xref: /openbmc/linux/fs/xfs/xfs_trans.c (revision 840ef8b7)
1 /*
2  * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
3  * Copyright (C) 2010 Red Hat, Inc.
4  * All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it would be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write the Free Software Foundation,
17  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
18  */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_types.h"
22 #include "xfs_log.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_error.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_btree.h"
35 #include "xfs_ialloc.h"
36 #include "xfs_alloc.h"
37 #include "xfs_extent_busy.h"
38 #include "xfs_bmap.h"
39 #include "xfs_quota.h"
40 #include "xfs_qm.h"
41 #include "xfs_trans_priv.h"
42 #include "xfs_trans_space.h"
43 #include "xfs_inode_item.h"
44 #include "xfs_log_priv.h"
45 #include "xfs_buf_item.h"
46 #include "xfs_trace.h"
47 
48 kmem_zone_t	*xfs_trans_zone;
49 kmem_zone_t	*xfs_log_item_desc_zone;
50 
51 /*
52  * A buffer has a format structure overhead in the log in addition
53  * to the data, so we need to take this into account when reserving
54  * space in a transaction for a buffer.  Round the space required up
55  * to a multiple of 128 bytes so that we don't change the historical
56  * reservation that has been used for this overhead.
57  */
58 STATIC uint
59 xfs_buf_log_overhead(void)
60 {
61 	return round_up(sizeof(struct xlog_op_header) +
62 			sizeof(struct xfs_buf_log_format), 128);
63 }
64 
65 /*
66  * Calculate out transaction log reservation per item in bytes.
67  *
68  * The nbufs argument is used to indicate the number of items that
69  * will be changed in a transaction.  size is used to tell how many
70  * bytes should be reserved per item.
71  */
72 STATIC uint
73 xfs_calc_buf_res(
74 	uint		nbufs,
75 	uint		size)
76 {
77 	return nbufs * (size + xfs_buf_log_overhead());
78 }
79 
80 /*
81  * Various log reservation values.
82  *
83  * These are based on the size of the file system block because that is what
84  * most transactions manipulate.  Each adds in an additional 128 bytes per
85  * item logged to try to account for the overhead of the transaction mechanism.
86  *
87  * Note:  Most of the reservations underestimate the number of allocation
88  * groups into which they could free extents in the xfs_bmap_finish() call.
89  * This is because the number in the worst case is quite high and quite
90  * unusual.  In order to fix this we need to change xfs_bmap_finish() to free
91  * extents in only a single AG at a time.  This will require changes to the
92  * EFI code as well, however, so that the EFI for the extents not freed is
93  * logged again in each transaction.  See SGI PV #261917.
94  *
95  * Reservation functions here avoid a huge stack in xfs_trans_init due to
96  * register overflow from temporaries in the calculations.
97  */
98 
99 
100 /*
101  * In a write transaction we can allocate a maximum of 2
102  * extents.  This gives:
103  *    the inode getting the new extents: inode size
104  *    the inode's bmap btree: max depth * block size
105  *    the agfs of the ags from which the extents are allocated: 2 * sector
106  *    the superblock free block counter: sector size
107  *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
108  * And the bmap_finish transaction can free bmap blocks in a join:
109  *    the agfs of the ags containing the blocks: 2 * sector size
110  *    the agfls of the ags containing the blocks: 2 * sector size
111  *    the super block free block counter: sector size
112  *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
113  */
114 STATIC uint
115 xfs_calc_write_reservation(
116 	struct xfs_mount	*mp)
117 {
118 	return XFS_DQUOT_LOGRES(mp) +
119 		MAX((xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
120 		     xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK),
121 				      XFS_FSB_TO_B(mp, 1)) +
122 		     xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
123 		     xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 2),
124 				      XFS_FSB_TO_B(mp, 1))),
125 		    (xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
126 		     xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 2),
127 				      XFS_FSB_TO_B(mp, 1))));
128 }
129 
130 /*
131  * In truncating a file we free up to two extents at once.  We can modify:
132  *    the inode being truncated: inode size
133  *    the inode's bmap btree: (max depth + 1) * block size
134  * And the bmap_finish transaction can free the blocks and bmap blocks:
135  *    the agf for each of the ags: 4 * sector size
136  *    the agfl for each of the ags: 4 * sector size
137  *    the super block to reflect the freed blocks: sector size
138  *    worst case split in allocation btrees per extent assuming 4 extents:
139  *		4 exts * 2 trees * (2 * max depth - 1) * block size
140  *    the inode btree: max depth * blocksize
141  *    the allocation btrees: 2 trees * (max depth - 1) * block size
142  */
143 STATIC uint
144 xfs_calc_itruncate_reservation(
145 	struct xfs_mount	*mp)
146 {
147 	return XFS_DQUOT_LOGRES(mp) +
148 		MAX((xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
149 		     xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1,
150 				      XFS_FSB_TO_B(mp, 1))),
151 		    (xfs_calc_buf_res(9, mp->m_sb.sb_sectsize) +
152 		     xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 4),
153 				      XFS_FSB_TO_B(mp, 1)) +
154 		    xfs_calc_buf_res(5, 0) +
155 		    xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
156 				     XFS_FSB_TO_B(mp, 1)) +
157 		    xfs_calc_buf_res(2 + XFS_IALLOC_BLOCKS(mp) +
158 				     mp->m_in_maxlevels, 0)));
159 }
160 
161 /*
162  * In renaming a files we can modify:
163  *    the four inodes involved: 4 * inode size
164  *    the two directory btrees: 2 * (max depth + v2) * dir block size
165  *    the two directory bmap btrees: 2 * max depth * block size
166  * And the bmap_finish transaction can free dir and bmap blocks (two sets
167  *	of bmap blocks) giving:
168  *    the agf for the ags in which the blocks live: 3 * sector size
169  *    the agfl for the ags in which the blocks live: 3 * sector size
170  *    the superblock for the free block count: sector size
171  *    the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size
172  */
173 STATIC uint
174 xfs_calc_rename_reservation(
175 	struct xfs_mount	*mp)
176 {
177 	return XFS_DQUOT_LOGRES(mp) +
178 		MAX((xfs_calc_buf_res(4, mp->m_sb.sb_inodesize) +
179 		     xfs_calc_buf_res(2 * XFS_DIROP_LOG_COUNT(mp),
180 				      XFS_FSB_TO_B(mp, 1))),
181 		    (xfs_calc_buf_res(7, mp->m_sb.sb_sectsize) +
182 		     xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 3),
183 				      XFS_FSB_TO_B(mp, 1))));
184 }
185 
186 /*
187  * For creating a link to an inode:
188  *    the parent directory inode: inode size
189  *    the linked inode: inode size
190  *    the directory btree could split: (max depth + v2) * dir block size
191  *    the directory bmap btree could join or split: (max depth + v2) * blocksize
192  * And the bmap_finish transaction can free some bmap blocks giving:
193  *    the agf for the ag in which the blocks live: sector size
194  *    the agfl for the ag in which the blocks live: sector size
195  *    the superblock for the free block count: sector size
196  *    the allocation btrees: 2 trees * (2 * max depth - 1) * block size
197  */
198 STATIC uint
199 xfs_calc_link_reservation(
200 	struct xfs_mount	*mp)
201 {
202 	return XFS_DQUOT_LOGRES(mp) +
203 		MAX((xfs_calc_buf_res(2, mp->m_sb.sb_inodesize) +
204 		     xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
205 				      XFS_FSB_TO_B(mp, 1))),
206 		    (xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
207 		     xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
208 				      XFS_FSB_TO_B(mp, 1))));
209 }
210 
211 /*
212  * For removing a directory entry we can modify:
213  *    the parent directory inode: inode size
214  *    the removed inode: inode size
215  *    the directory btree could join: (max depth + v2) * dir block size
216  *    the directory bmap btree could join or split: (max depth + v2) * blocksize
217  * And the bmap_finish transaction can free the dir and bmap blocks giving:
218  *    the agf for the ag in which the blocks live: 2 * sector size
219  *    the agfl for the ag in which the blocks live: 2 * sector size
220  *    the superblock for the free block count: sector size
221  *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
222  */
223 STATIC uint
224 xfs_calc_remove_reservation(
225 	struct xfs_mount	*mp)
226 {
227 	return XFS_DQUOT_LOGRES(mp) +
228 		MAX((xfs_calc_buf_res(2, mp->m_sb.sb_inodesize) +
229 		     xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
230 				      XFS_FSB_TO_B(mp, 1))),
231 		    (xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
232 		     xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 2),
233 				      XFS_FSB_TO_B(mp, 1))));
234 }
235 
236 /*
237  * For symlink we can modify:
238  *    the parent directory inode: inode size
239  *    the new inode: inode size
240  *    the inode btree entry: 1 block
241  *    the directory btree: (max depth + v2) * dir block size
242  *    the directory inode's bmap btree: (max depth + v2) * block size
243  *    the blocks for the symlink: 1 kB
244  * Or in the first xact we allocate some inodes giving:
245  *    the agi and agf of the ag getting the new inodes: 2 * sectorsize
246  *    the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
247  *    the inode btree: max depth * blocksize
248  *    the allocation btrees: 2 trees * (2 * max depth - 1) * block size
249  */
250 STATIC uint
251 xfs_calc_symlink_reservation(
252 	struct xfs_mount	*mp)
253 {
254 	return XFS_DQUOT_LOGRES(mp) +
255 		MAX((xfs_calc_buf_res(2, mp->m_sb.sb_inodesize) +
256 		     xfs_calc_buf_res(1, XFS_FSB_TO_B(mp, 1)) +
257 		     xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
258 				      XFS_FSB_TO_B(mp, 1)) +
259 		     xfs_calc_buf_res(1, 1024)),
260 		    (xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
261 		     xfs_calc_buf_res(XFS_IALLOC_BLOCKS(mp),
262 				      XFS_FSB_TO_B(mp, 1)) +
263 		     xfs_calc_buf_res(mp->m_in_maxlevels,
264 				      XFS_FSB_TO_B(mp, 1)) +
265 		     xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
266 				      XFS_FSB_TO_B(mp, 1))));
267 }
268 
269 /*
270  * For create we can modify:
271  *    the parent directory inode: inode size
272  *    the new inode: inode size
273  *    the inode btree entry: block size
274  *    the superblock for the nlink flag: sector size
275  *    the directory btree: (max depth + v2) * dir block size
276  *    the directory inode's bmap btree: (max depth + v2) * block size
277  * Or in the first xact we allocate some inodes giving:
278  *    the agi and agf of the ag getting the new inodes: 2 * sectorsize
279  *    the superblock for the nlink flag: sector size
280  *    the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
281  *    the inode btree: max depth * blocksize
282  *    the allocation btrees: 2 trees * (max depth - 1) * block size
283  */
284 STATIC uint
285 xfs_calc_create_reservation(
286 	struct xfs_mount	*mp)
287 {
288 	return XFS_DQUOT_LOGRES(mp) +
289 		MAX((xfs_calc_buf_res(2, mp->m_sb.sb_inodesize) +
290 		     xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
291 		     (uint)XFS_FSB_TO_B(mp, 1) +
292 		     xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
293 				      XFS_FSB_TO_B(mp, 1))),
294 		    (xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
295 		     mp->m_sb.sb_sectsize +
296 		     xfs_calc_buf_res(XFS_IALLOC_BLOCKS(mp),
297 				      XFS_FSB_TO_B(mp, 1)) +
298 		     xfs_calc_buf_res(mp->m_in_maxlevels,
299 				      XFS_FSB_TO_B(mp, 1)) +
300 		     xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
301 				      XFS_FSB_TO_B(mp, 1))));
302 }
303 
304 /*
305  * Making a new directory is the same as creating a new file.
306  */
307 STATIC uint
308 xfs_calc_mkdir_reservation(
309 	struct xfs_mount	*mp)
310 {
311 	return xfs_calc_create_reservation(mp);
312 }
313 
314 /*
315  * In freeing an inode we can modify:
316  *    the inode being freed: inode size
317  *    the super block free inode counter: sector size
318  *    the agi hash list and counters: sector size
319  *    the inode btree entry: block size
320  *    the on disk inode before ours in the agi hash list: inode cluster size
321  *    the inode btree: max depth * blocksize
322  *    the allocation btrees: 2 trees * (max depth - 1) * block size
323  */
324 STATIC uint
325 xfs_calc_ifree_reservation(
326 	struct xfs_mount	*mp)
327 {
328 	return XFS_DQUOT_LOGRES(mp) +
329 		xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
330 		xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
331 		xfs_calc_buf_res(1, XFS_FSB_TO_B(mp, 1)) +
332 		MAX((__uint16_t)XFS_FSB_TO_B(mp, 1),
333 		    XFS_INODE_CLUSTER_SIZE(mp)) +
334 		xfs_calc_buf_res(1, 0) +
335 		xfs_calc_buf_res(2 + XFS_IALLOC_BLOCKS(mp) +
336 				 mp->m_in_maxlevels, 0) +
337 		xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
338 				 XFS_FSB_TO_B(mp, 1));
339 }
340 
341 /*
342  * When only changing the inode we log the inode and possibly the superblock
343  * We also add a bit of slop for the transaction stuff.
344  */
345 STATIC uint
346 xfs_calc_ichange_reservation(
347 	struct xfs_mount	*mp)
348 {
349 	return XFS_DQUOT_LOGRES(mp) +
350 		mp->m_sb.sb_inodesize +
351 		mp->m_sb.sb_sectsize +
352 		512;
353 
354 }
355 
356 /*
357  * Growing the data section of the filesystem.
358  *	superblock
359  *	agi and agf
360  *	allocation btrees
361  */
362 STATIC uint
363 xfs_calc_growdata_reservation(
364 	struct xfs_mount	*mp)
365 {
366 	return xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
367 		xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
368 				 XFS_FSB_TO_B(mp, 1));
369 }
370 
371 /*
372  * Growing the rt section of the filesystem.
373  * In the first set of transactions (ALLOC) we allocate space to the
374  * bitmap or summary files.
375  *	superblock: sector size
376  *	agf of the ag from which the extent is allocated: sector size
377  *	bmap btree for bitmap/summary inode: max depth * blocksize
378  *	bitmap/summary inode: inode size
379  *	allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize
380  */
381 STATIC uint
382 xfs_calc_growrtalloc_reservation(
383 	struct xfs_mount	*mp)
384 {
385 	return xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
386 		xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK),
387 				 XFS_FSB_TO_B(mp, 1)) +
388 		xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
389 		xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
390 				 XFS_FSB_TO_B(mp, 1));
391 }
392 
393 /*
394  * Growing the rt section of the filesystem.
395  * In the second set of transactions (ZERO) we zero the new metadata blocks.
396  *	one bitmap/summary block: blocksize
397  */
398 STATIC uint
399 xfs_calc_growrtzero_reservation(
400 	struct xfs_mount	*mp)
401 {
402 	return xfs_calc_buf_res(1, mp->m_sb.sb_blocksize);
403 }
404 
405 /*
406  * Growing the rt section of the filesystem.
407  * In the third set of transactions (FREE) we update metadata without
408  * allocating any new blocks.
409  *	superblock: sector size
410  *	bitmap inode: inode size
411  *	summary inode: inode size
412  *	one bitmap block: blocksize
413  *	summary blocks: new summary size
414  */
415 STATIC uint
416 xfs_calc_growrtfree_reservation(
417 	struct xfs_mount	*mp)
418 {
419 	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
420 		xfs_calc_buf_res(2, mp->m_sb.sb_inodesize) +
421 		xfs_calc_buf_res(1, mp->m_sb.sb_blocksize) +
422 		xfs_calc_buf_res(1, mp->m_rsumsize);
423 }
424 
425 /*
426  * Logging the inode modification timestamp on a synchronous write.
427  *	inode
428  */
429 STATIC uint
430 xfs_calc_swrite_reservation(
431 	struct xfs_mount	*mp)
432 {
433 	return xfs_calc_buf_res(1, mp->m_sb.sb_inodesize);
434 }
435 
436 /*
437  * Logging the inode mode bits when writing a setuid/setgid file
438  *	inode
439  */
440 STATIC uint
441 xfs_calc_writeid_reservation(xfs_mount_t *mp)
442 {
443 	return xfs_calc_buf_res(1, mp->m_sb.sb_inodesize);
444 }
445 
446 /*
447  * Converting the inode from non-attributed to attributed.
448  *	the inode being converted: inode size
449  *	agf block and superblock (for block allocation)
450  *	the new block (directory sized)
451  *	bmap blocks for the new directory block
452  *	allocation btrees
453  */
454 STATIC uint
455 xfs_calc_addafork_reservation(
456 	struct xfs_mount	*mp)
457 {
458 	return XFS_DQUOT_LOGRES(mp) +
459 		xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
460 		xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
461 		xfs_calc_buf_res(1, mp->m_dirblksize) +
462 		xfs_calc_buf_res(XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1,
463 				 XFS_FSB_TO_B(mp, 1)) +
464 		xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
465 				 XFS_FSB_TO_B(mp, 1));
466 }
467 
468 /*
469  * Removing the attribute fork of a file
470  *    the inode being truncated: inode size
471  *    the inode's bmap btree: max depth * block size
472  * And the bmap_finish transaction can free the blocks and bmap blocks:
473  *    the agf for each of the ags: 4 * sector size
474  *    the agfl for each of the ags: 4 * sector size
475  *    the super block to reflect the freed blocks: sector size
476  *    worst case split in allocation btrees per extent assuming 4 extents:
477  *		4 exts * 2 trees * (2 * max depth - 1) * block size
478  */
479 STATIC uint
480 xfs_calc_attrinval_reservation(
481 	struct xfs_mount	*mp)
482 {
483 	return MAX((xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
484 		    xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK),
485 				     XFS_FSB_TO_B(mp, 1))),
486 		   (xfs_calc_buf_res(9, mp->m_sb.sb_sectsize) +
487 		    xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 4),
488 				     XFS_FSB_TO_B(mp, 1))));
489 }
490 
491 /*
492  * Setting an attribute at mount time.
493  *	the inode getting the attribute
494  *	the superblock for allocations
495  *	the agfs extents are allocated from
496  *	the attribute btree * max depth
497  *	the inode allocation btree
498  * Since attribute transaction space is dependent on the size of the attribute,
499  * the calculation is done partially at mount time and partially at runtime(see
500  * below).
501  */
502 STATIC uint
503 xfs_calc_attrsetm_reservation(
504 	struct xfs_mount	*mp)
505 {
506 	return XFS_DQUOT_LOGRES(mp) +
507 		xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
508 		xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
509 		xfs_calc_buf_res(XFS_DA_NODE_MAXDEPTH, XFS_FSB_TO_B(mp, 1));
510 }
511 
512 /*
513  * Setting an attribute at runtime, transaction space unit per block.
514  * 	the superblock for allocations: sector size
515  *	the inode bmap btree could join or split: max depth * block size
516  * Since the runtime attribute transaction space is dependent on the total
517  * blocks needed for the 1st bmap, here we calculate out the space unit for
518  * one block so that the caller could figure out the total space according
519  * to the attibute extent length in blocks by: ext * XFS_ATTRSETRT_LOG_RES(mp).
520  */
521 STATIC uint
522 xfs_calc_attrsetrt_reservation(
523 	struct xfs_mount	*mp)
524 {
525 	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
526 		xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK),
527 				 XFS_FSB_TO_B(mp, 1));
528 }
529 
530 /*
531  * Removing an attribute.
532  *    the inode: inode size
533  *    the attribute btree could join: max depth * block size
534  *    the inode bmap btree could join or split: max depth * block size
535  * And the bmap_finish transaction can free the attr blocks freed giving:
536  *    the agf for the ag in which the blocks live: 2 * sector size
537  *    the agfl for the ag in which the blocks live: 2 * sector size
538  *    the superblock for the free block count: sector size
539  *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
540  */
541 STATIC uint
542 xfs_calc_attrrm_reservation(
543 	struct xfs_mount	*mp)
544 {
545 	return XFS_DQUOT_LOGRES(mp) +
546 		MAX((xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
547 		     xfs_calc_buf_res(XFS_DA_NODE_MAXDEPTH,
548 				      XFS_FSB_TO_B(mp, 1)) +
549 		     (uint)XFS_FSB_TO_B(mp,
550 					XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
551 		     xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK), 0)),
552 		    (xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
553 		     xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 2),
554 				      XFS_FSB_TO_B(mp, 1))));
555 }
556 
557 /*
558  * Clearing a bad agino number in an agi hash bucket.
559  */
560 STATIC uint
561 xfs_calc_clear_agi_bucket_reservation(
562 	struct xfs_mount	*mp)
563 {
564 	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
565 }
566 
567 /*
568  * Clearing the quotaflags in the superblock.
569  *	the super block for changing quota flags: sector size
570  */
571 STATIC uint
572 xfs_calc_qm_sbchange_reservation(
573 	struct xfs_mount	*mp)
574 {
575 	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
576 }
577 
578 /*
579  * Adjusting quota limits.
580  *    the xfs_disk_dquot_t: sizeof(struct xfs_disk_dquot)
581  */
582 STATIC uint
583 xfs_calc_qm_setqlim_reservation(
584 	struct xfs_mount	*mp)
585 {
586 	return xfs_calc_buf_res(1, sizeof(struct xfs_disk_dquot));
587 }
588 
589 /*
590  * Allocating quota on disk if needed.
591  *	the write transaction log space: XFS_WRITE_LOG_RES(mp)
592  *	the unit of quota allocation: one system block size
593  */
594 STATIC uint
595 xfs_calc_qm_dqalloc_reservation(
596 	struct xfs_mount	*mp)
597 {
598 	return XFS_WRITE_LOG_RES(mp) +
599 		xfs_calc_buf_res(1,
600 			XFS_FSB_TO_B(mp, XFS_DQUOT_CLUSTER_SIZE_FSB) - 1);
601 }
602 
603 /*
604  * Turning off quotas.
605  *    the xfs_qoff_logitem_t: sizeof(struct xfs_qoff_logitem) * 2
606  *    the superblock for the quota flags: sector size
607  */
608 STATIC uint
609 xfs_calc_qm_quotaoff_reservation(
610 	struct xfs_mount	*mp)
611 {
612 	return sizeof(struct xfs_qoff_logitem) * 2 +
613 		xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
614 }
615 
616 /*
617  * End of turning off quotas.
618  *    the xfs_qoff_logitem_t: sizeof(struct xfs_qoff_logitem) * 2
619  */
620 STATIC uint
621 xfs_calc_qm_quotaoff_end_reservation(
622 	struct xfs_mount	*mp)
623 {
624 	return sizeof(struct xfs_qoff_logitem) * 2;
625 }
626 
627 /*
628  * Syncing the incore super block changes to disk.
629  *     the super block to reflect the changes: sector size
630  */
631 STATIC uint
632 xfs_calc_sb_reservation(
633 	struct xfs_mount	*mp)
634 {
635 	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
636 }
637 
638 /*
639  * Initialize the precomputed transaction reservation values
640  * in the mount structure.
641  */
642 void
643 xfs_trans_init(
644 	struct xfs_mount	*mp)
645 {
646 	struct xfs_trans_reservations *resp = &mp->m_reservations;
647 
648 	resp->tr_write = xfs_calc_write_reservation(mp);
649 	resp->tr_itruncate = xfs_calc_itruncate_reservation(mp);
650 	resp->tr_rename = xfs_calc_rename_reservation(mp);
651 	resp->tr_link = xfs_calc_link_reservation(mp);
652 	resp->tr_remove = xfs_calc_remove_reservation(mp);
653 	resp->tr_symlink = xfs_calc_symlink_reservation(mp);
654 	resp->tr_create = xfs_calc_create_reservation(mp);
655 	resp->tr_mkdir = xfs_calc_mkdir_reservation(mp);
656 	resp->tr_ifree = xfs_calc_ifree_reservation(mp);
657 	resp->tr_ichange = xfs_calc_ichange_reservation(mp);
658 	resp->tr_growdata = xfs_calc_growdata_reservation(mp);
659 	resp->tr_swrite = xfs_calc_swrite_reservation(mp);
660 	resp->tr_writeid = xfs_calc_writeid_reservation(mp);
661 	resp->tr_addafork = xfs_calc_addafork_reservation(mp);
662 	resp->tr_attrinval = xfs_calc_attrinval_reservation(mp);
663 	resp->tr_attrsetm = xfs_calc_attrsetm_reservation(mp);
664 	resp->tr_attrsetrt = xfs_calc_attrsetrt_reservation(mp);
665 	resp->tr_attrrm = xfs_calc_attrrm_reservation(mp);
666 	resp->tr_clearagi = xfs_calc_clear_agi_bucket_reservation(mp);
667 	resp->tr_growrtalloc = xfs_calc_growrtalloc_reservation(mp);
668 	resp->tr_growrtzero = xfs_calc_growrtzero_reservation(mp);
669 	resp->tr_growrtfree = xfs_calc_growrtfree_reservation(mp);
670 	resp->tr_qm_sbchange = xfs_calc_qm_sbchange_reservation(mp);
671 	resp->tr_qm_setqlim = xfs_calc_qm_setqlim_reservation(mp);
672 	resp->tr_qm_dqalloc = xfs_calc_qm_dqalloc_reservation(mp);
673 	resp->tr_qm_quotaoff = xfs_calc_qm_quotaoff_reservation(mp);
674 	resp->tr_qm_equotaoff = xfs_calc_qm_quotaoff_end_reservation(mp);
675 	resp->tr_sb = xfs_calc_sb_reservation(mp);
676 }
677 
678 /*
679  * This routine is called to allocate a transaction structure.
680  * The type parameter indicates the type of the transaction.  These
681  * are enumerated in xfs_trans.h.
682  *
683  * Dynamically allocate the transaction structure from the transaction
684  * zone, initialize it, and return it to the caller.
685  */
686 xfs_trans_t *
687 xfs_trans_alloc(
688 	xfs_mount_t	*mp,
689 	uint		type)
690 {
691 	xfs_trans_t     *tp;
692 
693 	sb_start_intwrite(mp->m_super);
694 	tp = _xfs_trans_alloc(mp, type, KM_SLEEP);
695 	tp->t_flags |= XFS_TRANS_FREEZE_PROT;
696 	return tp;
697 }
698 
699 xfs_trans_t *
700 _xfs_trans_alloc(
701 	xfs_mount_t	*mp,
702 	uint		type,
703 	xfs_km_flags_t	memflags)
704 {
705 	xfs_trans_t	*tp;
706 
707 	WARN_ON(mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
708 	atomic_inc(&mp->m_active_trans);
709 
710 	tp = kmem_zone_zalloc(xfs_trans_zone, memflags);
711 	tp->t_magic = XFS_TRANS_MAGIC;
712 	tp->t_type = type;
713 	tp->t_mountp = mp;
714 	INIT_LIST_HEAD(&tp->t_items);
715 	INIT_LIST_HEAD(&tp->t_busy);
716 	return tp;
717 }
718 
719 /*
720  * Free the transaction structure.  If there is more clean up
721  * to do when the structure is freed, add it here.
722  */
723 STATIC void
724 xfs_trans_free(
725 	struct xfs_trans	*tp)
726 {
727 	xfs_extent_busy_sort(&tp->t_busy);
728 	xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false);
729 
730 	atomic_dec(&tp->t_mountp->m_active_trans);
731 	if (tp->t_flags & XFS_TRANS_FREEZE_PROT)
732 		sb_end_intwrite(tp->t_mountp->m_super);
733 	xfs_trans_free_dqinfo(tp);
734 	kmem_zone_free(xfs_trans_zone, tp);
735 }
736 
737 /*
738  * This is called to create a new transaction which will share the
739  * permanent log reservation of the given transaction.  The remaining
740  * unused block and rt extent reservations are also inherited.  This
741  * implies that the original transaction is no longer allowed to allocate
742  * blocks.  Locks and log items, however, are no inherited.  They must
743  * be added to the new transaction explicitly.
744  */
745 xfs_trans_t *
746 xfs_trans_dup(
747 	xfs_trans_t	*tp)
748 {
749 	xfs_trans_t	*ntp;
750 
751 	ntp = kmem_zone_zalloc(xfs_trans_zone, KM_SLEEP);
752 
753 	/*
754 	 * Initialize the new transaction structure.
755 	 */
756 	ntp->t_magic = XFS_TRANS_MAGIC;
757 	ntp->t_type = tp->t_type;
758 	ntp->t_mountp = tp->t_mountp;
759 	INIT_LIST_HEAD(&ntp->t_items);
760 	INIT_LIST_HEAD(&ntp->t_busy);
761 
762 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
763 	ASSERT(tp->t_ticket != NULL);
764 
765 	ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
766 		       (tp->t_flags & XFS_TRANS_RESERVE) |
767 		       (tp->t_flags & XFS_TRANS_FREEZE_PROT);
768 	/* We gave our writer reference to the new transaction */
769 	tp->t_flags &= ~XFS_TRANS_FREEZE_PROT;
770 	ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
771 	ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
772 	tp->t_blk_res = tp->t_blk_res_used;
773 	ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
774 	tp->t_rtx_res = tp->t_rtx_res_used;
775 	ntp->t_pflags = tp->t_pflags;
776 
777 	xfs_trans_dup_dqinfo(tp, ntp);
778 
779 	atomic_inc(&tp->t_mountp->m_active_trans);
780 	return ntp;
781 }
782 
783 /*
784  * This is called to reserve free disk blocks and log space for the
785  * given transaction.  This must be done before allocating any resources
786  * within the transaction.
787  *
788  * This will return ENOSPC if there are not enough blocks available.
789  * It will sleep waiting for available log space.
790  * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
791  * is used by long running transactions.  If any one of the reservations
792  * fails then they will all be backed out.
793  *
794  * This does not do quota reservations. That typically is done by the
795  * caller afterwards.
796  */
797 int
798 xfs_trans_reserve(
799 	xfs_trans_t	*tp,
800 	uint		blocks,
801 	uint		logspace,
802 	uint		rtextents,
803 	uint		flags,
804 	uint		logcount)
805 {
806 	int		error = 0;
807 	int		rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
808 
809 	/* Mark this thread as being in a transaction */
810 	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
811 
812 	/*
813 	 * Attempt to reserve the needed disk blocks by decrementing
814 	 * the number needed from the number available.  This will
815 	 * fail if the count would go below zero.
816 	 */
817 	if (blocks > 0) {
818 		error = xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
819 					  -((int64_t)blocks), rsvd);
820 		if (error != 0) {
821 			current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
822 			return (XFS_ERROR(ENOSPC));
823 		}
824 		tp->t_blk_res += blocks;
825 	}
826 
827 	/*
828 	 * Reserve the log space needed for this transaction.
829 	 */
830 	if (logspace > 0) {
831 		bool	permanent = false;
832 
833 		ASSERT(tp->t_log_res == 0 || tp->t_log_res == logspace);
834 		ASSERT(tp->t_log_count == 0 || tp->t_log_count == logcount);
835 
836 		if (flags & XFS_TRANS_PERM_LOG_RES) {
837 			tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
838 			permanent = true;
839 		} else {
840 			ASSERT(tp->t_ticket == NULL);
841 			ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
842 		}
843 
844 		if (tp->t_ticket != NULL) {
845 			ASSERT(flags & XFS_TRANS_PERM_LOG_RES);
846 			error = xfs_log_regrant(tp->t_mountp, tp->t_ticket);
847 		} else {
848 			error = xfs_log_reserve(tp->t_mountp, logspace,
849 						logcount, &tp->t_ticket,
850 						XFS_TRANSACTION, permanent,
851 						tp->t_type);
852 		}
853 
854 		if (error)
855 			goto undo_blocks;
856 
857 		tp->t_log_res = logspace;
858 		tp->t_log_count = logcount;
859 	}
860 
861 	/*
862 	 * Attempt to reserve the needed realtime extents by decrementing
863 	 * the number needed from the number available.  This will
864 	 * fail if the count would go below zero.
865 	 */
866 	if (rtextents > 0) {
867 		error = xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FREXTENTS,
868 					  -((int64_t)rtextents), rsvd);
869 		if (error) {
870 			error = XFS_ERROR(ENOSPC);
871 			goto undo_log;
872 		}
873 		tp->t_rtx_res += rtextents;
874 	}
875 
876 	return 0;
877 
878 	/*
879 	 * Error cases jump to one of these labels to undo any
880 	 * reservations which have already been performed.
881 	 */
882 undo_log:
883 	if (logspace > 0) {
884 		int		log_flags;
885 
886 		if (flags & XFS_TRANS_PERM_LOG_RES) {
887 			log_flags = XFS_LOG_REL_PERM_RESERV;
888 		} else {
889 			log_flags = 0;
890 		}
891 		xfs_log_done(tp->t_mountp, tp->t_ticket, NULL, log_flags);
892 		tp->t_ticket = NULL;
893 		tp->t_log_res = 0;
894 		tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
895 	}
896 
897 undo_blocks:
898 	if (blocks > 0) {
899 		xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
900 					 (int64_t)blocks, rsvd);
901 		tp->t_blk_res = 0;
902 	}
903 
904 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
905 
906 	return error;
907 }
908 
909 /*
910  * Record the indicated change to the given field for application
911  * to the file system's superblock when the transaction commits.
912  * For now, just store the change in the transaction structure.
913  *
914  * Mark the transaction structure to indicate that the superblock
915  * needs to be updated before committing.
916  *
917  * Because we may not be keeping track of allocated/free inodes and
918  * used filesystem blocks in the superblock, we do not mark the
919  * superblock dirty in this transaction if we modify these fields.
920  * We still need to update the transaction deltas so that they get
921  * applied to the incore superblock, but we don't want them to
922  * cause the superblock to get locked and logged if these are the
923  * only fields in the superblock that the transaction modifies.
924  */
925 void
926 xfs_trans_mod_sb(
927 	xfs_trans_t	*tp,
928 	uint		field,
929 	int64_t		delta)
930 {
931 	uint32_t	flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
932 	xfs_mount_t	*mp = tp->t_mountp;
933 
934 	switch (field) {
935 	case XFS_TRANS_SB_ICOUNT:
936 		tp->t_icount_delta += delta;
937 		if (xfs_sb_version_haslazysbcount(&mp->m_sb))
938 			flags &= ~XFS_TRANS_SB_DIRTY;
939 		break;
940 	case XFS_TRANS_SB_IFREE:
941 		tp->t_ifree_delta += delta;
942 		if (xfs_sb_version_haslazysbcount(&mp->m_sb))
943 			flags &= ~XFS_TRANS_SB_DIRTY;
944 		break;
945 	case XFS_TRANS_SB_FDBLOCKS:
946 		/*
947 		 * Track the number of blocks allocated in the
948 		 * transaction.  Make sure it does not exceed the
949 		 * number reserved.
950 		 */
951 		if (delta < 0) {
952 			tp->t_blk_res_used += (uint)-delta;
953 			ASSERT(tp->t_blk_res_used <= tp->t_blk_res);
954 		}
955 		tp->t_fdblocks_delta += delta;
956 		if (xfs_sb_version_haslazysbcount(&mp->m_sb))
957 			flags &= ~XFS_TRANS_SB_DIRTY;
958 		break;
959 	case XFS_TRANS_SB_RES_FDBLOCKS:
960 		/*
961 		 * The allocation has already been applied to the
962 		 * in-core superblock's counter.  This should only
963 		 * be applied to the on-disk superblock.
964 		 */
965 		ASSERT(delta < 0);
966 		tp->t_res_fdblocks_delta += delta;
967 		if (xfs_sb_version_haslazysbcount(&mp->m_sb))
968 			flags &= ~XFS_TRANS_SB_DIRTY;
969 		break;
970 	case XFS_TRANS_SB_FREXTENTS:
971 		/*
972 		 * Track the number of blocks allocated in the
973 		 * transaction.  Make sure it does not exceed the
974 		 * number reserved.
975 		 */
976 		if (delta < 0) {
977 			tp->t_rtx_res_used += (uint)-delta;
978 			ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
979 		}
980 		tp->t_frextents_delta += delta;
981 		break;
982 	case XFS_TRANS_SB_RES_FREXTENTS:
983 		/*
984 		 * The allocation has already been applied to the
985 		 * in-core superblock's counter.  This should only
986 		 * be applied to the on-disk superblock.
987 		 */
988 		ASSERT(delta < 0);
989 		tp->t_res_frextents_delta += delta;
990 		break;
991 	case XFS_TRANS_SB_DBLOCKS:
992 		ASSERT(delta > 0);
993 		tp->t_dblocks_delta += delta;
994 		break;
995 	case XFS_TRANS_SB_AGCOUNT:
996 		ASSERT(delta > 0);
997 		tp->t_agcount_delta += delta;
998 		break;
999 	case XFS_TRANS_SB_IMAXPCT:
1000 		tp->t_imaxpct_delta += delta;
1001 		break;
1002 	case XFS_TRANS_SB_REXTSIZE:
1003 		tp->t_rextsize_delta += delta;
1004 		break;
1005 	case XFS_TRANS_SB_RBMBLOCKS:
1006 		tp->t_rbmblocks_delta += delta;
1007 		break;
1008 	case XFS_TRANS_SB_RBLOCKS:
1009 		tp->t_rblocks_delta += delta;
1010 		break;
1011 	case XFS_TRANS_SB_REXTENTS:
1012 		tp->t_rextents_delta += delta;
1013 		break;
1014 	case XFS_TRANS_SB_REXTSLOG:
1015 		tp->t_rextslog_delta += delta;
1016 		break;
1017 	default:
1018 		ASSERT(0);
1019 		return;
1020 	}
1021 
1022 	tp->t_flags |= flags;
1023 }
1024 
1025 /*
1026  * xfs_trans_apply_sb_deltas() is called from the commit code
1027  * to bring the superblock buffer into the current transaction
1028  * and modify it as requested by earlier calls to xfs_trans_mod_sb().
1029  *
1030  * For now we just look at each field allowed to change and change
1031  * it if necessary.
1032  */
1033 STATIC void
1034 xfs_trans_apply_sb_deltas(
1035 	xfs_trans_t	*tp)
1036 {
1037 	xfs_dsb_t	*sbp;
1038 	xfs_buf_t	*bp;
1039 	int		whole = 0;
1040 
1041 	bp = xfs_trans_getsb(tp, tp->t_mountp, 0);
1042 	sbp = XFS_BUF_TO_SBP(bp);
1043 
1044 	/*
1045 	 * Check that superblock mods match the mods made to AGF counters.
1046 	 */
1047 	ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) ==
1048 	       (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta +
1049 		tp->t_ag_btree_delta));
1050 
1051 	/*
1052 	 * Only update the superblock counters if we are logging them
1053 	 */
1054 	if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) {
1055 		if (tp->t_icount_delta)
1056 			be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
1057 		if (tp->t_ifree_delta)
1058 			be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
1059 		if (tp->t_fdblocks_delta)
1060 			be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
1061 		if (tp->t_res_fdblocks_delta)
1062 			be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
1063 	}
1064 
1065 	if (tp->t_frextents_delta)
1066 		be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta);
1067 	if (tp->t_res_frextents_delta)
1068 		be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta);
1069 
1070 	if (tp->t_dblocks_delta) {
1071 		be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
1072 		whole = 1;
1073 	}
1074 	if (tp->t_agcount_delta) {
1075 		be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
1076 		whole = 1;
1077 	}
1078 	if (tp->t_imaxpct_delta) {
1079 		sbp->sb_imax_pct += tp->t_imaxpct_delta;
1080 		whole = 1;
1081 	}
1082 	if (tp->t_rextsize_delta) {
1083 		be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
1084 		whole = 1;
1085 	}
1086 	if (tp->t_rbmblocks_delta) {
1087 		be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
1088 		whole = 1;
1089 	}
1090 	if (tp->t_rblocks_delta) {
1091 		be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
1092 		whole = 1;
1093 	}
1094 	if (tp->t_rextents_delta) {
1095 		be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
1096 		whole = 1;
1097 	}
1098 	if (tp->t_rextslog_delta) {
1099 		sbp->sb_rextslog += tp->t_rextslog_delta;
1100 		whole = 1;
1101 	}
1102 
1103 	if (whole)
1104 		/*
1105 		 * Log the whole thing, the fields are noncontiguous.
1106 		 */
1107 		xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1);
1108 	else
1109 		/*
1110 		 * Since all the modifiable fields are contiguous, we
1111 		 * can get away with this.
1112 		 */
1113 		xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount),
1114 				  offsetof(xfs_dsb_t, sb_frextents) +
1115 				  sizeof(sbp->sb_frextents) - 1);
1116 }
1117 
1118 /*
1119  * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations
1120  * and apply superblock counter changes to the in-core superblock.  The
1121  * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
1122  * applied to the in-core superblock.  The idea is that that has already been
1123  * done.
1124  *
1125  * This is done efficiently with a single call to xfs_mod_incore_sb_batch().
1126  * However, we have to ensure that we only modify each superblock field only
1127  * once because the application of the delta values may not be atomic. That can
1128  * lead to ENOSPC races occurring if we have two separate modifcations of the
1129  * free space counter to put back the entire reservation and then take away
1130  * what we used.
1131  *
1132  * If we are not logging superblock counters, then the inode allocated/free and
1133  * used block counts are not updated in the on disk superblock. In this case,
1134  * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
1135  * still need to update the incore superblock with the changes.
1136  */
1137 void
1138 xfs_trans_unreserve_and_mod_sb(
1139 	xfs_trans_t	*tp)
1140 {
1141 	xfs_mod_sb_t	msb[9];	/* If you add cases, add entries */
1142 	xfs_mod_sb_t	*msbp;
1143 	xfs_mount_t	*mp = tp->t_mountp;
1144 	/* REFERENCED */
1145 	int		error;
1146 	int		rsvd;
1147 	int64_t		blkdelta = 0;
1148 	int64_t		rtxdelta = 0;
1149 	int64_t		idelta = 0;
1150 	int64_t		ifreedelta = 0;
1151 
1152 	msbp = msb;
1153 	rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
1154 
1155 	/* calculate deltas */
1156 	if (tp->t_blk_res > 0)
1157 		blkdelta = tp->t_blk_res;
1158 	if ((tp->t_fdblocks_delta != 0) &&
1159 	    (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1160 	     (tp->t_flags & XFS_TRANS_SB_DIRTY)))
1161 	        blkdelta += tp->t_fdblocks_delta;
1162 
1163 	if (tp->t_rtx_res > 0)
1164 		rtxdelta = tp->t_rtx_res;
1165 	if ((tp->t_frextents_delta != 0) &&
1166 	    (tp->t_flags & XFS_TRANS_SB_DIRTY))
1167 		rtxdelta += tp->t_frextents_delta;
1168 
1169 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1170 	     (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
1171 		idelta = tp->t_icount_delta;
1172 		ifreedelta = tp->t_ifree_delta;
1173 	}
1174 
1175 	/* apply the per-cpu counters */
1176 	if (blkdelta) {
1177 		error = xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS,
1178 						 blkdelta, rsvd);
1179 		if (error)
1180 			goto out;
1181 	}
1182 
1183 	if (idelta) {
1184 		error = xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT,
1185 						 idelta, rsvd);
1186 		if (error)
1187 			goto out_undo_fdblocks;
1188 	}
1189 
1190 	if (ifreedelta) {
1191 		error = xfs_icsb_modify_counters(mp, XFS_SBS_IFREE,
1192 						 ifreedelta, rsvd);
1193 		if (error)
1194 			goto out_undo_icount;
1195 	}
1196 
1197 	/* apply remaining deltas */
1198 	if (rtxdelta != 0) {
1199 		msbp->msb_field = XFS_SBS_FREXTENTS;
1200 		msbp->msb_delta = rtxdelta;
1201 		msbp++;
1202 	}
1203 
1204 	if (tp->t_flags & XFS_TRANS_SB_DIRTY) {
1205 		if (tp->t_dblocks_delta != 0) {
1206 			msbp->msb_field = XFS_SBS_DBLOCKS;
1207 			msbp->msb_delta = tp->t_dblocks_delta;
1208 			msbp++;
1209 		}
1210 		if (tp->t_agcount_delta != 0) {
1211 			msbp->msb_field = XFS_SBS_AGCOUNT;
1212 			msbp->msb_delta = tp->t_agcount_delta;
1213 			msbp++;
1214 		}
1215 		if (tp->t_imaxpct_delta != 0) {
1216 			msbp->msb_field = XFS_SBS_IMAX_PCT;
1217 			msbp->msb_delta = tp->t_imaxpct_delta;
1218 			msbp++;
1219 		}
1220 		if (tp->t_rextsize_delta != 0) {
1221 			msbp->msb_field = XFS_SBS_REXTSIZE;
1222 			msbp->msb_delta = tp->t_rextsize_delta;
1223 			msbp++;
1224 		}
1225 		if (tp->t_rbmblocks_delta != 0) {
1226 			msbp->msb_field = XFS_SBS_RBMBLOCKS;
1227 			msbp->msb_delta = tp->t_rbmblocks_delta;
1228 			msbp++;
1229 		}
1230 		if (tp->t_rblocks_delta != 0) {
1231 			msbp->msb_field = XFS_SBS_RBLOCKS;
1232 			msbp->msb_delta = tp->t_rblocks_delta;
1233 			msbp++;
1234 		}
1235 		if (tp->t_rextents_delta != 0) {
1236 			msbp->msb_field = XFS_SBS_REXTENTS;
1237 			msbp->msb_delta = tp->t_rextents_delta;
1238 			msbp++;
1239 		}
1240 		if (tp->t_rextslog_delta != 0) {
1241 			msbp->msb_field = XFS_SBS_REXTSLOG;
1242 			msbp->msb_delta = tp->t_rextslog_delta;
1243 			msbp++;
1244 		}
1245 	}
1246 
1247 	/*
1248 	 * If we need to change anything, do it.
1249 	 */
1250 	if (msbp > msb) {
1251 		error = xfs_mod_incore_sb_batch(tp->t_mountp, msb,
1252 			(uint)(msbp - msb), rsvd);
1253 		if (error)
1254 			goto out_undo_ifreecount;
1255 	}
1256 
1257 	return;
1258 
1259 out_undo_ifreecount:
1260 	if (ifreedelta)
1261 		xfs_icsb_modify_counters(mp, XFS_SBS_IFREE, -ifreedelta, rsvd);
1262 out_undo_icount:
1263 	if (idelta)
1264 		xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT, -idelta, rsvd);
1265 out_undo_fdblocks:
1266 	if (blkdelta)
1267 		xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS, -blkdelta, rsvd);
1268 out:
1269 	ASSERT(error == 0);
1270 	return;
1271 }
1272 
1273 /*
1274  * Add the given log item to the transaction's list of log items.
1275  *
1276  * The log item will now point to its new descriptor with its li_desc field.
1277  */
1278 void
1279 xfs_trans_add_item(
1280 	struct xfs_trans	*tp,
1281 	struct xfs_log_item	*lip)
1282 {
1283 	struct xfs_log_item_desc *lidp;
1284 
1285 	ASSERT(lip->li_mountp == tp->t_mountp);
1286 	ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
1287 
1288 	lidp = kmem_zone_zalloc(xfs_log_item_desc_zone, KM_SLEEP | KM_NOFS);
1289 
1290 	lidp->lid_item = lip;
1291 	lidp->lid_flags = 0;
1292 	list_add_tail(&lidp->lid_trans, &tp->t_items);
1293 
1294 	lip->li_desc = lidp;
1295 }
1296 
1297 STATIC void
1298 xfs_trans_free_item_desc(
1299 	struct xfs_log_item_desc *lidp)
1300 {
1301 	list_del_init(&lidp->lid_trans);
1302 	kmem_zone_free(xfs_log_item_desc_zone, lidp);
1303 }
1304 
1305 /*
1306  * Unlink and free the given descriptor.
1307  */
1308 void
1309 xfs_trans_del_item(
1310 	struct xfs_log_item	*lip)
1311 {
1312 	xfs_trans_free_item_desc(lip->li_desc);
1313 	lip->li_desc = NULL;
1314 }
1315 
1316 /*
1317  * Unlock all of the items of a transaction and free all the descriptors
1318  * of that transaction.
1319  */
1320 void
1321 xfs_trans_free_items(
1322 	struct xfs_trans	*tp,
1323 	xfs_lsn_t		commit_lsn,
1324 	int			flags)
1325 {
1326 	struct xfs_log_item_desc *lidp, *next;
1327 
1328 	list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
1329 		struct xfs_log_item	*lip = lidp->lid_item;
1330 
1331 		lip->li_desc = NULL;
1332 
1333 		if (commit_lsn != NULLCOMMITLSN)
1334 			IOP_COMMITTING(lip, commit_lsn);
1335 		if (flags & XFS_TRANS_ABORT)
1336 			lip->li_flags |= XFS_LI_ABORTED;
1337 		IOP_UNLOCK(lip);
1338 
1339 		xfs_trans_free_item_desc(lidp);
1340 	}
1341 }
1342 
1343 static inline void
1344 xfs_log_item_batch_insert(
1345 	struct xfs_ail		*ailp,
1346 	struct xfs_ail_cursor	*cur,
1347 	struct xfs_log_item	**log_items,
1348 	int			nr_items,
1349 	xfs_lsn_t		commit_lsn)
1350 {
1351 	int	i;
1352 
1353 	spin_lock(&ailp->xa_lock);
1354 	/* xfs_trans_ail_update_bulk drops ailp->xa_lock */
1355 	xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
1356 
1357 	for (i = 0; i < nr_items; i++)
1358 		IOP_UNPIN(log_items[i], 0);
1359 }
1360 
1361 /*
1362  * Bulk operation version of xfs_trans_committed that takes a log vector of
1363  * items to insert into the AIL. This uses bulk AIL insertion techniques to
1364  * minimise lock traffic.
1365  *
1366  * If we are called with the aborted flag set, it is because a log write during
1367  * a CIL checkpoint commit has failed. In this case, all the items in the
1368  * checkpoint have already gone through IOP_COMMITED and IOP_UNLOCK, which
1369  * means that checkpoint commit abort handling is treated exactly the same
1370  * as an iclog write error even though we haven't started any IO yet. Hence in
1371  * this case all we need to do is IOP_COMMITTED processing, followed by an
1372  * IOP_UNPIN(aborted) call.
1373  *
1374  * The AIL cursor is used to optimise the insert process. If commit_lsn is not
1375  * at the end of the AIL, the insert cursor avoids the need to walk
1376  * the AIL to find the insertion point on every xfs_log_item_batch_insert()
1377  * call. This saves a lot of needless list walking and is a net win, even
1378  * though it slightly increases that amount of AIL lock traffic to set it up
1379  * and tear it down.
1380  */
1381 void
1382 xfs_trans_committed_bulk(
1383 	struct xfs_ail		*ailp,
1384 	struct xfs_log_vec	*log_vector,
1385 	xfs_lsn_t		commit_lsn,
1386 	int			aborted)
1387 {
1388 #define LOG_ITEM_BATCH_SIZE	32
1389 	struct xfs_log_item	*log_items[LOG_ITEM_BATCH_SIZE];
1390 	struct xfs_log_vec	*lv;
1391 	struct xfs_ail_cursor	cur;
1392 	int			i = 0;
1393 
1394 	spin_lock(&ailp->xa_lock);
1395 	xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
1396 	spin_unlock(&ailp->xa_lock);
1397 
1398 	/* unpin all the log items */
1399 	for (lv = log_vector; lv; lv = lv->lv_next ) {
1400 		struct xfs_log_item	*lip = lv->lv_item;
1401 		xfs_lsn_t		item_lsn;
1402 
1403 		if (aborted)
1404 			lip->li_flags |= XFS_LI_ABORTED;
1405 		item_lsn = IOP_COMMITTED(lip, commit_lsn);
1406 
1407 		/* item_lsn of -1 means the item needs no further processing */
1408 		if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
1409 			continue;
1410 
1411 		/*
1412 		 * if we are aborting the operation, no point in inserting the
1413 		 * object into the AIL as we are in a shutdown situation.
1414 		 */
1415 		if (aborted) {
1416 			ASSERT(XFS_FORCED_SHUTDOWN(ailp->xa_mount));
1417 			IOP_UNPIN(lip, 1);
1418 			continue;
1419 		}
1420 
1421 		if (item_lsn != commit_lsn) {
1422 
1423 			/*
1424 			 * Not a bulk update option due to unusual item_lsn.
1425 			 * Push into AIL immediately, rechecking the lsn once
1426 			 * we have the ail lock. Then unpin the item. This does
1427 			 * not affect the AIL cursor the bulk insert path is
1428 			 * using.
1429 			 */
1430 			spin_lock(&ailp->xa_lock);
1431 			if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
1432 				xfs_trans_ail_update(ailp, lip, item_lsn);
1433 			else
1434 				spin_unlock(&ailp->xa_lock);
1435 			IOP_UNPIN(lip, 0);
1436 			continue;
1437 		}
1438 
1439 		/* Item is a candidate for bulk AIL insert.  */
1440 		log_items[i++] = lv->lv_item;
1441 		if (i >= LOG_ITEM_BATCH_SIZE) {
1442 			xfs_log_item_batch_insert(ailp, &cur, log_items,
1443 					LOG_ITEM_BATCH_SIZE, commit_lsn);
1444 			i = 0;
1445 		}
1446 	}
1447 
1448 	/* make sure we insert the remainder! */
1449 	if (i)
1450 		xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
1451 
1452 	spin_lock(&ailp->xa_lock);
1453 	xfs_trans_ail_cursor_done(ailp, &cur);
1454 	spin_unlock(&ailp->xa_lock);
1455 }
1456 
1457 /*
1458  * Commit the given transaction to the log.
1459  *
1460  * XFS disk error handling mechanism is not based on a typical
1461  * transaction abort mechanism. Logically after the filesystem
1462  * gets marked 'SHUTDOWN', we can't let any new transactions
1463  * be durable - ie. committed to disk - because some metadata might
1464  * be inconsistent. In such cases, this returns an error, and the
1465  * caller may assume that all locked objects joined to the transaction
1466  * have already been unlocked as if the commit had succeeded.
1467  * Do not reference the transaction structure after this call.
1468  */
1469 int
1470 xfs_trans_commit(
1471 	struct xfs_trans	*tp,
1472 	uint			flags)
1473 {
1474 	struct xfs_mount	*mp = tp->t_mountp;
1475 	xfs_lsn_t		commit_lsn = -1;
1476 	int			error = 0;
1477 	int			log_flags = 0;
1478 	int			sync = tp->t_flags & XFS_TRANS_SYNC;
1479 
1480 	/*
1481 	 * Determine whether this commit is releasing a permanent
1482 	 * log reservation or not.
1483 	 */
1484 	if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1485 		ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1486 		log_flags = XFS_LOG_REL_PERM_RESERV;
1487 	}
1488 
1489 	/*
1490 	 * If there is nothing to be logged by the transaction,
1491 	 * then unlock all of the items associated with the
1492 	 * transaction and free the transaction structure.
1493 	 * Also make sure to return any reserved blocks to
1494 	 * the free pool.
1495 	 */
1496 	if (!(tp->t_flags & XFS_TRANS_DIRTY))
1497 		goto out_unreserve;
1498 
1499 	if (XFS_FORCED_SHUTDOWN(mp)) {
1500 		error = XFS_ERROR(EIO);
1501 		goto out_unreserve;
1502 	}
1503 
1504 	ASSERT(tp->t_ticket != NULL);
1505 
1506 	/*
1507 	 * If we need to update the superblock, then do it now.
1508 	 */
1509 	if (tp->t_flags & XFS_TRANS_SB_DIRTY)
1510 		xfs_trans_apply_sb_deltas(tp);
1511 	xfs_trans_apply_dquot_deltas(tp);
1512 
1513 	error = xfs_log_commit_cil(mp, tp, &commit_lsn, flags);
1514 	if (error == ENOMEM) {
1515 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1516 		error = XFS_ERROR(EIO);
1517 		goto out_unreserve;
1518 	}
1519 
1520 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1521 	xfs_trans_free(tp);
1522 
1523 	/*
1524 	 * If the transaction needs to be synchronous, then force the
1525 	 * log out now and wait for it.
1526 	 */
1527 	if (sync) {
1528 		if (!error) {
1529 			error = _xfs_log_force_lsn(mp, commit_lsn,
1530 				      XFS_LOG_SYNC, NULL);
1531 		}
1532 		XFS_STATS_INC(xs_trans_sync);
1533 	} else {
1534 		XFS_STATS_INC(xs_trans_async);
1535 	}
1536 
1537 	return error;
1538 
1539 out_unreserve:
1540 	xfs_trans_unreserve_and_mod_sb(tp);
1541 
1542 	/*
1543 	 * It is indeed possible for the transaction to be not dirty but
1544 	 * the dqinfo portion to be.  All that means is that we have some
1545 	 * (non-persistent) quota reservations that need to be unreserved.
1546 	 */
1547 	xfs_trans_unreserve_and_mod_dquots(tp);
1548 	if (tp->t_ticket) {
1549 		commit_lsn = xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1550 		if (commit_lsn == -1 && !error)
1551 			error = XFS_ERROR(EIO);
1552 	}
1553 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1554 	xfs_trans_free_items(tp, NULLCOMMITLSN, error ? XFS_TRANS_ABORT : 0);
1555 	xfs_trans_free(tp);
1556 
1557 	XFS_STATS_INC(xs_trans_empty);
1558 	return error;
1559 }
1560 
1561 /*
1562  * Unlock all of the transaction's items and free the transaction.
1563  * The transaction must not have modified any of its items, because
1564  * there is no way to restore them to their previous state.
1565  *
1566  * If the transaction has made a log reservation, make sure to release
1567  * it as well.
1568  */
1569 void
1570 xfs_trans_cancel(
1571 	xfs_trans_t		*tp,
1572 	int			flags)
1573 {
1574 	int			log_flags;
1575 	xfs_mount_t		*mp = tp->t_mountp;
1576 
1577 	/*
1578 	 * See if the caller is being too lazy to figure out if
1579 	 * the transaction really needs an abort.
1580 	 */
1581 	if ((flags & XFS_TRANS_ABORT) && !(tp->t_flags & XFS_TRANS_DIRTY))
1582 		flags &= ~XFS_TRANS_ABORT;
1583 	/*
1584 	 * See if the caller is relying on us to shut down the
1585 	 * filesystem.  This happens in paths where we detect
1586 	 * corruption and decide to give up.
1587 	 */
1588 	if ((tp->t_flags & XFS_TRANS_DIRTY) && !XFS_FORCED_SHUTDOWN(mp)) {
1589 		XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1590 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1591 	}
1592 #ifdef DEBUG
1593 	if (!(flags & XFS_TRANS_ABORT) && !XFS_FORCED_SHUTDOWN(mp)) {
1594 		struct xfs_log_item_desc *lidp;
1595 
1596 		list_for_each_entry(lidp, &tp->t_items, lid_trans)
1597 			ASSERT(!(lidp->lid_item->li_type == XFS_LI_EFD));
1598 	}
1599 #endif
1600 	xfs_trans_unreserve_and_mod_sb(tp);
1601 	xfs_trans_unreserve_and_mod_dquots(tp);
1602 
1603 	if (tp->t_ticket) {
1604 		if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1605 			ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1606 			log_flags = XFS_LOG_REL_PERM_RESERV;
1607 		} else {
1608 			log_flags = 0;
1609 		}
1610 		xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1611 	}
1612 
1613 	/* mark this thread as no longer being in a transaction */
1614 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1615 
1616 	xfs_trans_free_items(tp, NULLCOMMITLSN, flags);
1617 	xfs_trans_free(tp);
1618 }
1619 
1620 /*
1621  * Roll from one trans in the sequence of PERMANENT transactions to
1622  * the next: permanent transactions are only flushed out when
1623  * committed with XFS_TRANS_RELEASE_LOG_RES, but we still want as soon
1624  * as possible to let chunks of it go to the log. So we commit the
1625  * chunk we've been working on and get a new transaction to continue.
1626  */
1627 int
1628 xfs_trans_roll(
1629 	struct xfs_trans	**tpp,
1630 	struct xfs_inode	*dp)
1631 {
1632 	struct xfs_trans	*trans;
1633 	unsigned int		logres, count;
1634 	int			error;
1635 
1636 	/*
1637 	 * Ensure that the inode is always logged.
1638 	 */
1639 	trans = *tpp;
1640 	xfs_trans_log_inode(trans, dp, XFS_ILOG_CORE);
1641 
1642 	/*
1643 	 * Copy the critical parameters from one trans to the next.
1644 	 */
1645 	logres = trans->t_log_res;
1646 	count = trans->t_log_count;
1647 	*tpp = xfs_trans_dup(trans);
1648 
1649 	/*
1650 	 * Commit the current transaction.
1651 	 * If this commit failed, then it'd just unlock those items that
1652 	 * are not marked ihold. That also means that a filesystem shutdown
1653 	 * is in progress. The caller takes the responsibility to cancel
1654 	 * the duplicate transaction that gets returned.
1655 	 */
1656 	error = xfs_trans_commit(trans, 0);
1657 	if (error)
1658 		return (error);
1659 
1660 	trans = *tpp;
1661 
1662 	/*
1663 	 * transaction commit worked ok so we can drop the extra ticket
1664 	 * reference that we gained in xfs_trans_dup()
1665 	 */
1666 	xfs_log_ticket_put(trans->t_ticket);
1667 
1668 
1669 	/*
1670 	 * Reserve space in the log for th next transaction.
1671 	 * This also pushes items in the "AIL", the list of logged items,
1672 	 * out to disk if they are taking up space at the tail of the log
1673 	 * that we want to use.  This requires that either nothing be locked
1674 	 * across this call, or that anything that is locked be logged in
1675 	 * the prior and the next transactions.
1676 	 */
1677 	error = xfs_trans_reserve(trans, 0, logres, 0,
1678 				  XFS_TRANS_PERM_LOG_RES, count);
1679 	/*
1680 	 *  Ensure that the inode is in the new transaction and locked.
1681 	 */
1682 	if (error)
1683 		return error;
1684 
1685 	xfs_trans_ijoin(trans, dp, 0);
1686 	return 0;
1687 }
1688