the incore superblock with the changes. 566 * 567 * Deltas for the inode count are +/-64, hence we use a large batch size of 128 568 * so we don't need to take the counter lock on every update. 569 */ 570 #define XFS_ICOUNT_BATCH 128 571 572 void 573 xfs_trans_unreserve_and_mod_sb( 574 struct xfs_trans *tp) 575 { 576 struct xfs_mount *mp = tp->t_mountp; 577 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0; 578 int64_t blkdelta = 0; 579 int64_t rtxdelta = 0; 580 int64_t idelta = 0; 581 int64_t ifreedelta = 0; 582 int error; 583 584 /* calculate deltas */ 585 if (tp->t_blk_res > 0) 586 blkdelta = tp->t_blk_res; 587 if ((tp->t_fdblocks_delta != 0) && 588 (xfs_has_lazysbcount(mp) || 589 (tp->t_flags & XFS_TRANS_SB_DIRTY))) 590 blkdelta += tp->t_fdblocks_delta; 591 592 if (tp->t_rtx_res > 0) 593 rtxdelta = tp->t_rtx_res; 594 if ((tp->t_frextents_delta != 0) && 595 (tp->t_flags & XFS_TRANS_SB_DIRTY)) 596 rtxdelta += tp->t_frextents_delta; 597 598 if (xfs_has_lazysbcount(mp) || 599 (tp->t_flags & XFS_TRANS_SB_DIRTY)) { 600 idelta = tp->t_icount_delta; 601 ifreedelta = tp->t_ifree_delta; 602 } 603 604 /* apply the per-cpu counters */ 605 if (blkdelta) { 606 error = xfs_mod_fdblocks(mp, blkdelta, rsvd); 607 ASSERT(!error); 608 } 609 610 if (idelta) 611 percpu_counter_add_batch(&mp->m_icount, idelta, 612 XFS_ICOUNT_BATCH); 613 614 if (ifreedelta) 615 percpu_counter_add(&mp->m_ifree, ifreedelta); 616 617 if (rtxdelta == 0 && !(tp->t_flags & XFS_TRANS_SB_DIRTY)) 618 return; 619 620 /* apply remaining deltas */ 621 spin_lock(&mp->m_sb_lock); 622 mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta; 623 mp->m_sb.sb_icount += idelta; 624 mp->m_sb.sb_ifree += ifreedelta; 625 mp->m_sb.sb_frextents += rtxdelta; 626 mp->m_sb.sb_dblocks += tp->t_dblocks_delta; 627 mp->m_sb.sb_agcount += tp->t_agcount_delta; 628 mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta; 629 mp->m_sb.sb_rextsize += tp->t_rextsize_delta; 630 mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta; 631 mp->m_sb.sb_rblocks += tp->t_rblocks_delta; 632 mp->m_sb.sb_rextents += tp->t_rextents_delta; 633 mp->m_sb.sb_rextslog += tp->t_rextslog_delta; 634 spin_unlock(&mp->m_sb_lock); 635 636 /* 637 * Debug checks outside of the spinlock so they don't lock up the 638 * machine if they fail. 639 */ 640 ASSERT(mp->m_sb.sb_imax_pct >= 0); 641 ASSERT(mp->m_sb.sb_rextslog >= 0); 642 return; 643 } 644 645 /* Add the given log item to the transaction's list of log items. */ 646 void 647 xfs_trans_add_item( 648 struct xfs_trans *tp, 649 struct xfs_log_item *lip) 650 { 651 ASSERT(lip->li_mountp == tp->t_mountp); 652 ASSERT(lip->li_ailp == tp->t_mountp->m_ail); 653 ASSERT(list_empty(&lip->li_trans)); 654 ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags)); 655 656 list_add_tail(&lip->li_trans, &tp->t_items); 657 trace_xfs_trans_add_item(tp, _RET_IP_); 658 } 659 660 /* 661 * Unlink the log item from the transaction. the log item is no longer 662 * considered dirty in this transaction, as the linked transaction has 663 * finished, either by abort or commit completion. 664 */ 665 void 666 xfs_trans_del_item( 667 struct xfs_log_item *lip) 668 { 669 clear_bit(XFS_LI_DIRTY, &lip->li_flags); 670 list_del_init(&lip->li_trans); 671 } 672 673 /* Detach and unlock all of the items in a transaction */ 674 static void 675 xfs_trans_free_items( 676 struct xfs_trans *tp, 677 bool abort) 678 { 679 struct xfs_log_item *lip, *next; 680 681 trace_xfs_trans_free_items(tp, _RET_IP_); 682 683 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) { 684 xfs_trans_del_item(lip); 685 if (abort) 686 set_bit(XFS_LI_ABORTED, &lip->li_flags); 687 if (lip->li_ops->iop_release) 688 lip->li_ops->iop_release(lip); 689 } 690 } 691 692 static inline void 693 xfs_log_item_batch_insert( 694 struct xfs_ail *ailp, 695 struct xfs_ail_cursor *cur, 696 struct xfs_log_item **log_items, 697 int nr_items, 698 xfs_lsn_t commit_lsn) 699 { 700 int i; 701 702 spin_lock(&ailp->ail_lock); 703 /* xfs_trans_ail_update_bulk drops ailp->ail_lock */ 704 xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn); 705 706 for (i = 0; i < nr_items; i++) { 707 struct xfs_log_item *lip = log_items[i]; 708 709 if (lip->li_ops->iop_unpin) 710 lip->li_ops->iop_unpin(lip, 0); 711 } 712 } 713 714 /* 715 * Bulk operation version of xfs_trans_committed that takes a log vector of 716 * items to insert into the AIL. This uses bulk AIL insertion techniques to 717 * minimise lock traffic. 718 * 719 * If we are called with the aborted flag set, it is because a log write during 720 * a CIL checkpoint commit has failed. In this case, all the items in the 721 * checkpoint have already gone through iop_committed and iop_committing, which 722 * means that checkpoint commit abort handling is treated exactly the same 723 * as an iclog write error even though we haven't started any IO yet. Hence in 724 * this case all we need to do is iop_committed processing, followed by an 725 * iop_unpin(aborted) call. 726 * 727 * The AIL cursor is used to optimise the insert process. If commit_lsn is not 728 * at the end of the AIL, the insert cursor avoids the need to walk 729 * the AIL to find the insertion point on every xfs_log_item_batch_insert() 730 * call. This saves a lot of needless list walking and is a net win, even 731 * though it slightly increases that amount of AIL lock traffic to set it up 732 * and tear it down. 733 */ 734 void 735 xfs_trans_committed_bulk( 736 struct xfs_ail *ailp, 737 struct xfs_log_vec *log_vector, 738 xfs_lsn_t commit_lsn, 739 bool aborted) 740 { 741 #define LOG_ITEM_BATCH_SIZE 32 742 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE]; 743 struct xfs_log_vec *lv; 744 struct xfs_ail_cursor cur; 745 int i = 0; 746 747 spin_lock(&ailp->ail_lock); 748 xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn); 749 spin_unlock(&ailp->ail_lock); 750 751 /* unpin all the log items */ 752 for (lv = log_vector; lv; lv = lv->lv_next ) { 753 struct xfs_log_item *lip = lv->lv_item; 754 xfs_lsn_t item_lsn; 755 756 if (aborted) 757 set_bit(XFS_LI_ABORTED, &lip->li_flags); 758 759 if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) { 760 lip->li_ops->iop_release(lip); 761 continue; 762 } 763 764 if (lip->li_ops->iop_committed) 765 item_lsn = lip->li_ops->iop_committed(lip, commit_lsn); 766 else 767 item_lsn = commit_lsn; 768 769 /* item_lsn of -1 means the item needs no further processing */ 770 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0) 771 continue; 772 773 /* 774 * if we are aborting the operation, no point in inserting the 775 * object into the AIL as we are in a shutdown situation. 776 */ 777 if (aborted) { 778 ASSERT(xfs_is_shutdown(ailp->ail_mount)); 779 if (lip->li_ops->iop_unpin) 780 lip->li_ops->iop_unpin(lip, 1); 781 continue; 782 } 783 784 if (item_lsn != commit_lsn) { 785 786 /* 787 * Not a bulk update option due to unusual item_lsn. 788 * Push into AIL immediately, rechecking the lsn once 789 * we have the ail lock. Then unpin the item. This does 790 * not affect the AIL cursor the bulk insert path is 791 * using. 792 */ 793 spin_lock(&ailp->ail_lock); 794 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) 795 xfs_trans_ail_update(ailp, lip, item_lsn); 796 else 797 spin_unlock(&ailp->ail_lock); 798 if (lip->li_ops->iop_unpin) 799 lip->li_ops->iop_unpin(lip, 0); 800 continue; 801 } 802 803 /* Item is a candidate for bulk AIL insert. */ 804 log_items[i++] = lv->lv_item; 805 if (i >= LOG_ITEM_BATCH_SIZE) { 806 xfs_log_item_batch_insert(ailp, &cur, log_items, 807 LOG_ITEM_BATCH_SIZE, commit_lsn); 808 i = 0; 809 } 810 } 811 812 /* make sure we insert the remainder! */ 813 if (i) 814 xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn); 815 816 spin_lock(&ailp->ail_lock); 817 xfs_trans_ail_cursor_done(&cur); 818 spin_unlock(&ailp->ail_lock); 819 } 820 821 /* 822 * Commit the given transaction to the log. 823 * 824 * XFS disk error handling mechanism is not based on a typical 825 * transaction abort mechanism. Logically after the filesystem 826 * gets marked 'SHUTDOWN', we can't let any new transactions 827 * be durable - ie. committed to disk - because some metadata might 828 * be inconsistent. In such cases, this returns an error, and the 829 * caller may assume that all locked objects joined to the transaction 830 * have already been unlocked as if the commit had succeeded. 831 * Do not reference the transaction structure after this call. 832 */ 833 static int 834 __xfs_trans_commit( 835 struct xfs_trans *tp, 836 bool regrant) 837 { 838 struct xfs_mount *mp = tp->t_mountp; 839 xfs_csn_t commit_seq = 0; 840 int error = 0; 841 int sync = tp->t_flags & XFS_TRANS_SYNC; 842 843 trace_xfs_trans_commit(tp, _RET_IP_); 844 845 /* 846 * Finish deferred items on final commit. Only permanent transactions 847 * should ever have deferred ops. 848 */ 849 WARN_ON_ONCE(!list_empty(&tp->t_dfops) && 850 !(tp->t_flags & XFS_TRANS_PERM_LOG_RES)); 851 if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) { 852 error = xfs_defer_finish_noroll(&tp); 853 if (error) 854 goto out_unreserve; 855 } 856 857 /* 858 * If there is nothing to be logged by the transaction, 859 * then unlock all of the items associated with the 860 * transaction and free the transaction structure. 861 * Also make sure to return any reserved blocks to 862 * the free pool. 863 */ 864 if (!(tp->t_flags & XFS_TRANS_DIRTY)) 865 goto out_unreserve; 866 867 if (xfs_is_shutdown(mp)) { 868 error = -EIO; 869 goto out_unreserve; 870 } 871 872 ASSERT(tp->t_ticket != NULL); 873 874 /* 875 * If we need to update the superblock, then do it now. 876 */ 877 if (tp->t_flags & XFS_TRANS_SB_DIRTY) 878 xfs_trans_apply_sb_deltas(tp); 879 xfs_trans_apply_dquot_deltas(tp); 880 881 xlog_cil_commit(mp->m_log, tp, &commit_seq, regrant); 882 883 xfs_trans_free(tp); 884 885 /* 886 * If the transaction needs to be synchronous, then force the 887 * log out now and wait for it. 888 */ 889 if (sync) { 890 error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL); 891 XFS_STATS_INC(mp, xs_trans_sync); 892 } else { 893 XFS_STATS_INC(mp, xs_trans_async); 894 } 895 896 return error; 897 898 out_unreserve: 899 xfs_trans_unreserve_and_mod_sb(tp); 900 901 /* 902 * It is indeed possible for the transaction to be not dirty but 903 * the dqinfo portion to be. All that means is that we have some 904 * (non-persistent) quota reservations that need to be unreserved. 905 */ 906 xfs_trans_unreserve_and_mod_dquots(tp); 907 if (tp->t_ticket) { 908 if (regrant && !xlog_is_shutdown(mp->m_log)) 909 xfs_log_ticket_regrant(mp->m_log, tp->t_ticket); 910 else 911 xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket); 912 tp->t_ticket = NULL; 913 } 914 xfs_trans_free_items(tp, !!error); 915 xfs_trans_free(tp); 916 917 XFS_STATS_INC(mp, xs_trans_empty); 918 return error; 919 } 920 921 int 922 xfs_trans_commit( 923 struct xfs_trans *tp) 924 { 925 return __xfs_trans_commit(tp, false); 926 } 927 928 /* 929 * Unlock all of the transaction's items and free the transaction. 930 * The transaction must not have modified any of its items, because 931 * there is no way to restore them to their previous state. 932 * 933 * If the transaction has made a log reservation, make sure to release 934 * it as well. 935 */ 936 void 937 xfs_trans_cancel( 938 struct xfs_trans *tp) 939 { 940 struct xfs_mount *mp = tp->t_mountp; 941 bool dirty = (tp->t_flags & XFS_TRANS_DIRTY); 942 943 trace_xfs_trans_cancel(tp, _RET_IP_); 944 945 /* 946 * It's never valid to cancel a transaction with deferred ops attached, 947 * because the transaction is effectively dirty. Complain about this 948 * loudly before freeing the in-memory defer items. 949 */ 950 if (!list_empty(&tp->t_dfops)) { 951 ASSERT(xfs_is_shutdown(mp) || list_empty(&tp->t_dfops)); 952 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 953 dirty = true; 954 xfs_defer_cancel(tp); 955 } 956 957 /* 958 * See if the caller is relying on us to shut down the 959 * filesystem. This happens in paths where we detect 960 * corruption and decide to give up. 961 */ 962 if (dirty && !xfs_is_shutdown(mp)) { 963 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp); 964 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 965 } 966 #ifdef DEBUG 967 if (!dirty && !xfs_is_shutdown(mp)) { 968 struct xfs_log_item *lip; 969 970 list_for_each_entry(lip, &tp->t_items, li_trans) 971 ASSERT(!xlog_item_is_intent_done(lip)); 972 } 973 #endif 974 xfs_trans_unreserve_and_mod_sb(tp); 975 xfs_trans_unreserve_and_mod_dquots(tp); 976 977 if (tp->t_ticket) { 978 xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket); 979 tp->t_ticket = NULL; 980 } 981 982 xfs_trans_free_items(tp, dirty); 983 xfs_trans_free(tp); 984 } 985 986 /* 987 * Roll from one trans in the sequence of PERMANENT transactions to 988 * the next: permanent transactions are only flushed out when 989 * committed with xfs_trans_commit(), but we still want as soon 990 * as possible to let chunks of it go to the log. So we commit the 991 * chunk we've been working on and get a new transaction to continue. 992 */ 993 int 994 xfs_trans_roll( 995 struct xfs_trans **tpp) 996 { 997 struct xfs_trans *trans = *tpp; 998 struct xfs_trans_res tres; 999 int error; 1000 1001 trace_xfs_trans_roll(trans, _RET_IP_); 1002 1003 /* 1004 * Copy the critical parameters from one trans to the next. 1005 */ 1006 tres.tr_logres = trans->t_log_res; 1007 tres.tr_logcount = trans->t_log_count; 1008 1009 *tpp = xfs_trans_dup(trans); 1010 1011 /* 1012 * Commit the current transaction. 1013 * If this commit failed, then it'd just unlock those items that 1014 * are not marked ihold. That also means that a filesystem shutdown 1015 * is in progress. The caller takes the responsibility to cancel 1016 * the duplicate transaction that gets returned. 1017 */ 1018 error = __xfs_trans_commit(trans, true); 1019 if (error) 1020 return error; 1021 1022 /* 1023 * Reserve space in the log for the next transaction. 1024 * This also pushes items in the "AIL", the list of logged items, 1025 * out to disk if they are taking up space at the tail of the log 1026 * that we want to use. This requires that either nothing be locked 1027 * across this call, or that anything that is locked be logged in 1028 * the prior and the next transactions. 1029 */ 1030 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES; 1031 return xfs_trans_reserve(*tpp, &tres, 0, 0); 1032 } 1033 1034 /* 1035 * Allocate an transaction, lock and join the inode to it, and reserve quota. 1036 * 1037 * The caller must ensure that the on-disk dquots attached to this inode have 1038 * already been allocated and initialized. The caller is responsible for 1039 * releasing ILOCK_EXCL if a new transaction is returned. 1040 */ 1041 int 1042 xfs_trans_alloc_inode( 1043 struct xfs_inode *ip, 1044 struct xfs_trans_res *resv, 1045 unsigned int dblocks, 1046 unsigned int rblocks, 1047 bool force, 1048 struct xfs_trans **tpp) 1049 { 1050 struct xfs_trans *tp; 1051 struct xfs_mount *mp = ip->i_mount; 1052 bool retried = false; 1053 int error; 1054 1055 retry: 1056 error = xfs_trans_alloc(mp, resv, dblocks, 1057 rblocks / mp->m_sb.sb_rextsize, 1058 force ? XFS_TRANS_RESERVE : 0, &tp); 1059 if (error) 1060 return error; 1061 1062 xfs_ilock(ip, XFS_ILOCK_EXCL); 1063 xfs_trans_ijoin(tp, ip, 0); 1064 1065 error = xfs_qm_dqattach_locked(ip, false); 1066 if (error) { 1067 /* Caller should have allocated the dquots! */ 1068 ASSERT(error != -ENOENT); 1069 goto out_cancel; 1070 } 1071 1072 error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force); 1073 if ((error == -EDQUOT || error == -ENOSPC) && !retried) { 1074 xfs_trans_cancel(tp); 1075 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1076 xfs_blockgc_free_quota(ip, 0); 1077 retried = true; 1078 goto retry; 1079 } 1080 if (error) 1081 goto out_cancel; 1082 1083 *tpp = tp; 1084 return 0; 1085 1086 out_cancel: 1087 xfs_trans_cancel(tp); 1088 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1089 return error; 1090 } 1091 1092 /* 1093 * Allocate an transaction in preparation for inode creation by reserving quota 1094 * against the given dquots. Callers are not required to hold any inode locks. 1095 */ 1096 int 1097 xfs_trans_alloc_icreate( 1098 struct xfs_mount *mp, 1099 struct xfs_trans_res *resv, 1100 struct xfs_dquot *udqp, 1101 struct xfs_dquot *gdqp, 1102 struct xfs_dquot *pdqp, 1103 unsigned int dblocks, 1104 struct xfs_trans **tpp) 1105 { 1106 struct xfs_trans *tp; 1107 bool retried = false; 1108 int error; 1109 1110 retry: 1111 error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp); 1112 if (error) 1113 return error; 1114 1115 error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks); 1116 if ((error == -EDQUOT || error == -ENOSPC) && !retried) { 1117 xfs_trans_cancel(tp); 1118 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0); 1119 retried = true; 1120 goto retry; 1121 } 1122 if (error) { 1123 xfs_trans_cancel(tp); 1124 return error; 1125 } 1126 1127 *tpp = tp; 1128 return 0; 1129 } 1130 1131 /* 1132 * Allocate an transaction, lock and join the inode to it, and reserve quota 1133 * in preparation for inode attribute changes that include uid, gid, or prid 1134 * changes. 1135 * 1136 * The caller must ensure that the on-disk dquots attached to this inode have 1137 * already been allocated and initialized. The ILOCK will be dropped when the 1138 * transaction is committed or cancelled. 1139 */ 1140 int 1141 xfs_trans_alloc_ichange( 1142 struct xfs_inode *ip, 1143 struct xfs_dquot *new_udqp, 1144 struct xfs_dquot *new_gdqp, 1145 struct xfs_dquot *new_pdqp, 1146 bool force, 1147 struct xfs_trans **tpp) 1148 { 1149 struct xfs_trans *tp; 1150 struct xfs_mount *mp = ip->i_mount; 1151 struct xfs_dquot *udqp; 1152 struct xfs_dquot *gdqp; 1153 struct xfs_dquot *pdqp; 1154 bool retried = false; 1155 int error; 1156 1157 retry: 1158 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); 1159 if (error) 1160 return error; 1161 1162 xfs_ilock(ip, XFS_ILOCK_EXCL); 1163 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1164 1165 error = xfs_qm_dqattach_locked(ip, false); 1166 if (error) { 1167 /* Caller should have allocated the dquots! */ 1168 ASSERT(error != -ENOENT); 1169 goto out_cancel; 1170 } 1171 1172 /* 1173 * For each quota type, skip quota reservations if the inode's dquots 1174 * now match the ones that came from the caller, or the caller didn't 1175 * pass one in. The inode's dquots can change if we drop the ILOCK to 1176 * perform a blockgc scan, so we must preserve the caller's arguments. 1177 */ 1178 udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL; 1179 gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL; 1180 pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL; 1181 if (udqp || gdqp || pdqp) { 1182 unsigned int qflags = XFS_QMOPT_RES_REGBLKS; 1183 1184 if (force) 1185 qflags |= XFS_QMOPT_FORCE_RES; 1186 1187 /* 1188 * Reserve enough quota to handle blocks on disk and reserved 1189 * for a delayed allocation. We'll actually transfer the 1190 * delalloc reservation between dquots at chown time, even 1191 * though that part is only semi-transactional. 1192 */ 1193 error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp, 1194 pdqp, ip->i_nblocks + ip->i_delayed_blks, 1195 1, qflags); 1196 if ((error == -EDQUOT || error == -ENOSPC) && !retried) { 1197 xfs_trans_cancel(tp); 1198 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0); 1199 retried = true; 1200 goto retry; 1201 } 1202 if (error) 1203 goto out_cancel; 1204 } 1205 1206 *tpp = tp; 1207 return 0; 1208 1209 out_cancel: 1210 xfs_trans_cancel(tp); 1211 return error; 1212 } 1213