xref: /openbmc/linux/fs/xfs/xfs_trans.c (revision b5f184fb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4  * Copyright (C) 2010 Red Hat, Inc.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_log_priv.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_extent_busy.h"
16 #include "xfs_quota.h"
17 #include "xfs_trans.h"
18 #include "xfs_trans_priv.h"
19 #include "xfs_log.h"
20 #include "xfs_trace.h"
21 #include "xfs_error.h"
22 #include "xfs_defer.h"
23 #include "xfs_inode.h"
24 #include "xfs_dquot_item.h"
25 #include "xfs_dquot.h"
26 #include "xfs_icache.h"
27 
28 kmem_zone_t	*xfs_trans_zone;
29 
30 #if defined(CONFIG_TRACEPOINTS)
31 static void
32 xfs_trans_trace_reservations(
33 	struct xfs_mount	*mp)
34 {
35 	struct xfs_trans_res	resv;
36 	struct xfs_trans_res	*res;
37 	struct xfs_trans_res	*end_res;
38 	int			i;
39 
40 	res = (struct xfs_trans_res *)M_RES(mp);
41 	end_res = (struct xfs_trans_res *)(M_RES(mp) + 1);
42 	for (i = 0; res < end_res; i++, res++)
43 		trace_xfs_trans_resv_calc(mp, i, res);
44 	xfs_log_get_max_trans_res(mp, &resv);
45 	trace_xfs_trans_resv_calc(mp, -1, &resv);
46 }
47 #else
48 # define xfs_trans_trace_reservations(mp)
49 #endif
50 
51 /*
52  * Initialize the precomputed transaction reservation values
53  * in the mount structure.
54  */
55 void
56 xfs_trans_init(
57 	struct xfs_mount	*mp)
58 {
59 	xfs_trans_resv_calc(mp, M_RES(mp));
60 	xfs_trans_trace_reservations(mp);
61 }
62 
63 /*
64  * Free the transaction structure.  If there is more clean up
65  * to do when the structure is freed, add it here.
66  */
67 STATIC void
68 xfs_trans_free(
69 	struct xfs_trans	*tp)
70 {
71 	xfs_extent_busy_sort(&tp->t_busy);
72 	xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false);
73 
74 	trace_xfs_trans_free(tp, _RET_IP_);
75 	if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT))
76 		sb_end_intwrite(tp->t_mountp->m_super);
77 	xfs_trans_free_dqinfo(tp);
78 	kmem_cache_free(xfs_trans_zone, tp);
79 }
80 
81 /*
82  * This is called to create a new transaction which will share the
83  * permanent log reservation of the given transaction.  The remaining
84  * unused block and rt extent reservations are also inherited.  This
85  * implies that the original transaction is no longer allowed to allocate
86  * blocks.  Locks and log items, however, are no inherited.  They must
87  * be added to the new transaction explicitly.
88  */
89 STATIC struct xfs_trans *
90 xfs_trans_dup(
91 	struct xfs_trans	*tp)
92 {
93 	struct xfs_trans	*ntp;
94 
95 	trace_xfs_trans_dup(tp, _RET_IP_);
96 
97 	ntp = kmem_cache_zalloc(xfs_trans_zone, GFP_KERNEL | __GFP_NOFAIL);
98 
99 	/*
100 	 * Initialize the new transaction structure.
101 	 */
102 	ntp->t_magic = XFS_TRANS_HEADER_MAGIC;
103 	ntp->t_mountp = tp->t_mountp;
104 	INIT_LIST_HEAD(&ntp->t_items);
105 	INIT_LIST_HEAD(&ntp->t_busy);
106 	INIT_LIST_HEAD(&ntp->t_dfops);
107 	ntp->t_firstblock = NULLFSBLOCK;
108 
109 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
110 	ASSERT(tp->t_ticket != NULL);
111 
112 	ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
113 		       (tp->t_flags & XFS_TRANS_RESERVE) |
114 		       (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) |
115 		       (tp->t_flags & XFS_TRANS_RES_FDBLKS);
116 	/* We gave our writer reference to the new transaction */
117 	tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
118 	ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
119 
120 	ASSERT(tp->t_blk_res >= tp->t_blk_res_used);
121 	ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
122 	tp->t_blk_res = tp->t_blk_res_used;
123 
124 	ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
125 	tp->t_rtx_res = tp->t_rtx_res_used;
126 	ntp->t_pflags = tp->t_pflags;
127 
128 	/* move deferred ops over to the new tp */
129 	xfs_defer_move(ntp, tp);
130 
131 	xfs_trans_dup_dqinfo(tp, ntp);
132 	return ntp;
133 }
134 
135 /*
136  * This is called to reserve free disk blocks and log space for the
137  * given transaction.  This must be done before allocating any resources
138  * within the transaction.
139  *
140  * This will return ENOSPC if there are not enough blocks available.
141  * It will sleep waiting for available log space.
142  * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
143  * is used by long running transactions.  If any one of the reservations
144  * fails then they will all be backed out.
145  *
146  * This does not do quota reservations. That typically is done by the
147  * caller afterwards.
148  */
149 static int
150 xfs_trans_reserve(
151 	struct xfs_trans	*tp,
152 	struct xfs_trans_res	*resp,
153 	uint			blocks,
154 	uint			rtextents)
155 {
156 	struct xfs_mount	*mp = tp->t_mountp;
157 	int			error = 0;
158 	bool			rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
159 
160 	/* Mark this thread as being in a transaction */
161 	current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
162 
163 	/*
164 	 * Attempt to reserve the needed disk blocks by decrementing
165 	 * the number needed from the number available.  This will
166 	 * fail if the count would go below zero.
167 	 */
168 	if (blocks > 0) {
169 		error = xfs_mod_fdblocks(mp, -((int64_t)blocks), rsvd);
170 		if (error != 0) {
171 			current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
172 			return -ENOSPC;
173 		}
174 		tp->t_blk_res += blocks;
175 	}
176 
177 	/*
178 	 * Reserve the log space needed for this transaction.
179 	 */
180 	if (resp->tr_logres > 0) {
181 		bool	permanent = false;
182 
183 		ASSERT(tp->t_log_res == 0 ||
184 		       tp->t_log_res == resp->tr_logres);
185 		ASSERT(tp->t_log_count == 0 ||
186 		       tp->t_log_count == resp->tr_logcount);
187 
188 		if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) {
189 			tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
190 			permanent = true;
191 		} else {
192 			ASSERT(tp->t_ticket == NULL);
193 			ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
194 		}
195 
196 		if (tp->t_ticket != NULL) {
197 			ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES);
198 			error = xfs_log_regrant(mp, tp->t_ticket);
199 		} else {
200 			error = xfs_log_reserve(mp,
201 						resp->tr_logres,
202 						resp->tr_logcount,
203 						&tp->t_ticket, XFS_TRANSACTION,
204 						permanent);
205 		}
206 
207 		if (error)
208 			goto undo_blocks;
209 
210 		tp->t_log_res = resp->tr_logres;
211 		tp->t_log_count = resp->tr_logcount;
212 	}
213 
214 	/*
215 	 * Attempt to reserve the needed realtime extents by decrementing
216 	 * the number needed from the number available.  This will
217 	 * fail if the count would go below zero.
218 	 */
219 	if (rtextents > 0) {
220 		error = xfs_mod_frextents(mp, -((int64_t)rtextents));
221 		if (error) {
222 			error = -ENOSPC;
223 			goto undo_log;
224 		}
225 		tp->t_rtx_res += rtextents;
226 	}
227 
228 	return 0;
229 
230 	/*
231 	 * Error cases jump to one of these labels to undo any
232 	 * reservations which have already been performed.
233 	 */
234 undo_log:
235 	if (resp->tr_logres > 0) {
236 		xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
237 		tp->t_ticket = NULL;
238 		tp->t_log_res = 0;
239 		tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
240 	}
241 
242 undo_blocks:
243 	if (blocks > 0) {
244 		xfs_mod_fdblocks(mp, (int64_t)blocks, rsvd);
245 		tp->t_blk_res = 0;
246 	}
247 
248 	current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
249 
250 	return error;
251 }
252 
253 int
254 xfs_trans_alloc(
255 	struct xfs_mount	*mp,
256 	struct xfs_trans_res	*resp,
257 	uint			blocks,
258 	uint			rtextents,
259 	uint			flags,
260 	struct xfs_trans	**tpp)
261 {
262 	struct xfs_trans	*tp;
263 	int			error;
264 
265 	/*
266 	 * Allocate the handle before we do our freeze accounting and setting up
267 	 * GFP_NOFS allocation context so that we avoid lockdep false positives
268 	 * by doing GFP_KERNEL allocations inside sb_start_intwrite().
269 	 */
270 	tp = kmem_cache_zalloc(xfs_trans_zone, GFP_KERNEL | __GFP_NOFAIL);
271 	if (!(flags & XFS_TRANS_NO_WRITECOUNT))
272 		sb_start_intwrite(mp->m_super);
273 
274 	/*
275 	 * Zero-reservation ("empty") transactions can't modify anything, so
276 	 * they're allowed to run while we're frozen.
277 	 */
278 	WARN_ON(resp->tr_logres > 0 &&
279 		mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
280 	ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) ||
281 	       xfs_sb_version_haslazysbcount(&mp->m_sb));
282 
283 	tp->t_magic = XFS_TRANS_HEADER_MAGIC;
284 	tp->t_flags = flags;
285 	tp->t_mountp = mp;
286 	INIT_LIST_HEAD(&tp->t_items);
287 	INIT_LIST_HEAD(&tp->t_busy);
288 	INIT_LIST_HEAD(&tp->t_dfops);
289 	tp->t_firstblock = NULLFSBLOCK;
290 
291 	error = xfs_trans_reserve(tp, resp, blocks, rtextents);
292 	if (error == -ENOSPC) {
293 		/*
294 		 * We weren't able to reserve enough space for the transaction.
295 		 * Flush the other speculative space allocations to free space.
296 		 * Do not perform a synchronous scan because callers can hold
297 		 * other locks.
298 		 */
299 		error = xfs_blockgc_free_space(mp, NULL);
300 		if (!error)
301 			error = xfs_trans_reserve(tp, resp, blocks, rtextents);
302 	}
303 	if (error) {
304 		xfs_trans_cancel(tp);
305 		return error;
306 	}
307 
308 	trace_xfs_trans_alloc(tp, _RET_IP_);
309 
310 	*tpp = tp;
311 	return 0;
312 }
313 
314 /*
315  * Create an empty transaction with no reservation.  This is a defensive
316  * mechanism for routines that query metadata without actually modifying them --
317  * if the metadata being queried is somehow cross-linked (think a btree block
318  * pointer that points higher in the tree), we risk deadlock.  However, blocks
319  * grabbed as part of a transaction can be re-grabbed.  The verifiers will
320  * notice the corrupt block and the operation will fail back to userspace
321  * without deadlocking.
322  *
323  * Note the zero-length reservation; this transaction MUST be cancelled without
324  * any dirty data.
325  *
326  * Callers should obtain freeze protection to avoid a conflict with fs freezing
327  * where we can be grabbing buffers at the same time that freeze is trying to
328  * drain the buffer LRU list.
329  */
330 int
331 xfs_trans_alloc_empty(
332 	struct xfs_mount		*mp,
333 	struct xfs_trans		**tpp)
334 {
335 	struct xfs_trans_res		resv = {0};
336 
337 	return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp);
338 }
339 
340 /*
341  * Record the indicated change to the given field for application
342  * to the file system's superblock when the transaction commits.
343  * For now, just store the change in the transaction structure.
344  *
345  * Mark the transaction structure to indicate that the superblock
346  * needs to be updated before committing.
347  *
348  * Because we may not be keeping track of allocated/free inodes and
349  * used filesystem blocks in the superblock, we do not mark the
350  * superblock dirty in this transaction if we modify these fields.
351  * We still need to update the transaction deltas so that they get
352  * applied to the incore superblock, but we don't want them to
353  * cause the superblock to get locked and logged if these are the
354  * only fields in the superblock that the transaction modifies.
355  */
356 void
357 xfs_trans_mod_sb(
358 	xfs_trans_t	*tp,
359 	uint		field,
360 	int64_t		delta)
361 {
362 	uint32_t	flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
363 	xfs_mount_t	*mp = tp->t_mountp;
364 
365 	switch (field) {
366 	case XFS_TRANS_SB_ICOUNT:
367 		tp->t_icount_delta += delta;
368 		if (xfs_sb_version_haslazysbcount(&mp->m_sb))
369 			flags &= ~XFS_TRANS_SB_DIRTY;
370 		break;
371 	case XFS_TRANS_SB_IFREE:
372 		tp->t_ifree_delta += delta;
373 		if (xfs_sb_version_haslazysbcount(&mp->m_sb))
374 			flags &= ~XFS_TRANS_SB_DIRTY;
375 		break;
376 	case XFS_TRANS_SB_FDBLOCKS:
377 		/*
378 		 * Track the number of blocks allocated in the transaction.
379 		 * Make sure it does not exceed the number reserved. If so,
380 		 * shutdown as this can lead to accounting inconsistency.
381 		 */
382 		if (delta < 0) {
383 			tp->t_blk_res_used += (uint)-delta;
384 			if (tp->t_blk_res_used > tp->t_blk_res)
385 				xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
386 		} else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) {
387 			int64_t	blkres_delta;
388 
389 			/*
390 			 * Return freed blocks directly to the reservation
391 			 * instead of the global pool, being careful not to
392 			 * overflow the trans counter. This is used to preserve
393 			 * reservation across chains of transaction rolls that
394 			 * repeatedly free and allocate blocks.
395 			 */
396 			blkres_delta = min_t(int64_t, delta,
397 					     UINT_MAX - tp->t_blk_res);
398 			tp->t_blk_res += blkres_delta;
399 			delta -= blkres_delta;
400 		}
401 		tp->t_fdblocks_delta += delta;
402 		if (xfs_sb_version_haslazysbcount(&mp->m_sb))
403 			flags &= ~XFS_TRANS_SB_DIRTY;
404 		break;
405 	case XFS_TRANS_SB_RES_FDBLOCKS:
406 		/*
407 		 * The allocation has already been applied to the
408 		 * in-core superblock's counter.  This should only
409 		 * be applied to the on-disk superblock.
410 		 */
411 		tp->t_res_fdblocks_delta += delta;
412 		if (xfs_sb_version_haslazysbcount(&mp->m_sb))
413 			flags &= ~XFS_TRANS_SB_DIRTY;
414 		break;
415 	case XFS_TRANS_SB_FREXTENTS:
416 		/*
417 		 * Track the number of blocks allocated in the
418 		 * transaction.  Make sure it does not exceed the
419 		 * number reserved.
420 		 */
421 		if (delta < 0) {
422 			tp->t_rtx_res_used += (uint)-delta;
423 			ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
424 		}
425 		tp->t_frextents_delta += delta;
426 		break;
427 	case XFS_TRANS_SB_RES_FREXTENTS:
428 		/*
429 		 * The allocation has already been applied to the
430 		 * in-core superblock's counter.  This should only
431 		 * be applied to the on-disk superblock.
432 		 */
433 		ASSERT(delta < 0);
434 		tp->t_res_frextents_delta += delta;
435 		break;
436 	case XFS_TRANS_SB_DBLOCKS:
437 		ASSERT(delta > 0);
438 		tp->t_dblocks_delta += delta;
439 		break;
440 	case XFS_TRANS_SB_AGCOUNT:
441 		ASSERT(delta > 0);
442 		tp->t_agcount_delta += delta;
443 		break;
444 	case XFS_TRANS_SB_IMAXPCT:
445 		tp->t_imaxpct_delta += delta;
446 		break;
447 	case XFS_TRANS_SB_REXTSIZE:
448 		tp->t_rextsize_delta += delta;
449 		break;
450 	case XFS_TRANS_SB_RBMBLOCKS:
451 		tp->t_rbmblocks_delta += delta;
452 		break;
453 	case XFS_TRANS_SB_RBLOCKS:
454 		tp->t_rblocks_delta += delta;
455 		break;
456 	case XFS_TRANS_SB_REXTENTS:
457 		tp->t_rextents_delta += delta;
458 		break;
459 	case XFS_TRANS_SB_REXTSLOG:
460 		tp->t_rextslog_delta += delta;
461 		break;
462 	default:
463 		ASSERT(0);
464 		return;
465 	}
466 
467 	tp->t_flags |= flags;
468 }
469 
470 /*
471  * xfs_trans_apply_sb_deltas() is called from the commit code
472  * to bring the superblock buffer into the current transaction
473  * and modify it as requested by earlier calls to xfs_trans_mod_sb().
474  *
475  * For now we just look at each field allowed to change and change
476  * it if necessary.
477  */
478 STATIC void
479 xfs_trans_apply_sb_deltas(
480 	xfs_trans_t	*tp)
481 {
482 	xfs_dsb_t	*sbp;
483 	struct xfs_buf	*bp;
484 	int		whole = 0;
485 
486 	bp = xfs_trans_getsb(tp);
487 	sbp = bp->b_addr;
488 
489 	/*
490 	 * Check that superblock mods match the mods made to AGF counters.
491 	 */
492 	ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) ==
493 	       (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta +
494 		tp->t_ag_btree_delta));
495 
496 	/*
497 	 * Only update the superblock counters if we are logging them
498 	 */
499 	if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) {
500 		if (tp->t_icount_delta)
501 			be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
502 		if (tp->t_ifree_delta)
503 			be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
504 		if (tp->t_fdblocks_delta)
505 			be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
506 		if (tp->t_res_fdblocks_delta)
507 			be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
508 	}
509 
510 	if (tp->t_frextents_delta)
511 		be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta);
512 	if (tp->t_res_frextents_delta)
513 		be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta);
514 
515 	if (tp->t_dblocks_delta) {
516 		be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
517 		whole = 1;
518 	}
519 	if (tp->t_agcount_delta) {
520 		be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
521 		whole = 1;
522 	}
523 	if (tp->t_imaxpct_delta) {
524 		sbp->sb_imax_pct += tp->t_imaxpct_delta;
525 		whole = 1;
526 	}
527 	if (tp->t_rextsize_delta) {
528 		be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
529 		whole = 1;
530 	}
531 	if (tp->t_rbmblocks_delta) {
532 		be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
533 		whole = 1;
534 	}
535 	if (tp->t_rblocks_delta) {
536 		be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
537 		whole = 1;
538 	}
539 	if (tp->t_rextents_delta) {
540 		be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
541 		whole = 1;
542 	}
543 	if (tp->t_rextslog_delta) {
544 		sbp->sb_rextslog += tp->t_rextslog_delta;
545 		whole = 1;
546 	}
547 
548 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
549 	if (whole)
550 		/*
551 		 * Log the whole thing, the fields are noncontiguous.
552 		 */
553 		xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1);
554 	else
555 		/*
556 		 * Since all the modifiable fields are contiguous, we
557 		 * can get away with this.
558 		 */
559 		xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount),
560 				  offsetof(xfs_dsb_t, sb_frextents) +
561 				  sizeof(sbp->sb_frextents) - 1);
562 }
563 
564 /*
565  * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
566  * apply superblock counter changes to the in-core superblock.  The
567  * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
568  * applied to the in-core superblock.  The idea is that that has already been
569  * done.
570  *
571  * If we are not logging superblock counters, then the inode allocated/free and
572  * used block counts are not updated in the on disk superblock. In this case,
573  * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
574  * still need to update the incore superblock with the changes.
575  *
576  * Deltas for the inode count are +/-64, hence we use a large batch size of 128
577  * so we don't need to take the counter lock on every update.
578  */
579 #define XFS_ICOUNT_BATCH	128
580 
581 void
582 xfs_trans_unreserve_and_mod_sb(
583 	struct xfs_trans	*tp)
584 {
585 	struct xfs_mount	*mp = tp->t_mountp;
586 	bool			rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
587 	int64_t			blkdelta = 0;
588 	int64_t			rtxdelta = 0;
589 	int64_t			idelta = 0;
590 	int64_t			ifreedelta = 0;
591 	int			error;
592 
593 	/* calculate deltas */
594 	if (tp->t_blk_res > 0)
595 		blkdelta = tp->t_blk_res;
596 	if ((tp->t_fdblocks_delta != 0) &&
597 	    (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
598 	     (tp->t_flags & XFS_TRANS_SB_DIRTY)))
599 	        blkdelta += tp->t_fdblocks_delta;
600 
601 	if (tp->t_rtx_res > 0)
602 		rtxdelta = tp->t_rtx_res;
603 	if ((tp->t_frextents_delta != 0) &&
604 	    (tp->t_flags & XFS_TRANS_SB_DIRTY))
605 		rtxdelta += tp->t_frextents_delta;
606 
607 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
608 	     (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
609 		idelta = tp->t_icount_delta;
610 		ifreedelta = tp->t_ifree_delta;
611 	}
612 
613 	/* apply the per-cpu counters */
614 	if (blkdelta) {
615 		error = xfs_mod_fdblocks(mp, blkdelta, rsvd);
616 		ASSERT(!error);
617 	}
618 
619 	if (idelta) {
620 		percpu_counter_add_batch(&mp->m_icount, idelta,
621 					 XFS_ICOUNT_BATCH);
622 		if (idelta < 0)
623 			ASSERT(__percpu_counter_compare(&mp->m_icount, 0,
624 							XFS_ICOUNT_BATCH) >= 0);
625 	}
626 
627 	if (ifreedelta) {
628 		percpu_counter_add(&mp->m_ifree, ifreedelta);
629 		if (ifreedelta < 0)
630 			ASSERT(percpu_counter_compare(&mp->m_ifree, 0) >= 0);
631 	}
632 
633 	if (rtxdelta == 0 && !(tp->t_flags & XFS_TRANS_SB_DIRTY))
634 		return;
635 
636 	/* apply remaining deltas */
637 	spin_lock(&mp->m_sb_lock);
638 	mp->m_sb.sb_frextents += rtxdelta;
639 	mp->m_sb.sb_dblocks += tp->t_dblocks_delta;
640 	mp->m_sb.sb_agcount += tp->t_agcount_delta;
641 	mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta;
642 	mp->m_sb.sb_rextsize += tp->t_rextsize_delta;
643 	mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta;
644 	mp->m_sb.sb_rblocks += tp->t_rblocks_delta;
645 	mp->m_sb.sb_rextents += tp->t_rextents_delta;
646 	mp->m_sb.sb_rextslog += tp->t_rextslog_delta;
647 	spin_unlock(&mp->m_sb_lock);
648 
649 	/*
650 	 * Debug checks outside of the spinlock so they don't lock up the
651 	 * machine if they fail.
652 	 */
653 	ASSERT(mp->m_sb.sb_imax_pct >= 0);
654 	ASSERT(mp->m_sb.sb_rextslog >= 0);
655 	return;
656 }
657 
658 /* Add the given log item to the transaction's list of log items. */
659 void
660 xfs_trans_add_item(
661 	struct xfs_trans	*tp,
662 	struct xfs_log_item	*lip)
663 {
664 	ASSERT(lip->li_mountp == tp->t_mountp);
665 	ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
666 	ASSERT(list_empty(&lip->li_trans));
667 	ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
668 
669 	list_add_tail(&lip->li_trans, &tp->t_items);
670 	trace_xfs_trans_add_item(tp, _RET_IP_);
671 }
672 
673 /*
674  * Unlink the log item from the transaction. the log item is no longer
675  * considered dirty in this transaction, as the linked transaction has
676  * finished, either by abort or commit completion.
677  */
678 void
679 xfs_trans_del_item(
680 	struct xfs_log_item	*lip)
681 {
682 	clear_bit(XFS_LI_DIRTY, &lip->li_flags);
683 	list_del_init(&lip->li_trans);
684 }
685 
686 /* Detach and unlock all of the items in a transaction */
687 static void
688 xfs_trans_free_items(
689 	struct xfs_trans	*tp,
690 	bool			abort)
691 {
692 	struct xfs_log_item	*lip, *next;
693 
694 	trace_xfs_trans_free_items(tp, _RET_IP_);
695 
696 	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
697 		xfs_trans_del_item(lip);
698 		if (abort)
699 			set_bit(XFS_LI_ABORTED, &lip->li_flags);
700 		if (lip->li_ops->iop_release)
701 			lip->li_ops->iop_release(lip);
702 	}
703 }
704 
705 static inline void
706 xfs_log_item_batch_insert(
707 	struct xfs_ail		*ailp,
708 	struct xfs_ail_cursor	*cur,
709 	struct xfs_log_item	**log_items,
710 	int			nr_items,
711 	xfs_lsn_t		commit_lsn)
712 {
713 	int	i;
714 
715 	spin_lock(&ailp->ail_lock);
716 	/* xfs_trans_ail_update_bulk drops ailp->ail_lock */
717 	xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
718 
719 	for (i = 0; i < nr_items; i++) {
720 		struct xfs_log_item *lip = log_items[i];
721 
722 		if (lip->li_ops->iop_unpin)
723 			lip->li_ops->iop_unpin(lip, 0);
724 	}
725 }
726 
727 /*
728  * Bulk operation version of xfs_trans_committed that takes a log vector of
729  * items to insert into the AIL. This uses bulk AIL insertion techniques to
730  * minimise lock traffic.
731  *
732  * If we are called with the aborted flag set, it is because a log write during
733  * a CIL checkpoint commit has failed. In this case, all the items in the
734  * checkpoint have already gone through iop_committed and iop_committing, which
735  * means that checkpoint commit abort handling is treated exactly the same
736  * as an iclog write error even though we haven't started any IO yet. Hence in
737  * this case all we need to do is iop_committed processing, followed by an
738  * iop_unpin(aborted) call.
739  *
740  * The AIL cursor is used to optimise the insert process. If commit_lsn is not
741  * at the end of the AIL, the insert cursor avoids the need to walk
742  * the AIL to find the insertion point on every xfs_log_item_batch_insert()
743  * call. This saves a lot of needless list walking and is a net win, even
744  * though it slightly increases that amount of AIL lock traffic to set it up
745  * and tear it down.
746  */
747 void
748 xfs_trans_committed_bulk(
749 	struct xfs_ail		*ailp,
750 	struct xfs_log_vec	*log_vector,
751 	xfs_lsn_t		commit_lsn,
752 	bool			aborted)
753 {
754 #define LOG_ITEM_BATCH_SIZE	32
755 	struct xfs_log_item	*log_items[LOG_ITEM_BATCH_SIZE];
756 	struct xfs_log_vec	*lv;
757 	struct xfs_ail_cursor	cur;
758 	int			i = 0;
759 
760 	spin_lock(&ailp->ail_lock);
761 	xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
762 	spin_unlock(&ailp->ail_lock);
763 
764 	/* unpin all the log items */
765 	for (lv = log_vector; lv; lv = lv->lv_next ) {
766 		struct xfs_log_item	*lip = lv->lv_item;
767 		xfs_lsn_t		item_lsn;
768 
769 		if (aborted)
770 			set_bit(XFS_LI_ABORTED, &lip->li_flags);
771 
772 		if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) {
773 			lip->li_ops->iop_release(lip);
774 			continue;
775 		}
776 
777 		if (lip->li_ops->iop_committed)
778 			item_lsn = lip->li_ops->iop_committed(lip, commit_lsn);
779 		else
780 			item_lsn = commit_lsn;
781 
782 		/* item_lsn of -1 means the item needs no further processing */
783 		if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
784 			continue;
785 
786 		/*
787 		 * if we are aborting the operation, no point in inserting the
788 		 * object into the AIL as we are in a shutdown situation.
789 		 */
790 		if (aborted) {
791 			ASSERT(XFS_FORCED_SHUTDOWN(ailp->ail_mount));
792 			if (lip->li_ops->iop_unpin)
793 				lip->li_ops->iop_unpin(lip, 1);
794 			continue;
795 		}
796 
797 		if (item_lsn != commit_lsn) {
798 
799 			/*
800 			 * Not a bulk update option due to unusual item_lsn.
801 			 * Push into AIL immediately, rechecking the lsn once
802 			 * we have the ail lock. Then unpin the item. This does
803 			 * not affect the AIL cursor the bulk insert path is
804 			 * using.
805 			 */
806 			spin_lock(&ailp->ail_lock);
807 			if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
808 				xfs_trans_ail_update(ailp, lip, item_lsn);
809 			else
810 				spin_unlock(&ailp->ail_lock);
811 			if (lip->li_ops->iop_unpin)
812 				lip->li_ops->iop_unpin(lip, 0);
813 			continue;
814 		}
815 
816 		/* Item is a candidate for bulk AIL insert.  */
817 		log_items[i++] = lv->lv_item;
818 		if (i >= LOG_ITEM_BATCH_SIZE) {
819 			xfs_log_item_batch_insert(ailp, &cur, log_items,
820 					LOG_ITEM_BATCH_SIZE, commit_lsn);
821 			i = 0;
822 		}
823 	}
824 
825 	/* make sure we insert the remainder! */
826 	if (i)
827 		xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
828 
829 	spin_lock(&ailp->ail_lock);
830 	xfs_trans_ail_cursor_done(&cur);
831 	spin_unlock(&ailp->ail_lock);
832 }
833 
834 /*
835  * Commit the given transaction to the log.
836  *
837  * XFS disk error handling mechanism is not based on a typical
838  * transaction abort mechanism. Logically after the filesystem
839  * gets marked 'SHUTDOWN', we can't let any new transactions
840  * be durable - ie. committed to disk - because some metadata might
841  * be inconsistent. In such cases, this returns an error, and the
842  * caller may assume that all locked objects joined to the transaction
843  * have already been unlocked as if the commit had succeeded.
844  * Do not reference the transaction structure after this call.
845  */
846 static int
847 __xfs_trans_commit(
848 	struct xfs_trans	*tp,
849 	bool			regrant)
850 {
851 	struct xfs_mount	*mp = tp->t_mountp;
852 	xfs_lsn_t		commit_lsn = -1;
853 	int			error = 0;
854 	int			sync = tp->t_flags & XFS_TRANS_SYNC;
855 
856 	trace_xfs_trans_commit(tp, _RET_IP_);
857 
858 	/*
859 	 * Finish deferred items on final commit. Only permanent transactions
860 	 * should ever have deferred ops.
861 	 */
862 	WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
863 		     !(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
864 	if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) {
865 		error = xfs_defer_finish_noroll(&tp);
866 		if (error)
867 			goto out_unreserve;
868 	}
869 
870 	/*
871 	 * If there is nothing to be logged by the transaction,
872 	 * then unlock all of the items associated with the
873 	 * transaction and free the transaction structure.
874 	 * Also make sure to return any reserved blocks to
875 	 * the free pool.
876 	 */
877 	if (!(tp->t_flags & XFS_TRANS_DIRTY))
878 		goto out_unreserve;
879 
880 	if (XFS_FORCED_SHUTDOWN(mp)) {
881 		error = -EIO;
882 		goto out_unreserve;
883 	}
884 
885 	ASSERT(tp->t_ticket != NULL);
886 
887 	/*
888 	 * If we need to update the superblock, then do it now.
889 	 */
890 	if (tp->t_flags & XFS_TRANS_SB_DIRTY)
891 		xfs_trans_apply_sb_deltas(tp);
892 	xfs_trans_apply_dquot_deltas(tp);
893 
894 	xfs_log_commit_cil(mp, tp, &commit_lsn, regrant);
895 
896 	current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
897 	xfs_trans_free(tp);
898 
899 	/*
900 	 * If the transaction needs to be synchronous, then force the
901 	 * log out now and wait for it.
902 	 */
903 	if (sync) {
904 		error = xfs_log_force_lsn(mp, commit_lsn, XFS_LOG_SYNC, NULL);
905 		XFS_STATS_INC(mp, xs_trans_sync);
906 	} else {
907 		XFS_STATS_INC(mp, xs_trans_async);
908 	}
909 
910 	return error;
911 
912 out_unreserve:
913 	xfs_trans_unreserve_and_mod_sb(tp);
914 
915 	/*
916 	 * It is indeed possible for the transaction to be not dirty but
917 	 * the dqinfo portion to be.  All that means is that we have some
918 	 * (non-persistent) quota reservations that need to be unreserved.
919 	 */
920 	xfs_trans_unreserve_and_mod_dquots(tp);
921 	if (tp->t_ticket) {
922 		if (regrant && !XLOG_FORCED_SHUTDOWN(mp->m_log))
923 			xfs_log_ticket_regrant(mp->m_log, tp->t_ticket);
924 		else
925 			xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
926 		tp->t_ticket = NULL;
927 	}
928 	current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
929 	xfs_trans_free_items(tp, !!error);
930 	xfs_trans_free(tp);
931 
932 	XFS_STATS_INC(mp, xs_trans_empty);
933 	return error;
934 }
935 
936 int
937 xfs_trans_commit(
938 	struct xfs_trans	*tp)
939 {
940 	return __xfs_trans_commit(tp, false);
941 }
942 
943 /*
944  * Unlock all of the transaction's items and free the transaction.
945  * The transaction must not have modified any of its items, because
946  * there is no way to restore them to their previous state.
947  *
948  * If the transaction has made a log reservation, make sure to release
949  * it as well.
950  */
951 void
952 xfs_trans_cancel(
953 	struct xfs_trans	*tp)
954 {
955 	struct xfs_mount	*mp = tp->t_mountp;
956 	bool			dirty = (tp->t_flags & XFS_TRANS_DIRTY);
957 
958 	trace_xfs_trans_cancel(tp, _RET_IP_);
959 
960 	if (tp->t_flags & XFS_TRANS_PERM_LOG_RES)
961 		xfs_defer_cancel(tp);
962 
963 	/*
964 	 * See if the caller is relying on us to shut down the
965 	 * filesystem.  This happens in paths where we detect
966 	 * corruption and decide to give up.
967 	 */
968 	if (dirty && !XFS_FORCED_SHUTDOWN(mp)) {
969 		XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
970 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
971 	}
972 #ifdef DEBUG
973 	if (!dirty && !XFS_FORCED_SHUTDOWN(mp)) {
974 		struct xfs_log_item *lip;
975 
976 		list_for_each_entry(lip, &tp->t_items, li_trans)
977 			ASSERT(!xlog_item_is_intent_done(lip));
978 	}
979 #endif
980 	xfs_trans_unreserve_and_mod_sb(tp);
981 	xfs_trans_unreserve_and_mod_dquots(tp);
982 
983 	if (tp->t_ticket) {
984 		xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
985 		tp->t_ticket = NULL;
986 	}
987 
988 	/* mark this thread as no longer being in a transaction */
989 	current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
990 
991 	xfs_trans_free_items(tp, dirty);
992 	xfs_trans_free(tp);
993 }
994 
995 /*
996  * Roll from one trans in the sequence of PERMANENT transactions to
997  * the next: permanent transactions are only flushed out when
998  * committed with xfs_trans_commit(), but we still want as soon
999  * as possible to let chunks of it go to the log. So we commit the
1000  * chunk we've been working on and get a new transaction to continue.
1001  */
1002 int
1003 xfs_trans_roll(
1004 	struct xfs_trans	**tpp)
1005 {
1006 	struct xfs_trans	*trans = *tpp;
1007 	struct xfs_trans_res	tres;
1008 	int			error;
1009 
1010 	trace_xfs_trans_roll(trans, _RET_IP_);
1011 
1012 	/*
1013 	 * Copy the critical parameters from one trans to the next.
1014 	 */
1015 	tres.tr_logres = trans->t_log_res;
1016 	tres.tr_logcount = trans->t_log_count;
1017 
1018 	*tpp = xfs_trans_dup(trans);
1019 
1020 	/*
1021 	 * Commit the current transaction.
1022 	 * If this commit failed, then it'd just unlock those items that
1023 	 * are not marked ihold. That also means that a filesystem shutdown
1024 	 * is in progress. The caller takes the responsibility to cancel
1025 	 * the duplicate transaction that gets returned.
1026 	 */
1027 	error = __xfs_trans_commit(trans, true);
1028 	if (error)
1029 		return error;
1030 
1031 	/*
1032 	 * Reserve space in the log for the next transaction.
1033 	 * This also pushes items in the "AIL", the list of logged items,
1034 	 * out to disk if they are taking up space at the tail of the log
1035 	 * that we want to use.  This requires that either nothing be locked
1036 	 * across this call, or that anything that is locked be logged in
1037 	 * the prior and the next transactions.
1038 	 */
1039 	tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1040 	return xfs_trans_reserve(*tpp, &tres, 0, 0);
1041 }
1042 
1043 /*
1044  * Allocate an transaction, lock and join the inode to it, and reserve quota.
1045  *
1046  * The caller must ensure that the on-disk dquots attached to this inode have
1047  * already been allocated and initialized.  The caller is responsible for
1048  * releasing ILOCK_EXCL if a new transaction is returned.
1049  */
1050 int
1051 xfs_trans_alloc_inode(
1052 	struct xfs_inode	*ip,
1053 	struct xfs_trans_res	*resv,
1054 	unsigned int		dblocks,
1055 	unsigned int		rblocks,
1056 	bool			force,
1057 	struct xfs_trans	**tpp)
1058 {
1059 	struct xfs_trans	*tp;
1060 	struct xfs_mount	*mp = ip->i_mount;
1061 	bool			retried = false;
1062 	int			error;
1063 
1064 retry:
1065 	error = xfs_trans_alloc(mp, resv, dblocks,
1066 			rblocks / mp->m_sb.sb_rextsize,
1067 			force ? XFS_TRANS_RESERVE : 0, &tp);
1068 	if (error)
1069 		return error;
1070 
1071 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1072 	xfs_trans_ijoin(tp, ip, 0);
1073 
1074 	error = xfs_qm_dqattach_locked(ip, false);
1075 	if (error) {
1076 		/* Caller should have allocated the dquots! */
1077 		ASSERT(error != -ENOENT);
1078 		goto out_cancel;
1079 	}
1080 
1081 	error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force);
1082 	if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1083 		xfs_trans_cancel(tp);
1084 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1085 		xfs_blockgc_free_quota(ip, 0);
1086 		retried = true;
1087 		goto retry;
1088 	}
1089 	if (error)
1090 		goto out_cancel;
1091 
1092 	*tpp = tp;
1093 	return 0;
1094 
1095 out_cancel:
1096 	xfs_trans_cancel(tp);
1097 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1098 	return error;
1099 }
1100 
1101 /*
1102  * Allocate an transaction in preparation for inode creation by reserving quota
1103  * against the given dquots.  Callers are not required to hold any inode locks.
1104  */
1105 int
1106 xfs_trans_alloc_icreate(
1107 	struct xfs_mount	*mp,
1108 	struct xfs_trans_res	*resv,
1109 	struct xfs_dquot	*udqp,
1110 	struct xfs_dquot	*gdqp,
1111 	struct xfs_dquot	*pdqp,
1112 	unsigned int		dblocks,
1113 	struct xfs_trans	**tpp)
1114 {
1115 	struct xfs_trans	*tp;
1116 	bool			retried = false;
1117 	int			error;
1118 
1119 retry:
1120 	error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp);
1121 	if (error)
1122 		return error;
1123 
1124 	error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks);
1125 	if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1126 		xfs_trans_cancel(tp);
1127 		xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1128 		retried = true;
1129 		goto retry;
1130 	}
1131 	if (error) {
1132 		xfs_trans_cancel(tp);
1133 		return error;
1134 	}
1135 
1136 	*tpp = tp;
1137 	return 0;
1138 }
1139 
1140 /*
1141  * Allocate an transaction, lock and join the inode to it, and reserve quota
1142  * in preparation for inode attribute changes that include uid, gid, or prid
1143  * changes.
1144  *
1145  * The caller must ensure that the on-disk dquots attached to this inode have
1146  * already been allocated and initialized.  The ILOCK will be dropped when the
1147  * transaction is committed or cancelled.
1148  */
1149 int
1150 xfs_trans_alloc_ichange(
1151 	struct xfs_inode	*ip,
1152 	struct xfs_dquot	*new_udqp,
1153 	struct xfs_dquot	*new_gdqp,
1154 	struct xfs_dquot	*new_pdqp,
1155 	bool			force,
1156 	struct xfs_trans	**tpp)
1157 {
1158 	struct xfs_trans	*tp;
1159 	struct xfs_mount	*mp = ip->i_mount;
1160 	struct xfs_dquot	*udqp;
1161 	struct xfs_dquot	*gdqp;
1162 	struct xfs_dquot	*pdqp;
1163 	bool			retried = false;
1164 	int			error;
1165 
1166 retry:
1167 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1168 	if (error)
1169 		return error;
1170 
1171 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1172 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1173 
1174 	error = xfs_qm_dqattach_locked(ip, false);
1175 	if (error) {
1176 		/* Caller should have allocated the dquots! */
1177 		ASSERT(error != -ENOENT);
1178 		goto out_cancel;
1179 	}
1180 
1181 	/*
1182 	 * For each quota type, skip quota reservations if the inode's dquots
1183 	 * now match the ones that came from the caller, or the caller didn't
1184 	 * pass one in.  The inode's dquots can change if we drop the ILOCK to
1185 	 * perform a blockgc scan, so we must preserve the caller's arguments.
1186 	 */
1187 	udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL;
1188 	gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL;
1189 	pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL;
1190 	if (udqp || gdqp || pdqp) {
1191 		unsigned int	qflags = XFS_QMOPT_RES_REGBLKS;
1192 
1193 		if (force)
1194 			qflags |= XFS_QMOPT_FORCE_RES;
1195 
1196 		/*
1197 		 * Reserve enough quota to handle blocks on disk and reserved
1198 		 * for a delayed allocation.  We'll actually transfer the
1199 		 * delalloc reservation between dquots at chown time, even
1200 		 * though that part is only semi-transactional.
1201 		 */
1202 		error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1203 				pdqp, ip->i_d.di_nblocks + ip->i_delayed_blks,
1204 				1, qflags);
1205 		if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1206 			xfs_trans_cancel(tp);
1207 			xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1208 			retried = true;
1209 			goto retry;
1210 		}
1211 		if (error)
1212 			goto out_cancel;
1213 	}
1214 
1215 	*tpp = tp;
1216 	return 0;
1217 
1218 out_cancel:
1219 	xfs_trans_cancel(tp);
1220 	return error;
1221 }
1222