xref: /openbmc/linux/fs/xfs/xfs_trans.c (revision 81d67439)
1 /*
2  * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
3  * Copyright (C) 2010 Red Hat, Inc.
4  * All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it would be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write the Free Software Foundation,
17  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
18  */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_types.h"
22 #include "xfs_bit.h"
23 #include "xfs_log.h"
24 #include "xfs_inum.h"
25 #include "xfs_trans.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_error.h"
30 #include "xfs_da_btree.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dinode.h"
35 #include "xfs_inode.h"
36 #include "xfs_btree.h"
37 #include "xfs_ialloc.h"
38 #include "xfs_alloc.h"
39 #include "xfs_bmap.h"
40 #include "xfs_quota.h"
41 #include "xfs_trans_priv.h"
42 #include "xfs_trans_space.h"
43 #include "xfs_inode_item.h"
44 #include "xfs_trace.h"
45 
46 kmem_zone_t	*xfs_trans_zone;
47 kmem_zone_t	*xfs_log_item_desc_zone;
48 
49 
50 /*
51  * Various log reservation values.
52  *
53  * These are based on the size of the file system block because that is what
54  * most transactions manipulate.  Each adds in an additional 128 bytes per
55  * item logged to try to account for the overhead of the transaction mechanism.
56  *
57  * Note:  Most of the reservations underestimate the number of allocation
58  * groups into which they could free extents in the xfs_bmap_finish() call.
59  * This is because the number in the worst case is quite high and quite
60  * unusual.  In order to fix this we need to change xfs_bmap_finish() to free
61  * extents in only a single AG at a time.  This will require changes to the
62  * EFI code as well, however, so that the EFI for the extents not freed is
63  * logged again in each transaction.  See SGI PV #261917.
64  *
65  * Reservation functions here avoid a huge stack in xfs_trans_init due to
66  * register overflow from temporaries in the calculations.
67  */
68 
69 
70 /*
71  * In a write transaction we can allocate a maximum of 2
72  * extents.  This gives:
73  *    the inode getting the new extents: inode size
74  *    the inode's bmap btree: max depth * block size
75  *    the agfs of the ags from which the extents are allocated: 2 * sector
76  *    the superblock free block counter: sector size
77  *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
78  * And the bmap_finish transaction can free bmap blocks in a join:
79  *    the agfs of the ags containing the blocks: 2 * sector size
80  *    the agfls of the ags containing the blocks: 2 * sector size
81  *    the super block free block counter: sector size
82  *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
83  */
84 STATIC uint
85 xfs_calc_write_reservation(
86 	struct xfs_mount	*mp)
87 {
88 	return XFS_DQUOT_LOGRES(mp) +
89 		MAX((mp->m_sb.sb_inodesize +
90 		     XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) +
91 		     2 * mp->m_sb.sb_sectsize +
92 		     mp->m_sb.sb_sectsize +
93 		     XFS_ALLOCFREE_LOG_RES(mp, 2) +
94 		     128 * (4 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) +
95 			    XFS_ALLOCFREE_LOG_COUNT(mp, 2))),
96 		    (2 * mp->m_sb.sb_sectsize +
97 		     2 * mp->m_sb.sb_sectsize +
98 		     mp->m_sb.sb_sectsize +
99 		     XFS_ALLOCFREE_LOG_RES(mp, 2) +
100 		     128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
101 }
102 
103 /*
104  * In truncating a file we free up to two extents at once.  We can modify:
105  *    the inode being truncated: inode size
106  *    the inode's bmap btree: (max depth + 1) * block size
107  * And the bmap_finish transaction can free the blocks and bmap blocks:
108  *    the agf for each of the ags: 4 * sector size
109  *    the agfl for each of the ags: 4 * sector size
110  *    the super block to reflect the freed blocks: sector size
111  *    worst case split in allocation btrees per extent assuming 4 extents:
112  *		4 exts * 2 trees * (2 * max depth - 1) * block size
113  *    the inode btree: max depth * blocksize
114  *    the allocation btrees: 2 trees * (max depth - 1) * block size
115  */
116 STATIC uint
117 xfs_calc_itruncate_reservation(
118 	struct xfs_mount	*mp)
119 {
120 	return XFS_DQUOT_LOGRES(mp) +
121 		MAX((mp->m_sb.sb_inodesize +
122 		     XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1) +
123 		     128 * (2 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))),
124 		    (4 * mp->m_sb.sb_sectsize +
125 		     4 * mp->m_sb.sb_sectsize +
126 		     mp->m_sb.sb_sectsize +
127 		     XFS_ALLOCFREE_LOG_RES(mp, 4) +
128 		     128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4)) +
129 		     128 * 5 +
130 		     XFS_ALLOCFREE_LOG_RES(mp, 1) +
131 		     128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
132 			    XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
133 }
134 
135 /*
136  * In renaming a files we can modify:
137  *    the four inodes involved: 4 * inode size
138  *    the two directory btrees: 2 * (max depth + v2) * dir block size
139  *    the two directory bmap btrees: 2 * max depth * block size
140  * And the bmap_finish transaction can free dir and bmap blocks (two sets
141  *	of bmap blocks) giving:
142  *    the agf for the ags in which the blocks live: 3 * sector size
143  *    the agfl for the ags in which the blocks live: 3 * sector size
144  *    the superblock for the free block count: sector size
145  *    the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size
146  */
147 STATIC uint
148 xfs_calc_rename_reservation(
149 	struct xfs_mount	*mp)
150 {
151 	return XFS_DQUOT_LOGRES(mp) +
152 		MAX((4 * mp->m_sb.sb_inodesize +
153 		     2 * XFS_DIROP_LOG_RES(mp) +
154 		     128 * (4 + 2 * XFS_DIROP_LOG_COUNT(mp))),
155 		    (3 * mp->m_sb.sb_sectsize +
156 		     3 * mp->m_sb.sb_sectsize +
157 		     mp->m_sb.sb_sectsize +
158 		     XFS_ALLOCFREE_LOG_RES(mp, 3) +
159 		     128 * (7 + XFS_ALLOCFREE_LOG_COUNT(mp, 3))));
160 }
161 
162 /*
163  * For creating a link to an inode:
164  *    the parent directory inode: inode size
165  *    the linked inode: inode size
166  *    the directory btree could split: (max depth + v2) * dir block size
167  *    the directory bmap btree could join or split: (max depth + v2) * blocksize
168  * And the bmap_finish transaction can free some bmap blocks giving:
169  *    the agf for the ag in which the blocks live: sector size
170  *    the agfl for the ag in which the blocks live: sector size
171  *    the superblock for the free block count: sector size
172  *    the allocation btrees: 2 trees * (2 * max depth - 1) * block size
173  */
174 STATIC uint
175 xfs_calc_link_reservation(
176 	struct xfs_mount	*mp)
177 {
178 	return XFS_DQUOT_LOGRES(mp) +
179 		MAX((mp->m_sb.sb_inodesize +
180 		     mp->m_sb.sb_inodesize +
181 		     XFS_DIROP_LOG_RES(mp) +
182 		     128 * (2 + XFS_DIROP_LOG_COUNT(mp))),
183 		    (mp->m_sb.sb_sectsize +
184 		     mp->m_sb.sb_sectsize +
185 		     mp->m_sb.sb_sectsize +
186 		     XFS_ALLOCFREE_LOG_RES(mp, 1) +
187 		     128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
188 }
189 
190 /*
191  * For removing a directory entry we can modify:
192  *    the parent directory inode: inode size
193  *    the removed inode: inode size
194  *    the directory btree could join: (max depth + v2) * dir block size
195  *    the directory bmap btree could join or split: (max depth + v2) * blocksize
196  * And the bmap_finish transaction can free the dir and bmap blocks giving:
197  *    the agf for the ag in which the blocks live: 2 * sector size
198  *    the agfl for the ag in which the blocks live: 2 * sector size
199  *    the superblock for the free block count: sector size
200  *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
201  */
202 STATIC uint
203 xfs_calc_remove_reservation(
204 	struct xfs_mount	*mp)
205 {
206 	return XFS_DQUOT_LOGRES(mp) +
207 		MAX((mp->m_sb.sb_inodesize +
208 		     mp->m_sb.sb_inodesize +
209 		     XFS_DIROP_LOG_RES(mp) +
210 		     128 * (2 + XFS_DIROP_LOG_COUNT(mp))),
211 		    (2 * mp->m_sb.sb_sectsize +
212 		     2 * mp->m_sb.sb_sectsize +
213 		     mp->m_sb.sb_sectsize +
214 		     XFS_ALLOCFREE_LOG_RES(mp, 2) +
215 		     128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
216 }
217 
218 /*
219  * For symlink we can modify:
220  *    the parent directory inode: inode size
221  *    the new inode: inode size
222  *    the inode btree entry: 1 block
223  *    the directory btree: (max depth + v2) * dir block size
224  *    the directory inode's bmap btree: (max depth + v2) * block size
225  *    the blocks for the symlink: 1 kB
226  * Or in the first xact we allocate some inodes giving:
227  *    the agi and agf of the ag getting the new inodes: 2 * sectorsize
228  *    the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
229  *    the inode btree: max depth * blocksize
230  *    the allocation btrees: 2 trees * (2 * max depth - 1) * block size
231  */
232 STATIC uint
233 xfs_calc_symlink_reservation(
234 	struct xfs_mount	*mp)
235 {
236 	return XFS_DQUOT_LOGRES(mp) +
237 		MAX((mp->m_sb.sb_inodesize +
238 		     mp->m_sb.sb_inodesize +
239 		     XFS_FSB_TO_B(mp, 1) +
240 		     XFS_DIROP_LOG_RES(mp) +
241 		     1024 +
242 		     128 * (4 + XFS_DIROP_LOG_COUNT(mp))),
243 		    (2 * mp->m_sb.sb_sectsize +
244 		     XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) +
245 		     XFS_FSB_TO_B(mp, mp->m_in_maxlevels) +
246 		     XFS_ALLOCFREE_LOG_RES(mp, 1) +
247 		     128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
248 			    XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
249 }
250 
251 /*
252  * For create we can modify:
253  *    the parent directory inode: inode size
254  *    the new inode: inode size
255  *    the inode btree entry: block size
256  *    the superblock for the nlink flag: sector size
257  *    the directory btree: (max depth + v2) * dir block size
258  *    the directory inode's bmap btree: (max depth + v2) * block size
259  * Or in the first xact we allocate some inodes giving:
260  *    the agi and agf of the ag getting the new inodes: 2 * sectorsize
261  *    the superblock for the nlink flag: sector size
262  *    the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
263  *    the inode btree: max depth * blocksize
264  *    the allocation btrees: 2 trees * (max depth - 1) * block size
265  */
266 STATIC uint
267 xfs_calc_create_reservation(
268 	struct xfs_mount	*mp)
269 {
270 	return XFS_DQUOT_LOGRES(mp) +
271 		MAX((mp->m_sb.sb_inodesize +
272 		     mp->m_sb.sb_inodesize +
273 		     mp->m_sb.sb_sectsize +
274 		     XFS_FSB_TO_B(mp, 1) +
275 		     XFS_DIROP_LOG_RES(mp) +
276 		     128 * (3 + XFS_DIROP_LOG_COUNT(mp))),
277 		    (3 * mp->m_sb.sb_sectsize +
278 		     XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) +
279 		     XFS_FSB_TO_B(mp, mp->m_in_maxlevels) +
280 		     XFS_ALLOCFREE_LOG_RES(mp, 1) +
281 		     128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
282 			    XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
283 }
284 
285 /*
286  * Making a new directory is the same as creating a new file.
287  */
288 STATIC uint
289 xfs_calc_mkdir_reservation(
290 	struct xfs_mount	*mp)
291 {
292 	return xfs_calc_create_reservation(mp);
293 }
294 
295 /*
296  * In freeing an inode we can modify:
297  *    the inode being freed: inode size
298  *    the super block free inode counter: sector size
299  *    the agi hash list and counters: sector size
300  *    the inode btree entry: block size
301  *    the on disk inode before ours in the agi hash list: inode cluster size
302  *    the inode btree: max depth * blocksize
303  *    the allocation btrees: 2 trees * (max depth - 1) * block size
304  */
305 STATIC uint
306 xfs_calc_ifree_reservation(
307 	struct xfs_mount	*mp)
308 {
309 	return XFS_DQUOT_LOGRES(mp) +
310 		mp->m_sb.sb_inodesize +
311 		mp->m_sb.sb_sectsize +
312 		mp->m_sb.sb_sectsize +
313 		XFS_FSB_TO_B(mp, 1) +
314 		MAX((__uint16_t)XFS_FSB_TO_B(mp, 1),
315 		    XFS_INODE_CLUSTER_SIZE(mp)) +
316 		128 * 5 +
317 		XFS_ALLOCFREE_LOG_RES(mp, 1) +
318 		128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
319 		       XFS_ALLOCFREE_LOG_COUNT(mp, 1));
320 }
321 
322 /*
323  * When only changing the inode we log the inode and possibly the superblock
324  * We also add a bit of slop for the transaction stuff.
325  */
326 STATIC uint
327 xfs_calc_ichange_reservation(
328 	struct xfs_mount	*mp)
329 {
330 	return XFS_DQUOT_LOGRES(mp) +
331 		mp->m_sb.sb_inodesize +
332 		mp->m_sb.sb_sectsize +
333 		512;
334 
335 }
336 
337 /*
338  * Growing the data section of the filesystem.
339  *	superblock
340  *	agi and agf
341  *	allocation btrees
342  */
343 STATIC uint
344 xfs_calc_growdata_reservation(
345 	struct xfs_mount	*mp)
346 {
347 	return mp->m_sb.sb_sectsize * 3 +
348 		XFS_ALLOCFREE_LOG_RES(mp, 1) +
349 		128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1));
350 }
351 
352 /*
353  * Growing the rt section of the filesystem.
354  * In the first set of transactions (ALLOC) we allocate space to the
355  * bitmap or summary files.
356  *	superblock: sector size
357  *	agf of the ag from which the extent is allocated: sector size
358  *	bmap btree for bitmap/summary inode: max depth * blocksize
359  *	bitmap/summary inode: inode size
360  *	allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize
361  */
362 STATIC uint
363 xfs_calc_growrtalloc_reservation(
364 	struct xfs_mount	*mp)
365 {
366 	return 2 * mp->m_sb.sb_sectsize +
367 		XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) +
368 		mp->m_sb.sb_inodesize +
369 		XFS_ALLOCFREE_LOG_RES(mp, 1) +
370 		128 * (3 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) +
371 		       XFS_ALLOCFREE_LOG_COUNT(mp, 1));
372 }
373 
374 /*
375  * Growing the rt section of the filesystem.
376  * In the second set of transactions (ZERO) we zero the new metadata blocks.
377  *	one bitmap/summary block: blocksize
378  */
379 STATIC uint
380 xfs_calc_growrtzero_reservation(
381 	struct xfs_mount	*mp)
382 {
383 	return mp->m_sb.sb_blocksize + 128;
384 }
385 
386 /*
387  * Growing the rt section of the filesystem.
388  * In the third set of transactions (FREE) we update metadata without
389  * allocating any new blocks.
390  *	superblock: sector size
391  *	bitmap inode: inode size
392  *	summary inode: inode size
393  *	one bitmap block: blocksize
394  *	summary blocks: new summary size
395  */
396 STATIC uint
397 xfs_calc_growrtfree_reservation(
398 	struct xfs_mount	*mp)
399 {
400 	return mp->m_sb.sb_sectsize +
401 		2 * mp->m_sb.sb_inodesize +
402 		mp->m_sb.sb_blocksize +
403 		mp->m_rsumsize +
404 		128 * 5;
405 }
406 
407 /*
408  * Logging the inode modification timestamp on a synchronous write.
409  *	inode
410  */
411 STATIC uint
412 xfs_calc_swrite_reservation(
413 	struct xfs_mount	*mp)
414 {
415 	return mp->m_sb.sb_inodesize + 128;
416 }
417 
418 /*
419  * Logging the inode mode bits when writing a setuid/setgid file
420  *	inode
421  */
422 STATIC uint
423 xfs_calc_writeid_reservation(xfs_mount_t *mp)
424 {
425 	return mp->m_sb.sb_inodesize + 128;
426 }
427 
428 /*
429  * Converting the inode from non-attributed to attributed.
430  *	the inode being converted: inode size
431  *	agf block and superblock (for block allocation)
432  *	the new block (directory sized)
433  *	bmap blocks for the new directory block
434  *	allocation btrees
435  */
436 STATIC uint
437 xfs_calc_addafork_reservation(
438 	struct xfs_mount	*mp)
439 {
440 	return XFS_DQUOT_LOGRES(mp) +
441 		mp->m_sb.sb_inodesize +
442 		mp->m_sb.sb_sectsize * 2 +
443 		mp->m_dirblksize +
444 		XFS_FSB_TO_B(mp, XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1) +
445 		XFS_ALLOCFREE_LOG_RES(mp, 1) +
446 		128 * (4 + XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1 +
447 		       XFS_ALLOCFREE_LOG_COUNT(mp, 1));
448 }
449 
450 /*
451  * Removing the attribute fork of a file
452  *    the inode being truncated: inode size
453  *    the inode's bmap btree: max depth * block size
454  * And the bmap_finish transaction can free the blocks and bmap blocks:
455  *    the agf for each of the ags: 4 * sector size
456  *    the agfl for each of the ags: 4 * sector size
457  *    the super block to reflect the freed blocks: sector size
458  *    worst case split in allocation btrees per extent assuming 4 extents:
459  *		4 exts * 2 trees * (2 * max depth - 1) * block size
460  */
461 STATIC uint
462 xfs_calc_attrinval_reservation(
463 	struct xfs_mount	*mp)
464 {
465 	return MAX((mp->m_sb.sb_inodesize +
466 		    XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
467 		    128 * (1 + XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK))),
468 		   (4 * mp->m_sb.sb_sectsize +
469 		    4 * mp->m_sb.sb_sectsize +
470 		    mp->m_sb.sb_sectsize +
471 		    XFS_ALLOCFREE_LOG_RES(mp, 4) +
472 		    128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4))));
473 }
474 
475 /*
476  * Setting an attribute.
477  *	the inode getting the attribute
478  *	the superblock for allocations
479  *	the agfs extents are allocated from
480  *	the attribute btree * max depth
481  *	the inode allocation btree
482  * Since attribute transaction space is dependent on the size of the attribute,
483  * the calculation is done partially at mount time and partially at runtime.
484  */
485 STATIC uint
486 xfs_calc_attrset_reservation(
487 	struct xfs_mount	*mp)
488 {
489 	return XFS_DQUOT_LOGRES(mp) +
490 		mp->m_sb.sb_inodesize +
491 		mp->m_sb.sb_sectsize +
492 		XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) +
493 		128 * (2 + XFS_DA_NODE_MAXDEPTH);
494 }
495 
496 /*
497  * Removing an attribute.
498  *    the inode: inode size
499  *    the attribute btree could join: max depth * block size
500  *    the inode bmap btree could join or split: max depth * block size
501  * And the bmap_finish transaction can free the attr blocks freed giving:
502  *    the agf for the ag in which the blocks live: 2 * sector size
503  *    the agfl for the ag in which the blocks live: 2 * sector size
504  *    the superblock for the free block count: sector size
505  *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
506  */
507 STATIC uint
508 xfs_calc_attrrm_reservation(
509 	struct xfs_mount	*mp)
510 {
511 	return XFS_DQUOT_LOGRES(mp) +
512 		MAX((mp->m_sb.sb_inodesize +
513 		     XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) +
514 		     XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
515 		     128 * (1 + XFS_DA_NODE_MAXDEPTH +
516 			    XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))),
517 		    (2 * mp->m_sb.sb_sectsize +
518 		     2 * mp->m_sb.sb_sectsize +
519 		     mp->m_sb.sb_sectsize +
520 		     XFS_ALLOCFREE_LOG_RES(mp, 2) +
521 		     128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
522 }
523 
524 /*
525  * Clearing a bad agino number in an agi hash bucket.
526  */
527 STATIC uint
528 xfs_calc_clear_agi_bucket_reservation(
529 	struct xfs_mount	*mp)
530 {
531 	return mp->m_sb.sb_sectsize + 128;
532 }
533 
534 /*
535  * Initialize the precomputed transaction reservation values
536  * in the mount structure.
537  */
538 void
539 xfs_trans_init(
540 	struct xfs_mount	*mp)
541 {
542 	struct xfs_trans_reservations *resp = &mp->m_reservations;
543 
544 	resp->tr_write = xfs_calc_write_reservation(mp);
545 	resp->tr_itruncate = xfs_calc_itruncate_reservation(mp);
546 	resp->tr_rename = xfs_calc_rename_reservation(mp);
547 	resp->tr_link = xfs_calc_link_reservation(mp);
548 	resp->tr_remove = xfs_calc_remove_reservation(mp);
549 	resp->tr_symlink = xfs_calc_symlink_reservation(mp);
550 	resp->tr_create = xfs_calc_create_reservation(mp);
551 	resp->tr_mkdir = xfs_calc_mkdir_reservation(mp);
552 	resp->tr_ifree = xfs_calc_ifree_reservation(mp);
553 	resp->tr_ichange = xfs_calc_ichange_reservation(mp);
554 	resp->tr_growdata = xfs_calc_growdata_reservation(mp);
555 	resp->tr_swrite = xfs_calc_swrite_reservation(mp);
556 	resp->tr_writeid = xfs_calc_writeid_reservation(mp);
557 	resp->tr_addafork = xfs_calc_addafork_reservation(mp);
558 	resp->tr_attrinval = xfs_calc_attrinval_reservation(mp);
559 	resp->tr_attrset = xfs_calc_attrset_reservation(mp);
560 	resp->tr_attrrm = xfs_calc_attrrm_reservation(mp);
561 	resp->tr_clearagi = xfs_calc_clear_agi_bucket_reservation(mp);
562 	resp->tr_growrtalloc = xfs_calc_growrtalloc_reservation(mp);
563 	resp->tr_growrtzero = xfs_calc_growrtzero_reservation(mp);
564 	resp->tr_growrtfree = xfs_calc_growrtfree_reservation(mp);
565 }
566 
567 /*
568  * This routine is called to allocate a transaction structure.
569  * The type parameter indicates the type of the transaction.  These
570  * are enumerated in xfs_trans.h.
571  *
572  * Dynamically allocate the transaction structure from the transaction
573  * zone, initialize it, and return it to the caller.
574  */
575 xfs_trans_t *
576 xfs_trans_alloc(
577 	xfs_mount_t	*mp,
578 	uint		type)
579 {
580 	xfs_wait_for_freeze(mp, SB_FREEZE_TRANS);
581 	return _xfs_trans_alloc(mp, type, KM_SLEEP);
582 }
583 
584 xfs_trans_t *
585 _xfs_trans_alloc(
586 	xfs_mount_t	*mp,
587 	uint		type,
588 	uint		memflags)
589 {
590 	xfs_trans_t	*tp;
591 
592 	atomic_inc(&mp->m_active_trans);
593 
594 	tp = kmem_zone_zalloc(xfs_trans_zone, memflags);
595 	tp->t_magic = XFS_TRANS_MAGIC;
596 	tp->t_type = type;
597 	tp->t_mountp = mp;
598 	INIT_LIST_HEAD(&tp->t_items);
599 	INIT_LIST_HEAD(&tp->t_busy);
600 	return tp;
601 }
602 
603 /*
604  * Free the transaction structure.  If there is more clean up
605  * to do when the structure is freed, add it here.
606  */
607 STATIC void
608 xfs_trans_free(
609 	struct xfs_trans	*tp)
610 {
611 	xfs_alloc_busy_sort(&tp->t_busy);
612 	xfs_alloc_busy_clear(tp->t_mountp, &tp->t_busy, false);
613 
614 	atomic_dec(&tp->t_mountp->m_active_trans);
615 	xfs_trans_free_dqinfo(tp);
616 	kmem_zone_free(xfs_trans_zone, tp);
617 }
618 
619 /*
620  * This is called to create a new transaction which will share the
621  * permanent log reservation of the given transaction.  The remaining
622  * unused block and rt extent reservations are also inherited.  This
623  * implies that the original transaction is no longer allowed to allocate
624  * blocks.  Locks and log items, however, are no inherited.  They must
625  * be added to the new transaction explicitly.
626  */
627 xfs_trans_t *
628 xfs_trans_dup(
629 	xfs_trans_t	*tp)
630 {
631 	xfs_trans_t	*ntp;
632 
633 	ntp = kmem_zone_zalloc(xfs_trans_zone, KM_SLEEP);
634 
635 	/*
636 	 * Initialize the new transaction structure.
637 	 */
638 	ntp->t_magic = XFS_TRANS_MAGIC;
639 	ntp->t_type = tp->t_type;
640 	ntp->t_mountp = tp->t_mountp;
641 	INIT_LIST_HEAD(&ntp->t_items);
642 	INIT_LIST_HEAD(&ntp->t_busy);
643 
644 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
645 	ASSERT(tp->t_ticket != NULL);
646 
647 	ntp->t_flags = XFS_TRANS_PERM_LOG_RES | (tp->t_flags & XFS_TRANS_RESERVE);
648 	ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
649 	ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
650 	tp->t_blk_res = tp->t_blk_res_used;
651 	ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
652 	tp->t_rtx_res = tp->t_rtx_res_used;
653 	ntp->t_pflags = tp->t_pflags;
654 
655 	xfs_trans_dup_dqinfo(tp, ntp);
656 
657 	atomic_inc(&tp->t_mountp->m_active_trans);
658 	return ntp;
659 }
660 
661 /*
662  * This is called to reserve free disk blocks and log space for the
663  * given transaction.  This must be done before allocating any resources
664  * within the transaction.
665  *
666  * This will return ENOSPC if there are not enough blocks available.
667  * It will sleep waiting for available log space.
668  * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
669  * is used by long running transactions.  If any one of the reservations
670  * fails then they will all be backed out.
671  *
672  * This does not do quota reservations. That typically is done by the
673  * caller afterwards.
674  */
675 int
676 xfs_trans_reserve(
677 	xfs_trans_t	*tp,
678 	uint		blocks,
679 	uint		logspace,
680 	uint		rtextents,
681 	uint		flags,
682 	uint		logcount)
683 {
684 	int		log_flags;
685 	int		error = 0;
686 	int		rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
687 
688 	/* Mark this thread as being in a transaction */
689 	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
690 
691 	/*
692 	 * Attempt to reserve the needed disk blocks by decrementing
693 	 * the number needed from the number available.  This will
694 	 * fail if the count would go below zero.
695 	 */
696 	if (blocks > 0) {
697 		error = xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
698 					  -((int64_t)blocks), rsvd);
699 		if (error != 0) {
700 			current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
701 			return (XFS_ERROR(ENOSPC));
702 		}
703 		tp->t_blk_res += blocks;
704 	}
705 
706 	/*
707 	 * Reserve the log space needed for this transaction.
708 	 */
709 	if (logspace > 0) {
710 		ASSERT((tp->t_log_res == 0) || (tp->t_log_res == logspace));
711 		ASSERT((tp->t_log_count == 0) ||
712 			(tp->t_log_count == logcount));
713 		if (flags & XFS_TRANS_PERM_LOG_RES) {
714 			log_flags = XFS_LOG_PERM_RESERV;
715 			tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
716 		} else {
717 			ASSERT(tp->t_ticket == NULL);
718 			ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
719 			log_flags = 0;
720 		}
721 
722 		error = xfs_log_reserve(tp->t_mountp, logspace, logcount,
723 					&tp->t_ticket,
724 					XFS_TRANSACTION, log_flags, tp->t_type);
725 		if (error) {
726 			goto undo_blocks;
727 		}
728 		tp->t_log_res = logspace;
729 		tp->t_log_count = logcount;
730 	}
731 
732 	/*
733 	 * Attempt to reserve the needed realtime extents by decrementing
734 	 * the number needed from the number available.  This will
735 	 * fail if the count would go below zero.
736 	 */
737 	if (rtextents > 0) {
738 		error = xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FREXTENTS,
739 					  -((int64_t)rtextents), rsvd);
740 		if (error) {
741 			error = XFS_ERROR(ENOSPC);
742 			goto undo_log;
743 		}
744 		tp->t_rtx_res += rtextents;
745 	}
746 
747 	return 0;
748 
749 	/*
750 	 * Error cases jump to one of these labels to undo any
751 	 * reservations which have already been performed.
752 	 */
753 undo_log:
754 	if (logspace > 0) {
755 		if (flags & XFS_TRANS_PERM_LOG_RES) {
756 			log_flags = XFS_LOG_REL_PERM_RESERV;
757 		} else {
758 			log_flags = 0;
759 		}
760 		xfs_log_done(tp->t_mountp, tp->t_ticket, NULL, log_flags);
761 		tp->t_ticket = NULL;
762 		tp->t_log_res = 0;
763 		tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
764 	}
765 
766 undo_blocks:
767 	if (blocks > 0) {
768 		xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
769 					 (int64_t)blocks, rsvd);
770 		tp->t_blk_res = 0;
771 	}
772 
773 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
774 
775 	return error;
776 }
777 
778 /*
779  * Record the indicated change to the given field for application
780  * to the file system's superblock when the transaction commits.
781  * For now, just store the change in the transaction structure.
782  *
783  * Mark the transaction structure to indicate that the superblock
784  * needs to be updated before committing.
785  *
786  * Because we may not be keeping track of allocated/free inodes and
787  * used filesystem blocks in the superblock, we do not mark the
788  * superblock dirty in this transaction if we modify these fields.
789  * We still need to update the transaction deltas so that they get
790  * applied to the incore superblock, but we don't want them to
791  * cause the superblock to get locked and logged if these are the
792  * only fields in the superblock that the transaction modifies.
793  */
794 void
795 xfs_trans_mod_sb(
796 	xfs_trans_t	*tp,
797 	uint		field,
798 	int64_t		delta)
799 {
800 	uint32_t	flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
801 	xfs_mount_t	*mp = tp->t_mountp;
802 
803 	switch (field) {
804 	case XFS_TRANS_SB_ICOUNT:
805 		tp->t_icount_delta += delta;
806 		if (xfs_sb_version_haslazysbcount(&mp->m_sb))
807 			flags &= ~XFS_TRANS_SB_DIRTY;
808 		break;
809 	case XFS_TRANS_SB_IFREE:
810 		tp->t_ifree_delta += delta;
811 		if (xfs_sb_version_haslazysbcount(&mp->m_sb))
812 			flags &= ~XFS_TRANS_SB_DIRTY;
813 		break;
814 	case XFS_TRANS_SB_FDBLOCKS:
815 		/*
816 		 * Track the number of blocks allocated in the
817 		 * transaction.  Make sure it does not exceed the
818 		 * number reserved.
819 		 */
820 		if (delta < 0) {
821 			tp->t_blk_res_used += (uint)-delta;
822 			ASSERT(tp->t_blk_res_used <= tp->t_blk_res);
823 		}
824 		tp->t_fdblocks_delta += delta;
825 		if (xfs_sb_version_haslazysbcount(&mp->m_sb))
826 			flags &= ~XFS_TRANS_SB_DIRTY;
827 		break;
828 	case XFS_TRANS_SB_RES_FDBLOCKS:
829 		/*
830 		 * The allocation has already been applied to the
831 		 * in-core superblock's counter.  This should only
832 		 * be applied to the on-disk superblock.
833 		 */
834 		ASSERT(delta < 0);
835 		tp->t_res_fdblocks_delta += delta;
836 		if (xfs_sb_version_haslazysbcount(&mp->m_sb))
837 			flags &= ~XFS_TRANS_SB_DIRTY;
838 		break;
839 	case XFS_TRANS_SB_FREXTENTS:
840 		/*
841 		 * Track the number of blocks allocated in the
842 		 * transaction.  Make sure it does not exceed the
843 		 * number reserved.
844 		 */
845 		if (delta < 0) {
846 			tp->t_rtx_res_used += (uint)-delta;
847 			ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
848 		}
849 		tp->t_frextents_delta += delta;
850 		break;
851 	case XFS_TRANS_SB_RES_FREXTENTS:
852 		/*
853 		 * The allocation has already been applied to the
854 		 * in-core superblock's counter.  This should only
855 		 * be applied to the on-disk superblock.
856 		 */
857 		ASSERT(delta < 0);
858 		tp->t_res_frextents_delta += delta;
859 		break;
860 	case XFS_TRANS_SB_DBLOCKS:
861 		ASSERT(delta > 0);
862 		tp->t_dblocks_delta += delta;
863 		break;
864 	case XFS_TRANS_SB_AGCOUNT:
865 		ASSERT(delta > 0);
866 		tp->t_agcount_delta += delta;
867 		break;
868 	case XFS_TRANS_SB_IMAXPCT:
869 		tp->t_imaxpct_delta += delta;
870 		break;
871 	case XFS_TRANS_SB_REXTSIZE:
872 		tp->t_rextsize_delta += delta;
873 		break;
874 	case XFS_TRANS_SB_RBMBLOCKS:
875 		tp->t_rbmblocks_delta += delta;
876 		break;
877 	case XFS_TRANS_SB_RBLOCKS:
878 		tp->t_rblocks_delta += delta;
879 		break;
880 	case XFS_TRANS_SB_REXTENTS:
881 		tp->t_rextents_delta += delta;
882 		break;
883 	case XFS_TRANS_SB_REXTSLOG:
884 		tp->t_rextslog_delta += delta;
885 		break;
886 	default:
887 		ASSERT(0);
888 		return;
889 	}
890 
891 	tp->t_flags |= flags;
892 }
893 
894 /*
895  * xfs_trans_apply_sb_deltas() is called from the commit code
896  * to bring the superblock buffer into the current transaction
897  * and modify it as requested by earlier calls to xfs_trans_mod_sb().
898  *
899  * For now we just look at each field allowed to change and change
900  * it if necessary.
901  */
902 STATIC void
903 xfs_trans_apply_sb_deltas(
904 	xfs_trans_t	*tp)
905 {
906 	xfs_dsb_t	*sbp;
907 	xfs_buf_t	*bp;
908 	int		whole = 0;
909 
910 	bp = xfs_trans_getsb(tp, tp->t_mountp, 0);
911 	sbp = XFS_BUF_TO_SBP(bp);
912 
913 	/*
914 	 * Check that superblock mods match the mods made to AGF counters.
915 	 */
916 	ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) ==
917 	       (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta +
918 		tp->t_ag_btree_delta));
919 
920 	/*
921 	 * Only update the superblock counters if we are logging them
922 	 */
923 	if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) {
924 		if (tp->t_icount_delta)
925 			be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
926 		if (tp->t_ifree_delta)
927 			be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
928 		if (tp->t_fdblocks_delta)
929 			be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
930 		if (tp->t_res_fdblocks_delta)
931 			be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
932 	}
933 
934 	if (tp->t_frextents_delta)
935 		be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta);
936 	if (tp->t_res_frextents_delta)
937 		be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta);
938 
939 	if (tp->t_dblocks_delta) {
940 		be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
941 		whole = 1;
942 	}
943 	if (tp->t_agcount_delta) {
944 		be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
945 		whole = 1;
946 	}
947 	if (tp->t_imaxpct_delta) {
948 		sbp->sb_imax_pct += tp->t_imaxpct_delta;
949 		whole = 1;
950 	}
951 	if (tp->t_rextsize_delta) {
952 		be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
953 		whole = 1;
954 	}
955 	if (tp->t_rbmblocks_delta) {
956 		be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
957 		whole = 1;
958 	}
959 	if (tp->t_rblocks_delta) {
960 		be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
961 		whole = 1;
962 	}
963 	if (tp->t_rextents_delta) {
964 		be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
965 		whole = 1;
966 	}
967 	if (tp->t_rextslog_delta) {
968 		sbp->sb_rextslog += tp->t_rextslog_delta;
969 		whole = 1;
970 	}
971 
972 	if (whole)
973 		/*
974 		 * Log the whole thing, the fields are noncontiguous.
975 		 */
976 		xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1);
977 	else
978 		/*
979 		 * Since all the modifiable fields are contiguous, we
980 		 * can get away with this.
981 		 */
982 		xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount),
983 				  offsetof(xfs_dsb_t, sb_frextents) +
984 				  sizeof(sbp->sb_frextents) - 1);
985 }
986 
987 /*
988  * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations
989  * and apply superblock counter changes to the in-core superblock.  The
990  * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
991  * applied to the in-core superblock.  The idea is that that has already been
992  * done.
993  *
994  * This is done efficiently with a single call to xfs_mod_incore_sb_batch().
995  * However, we have to ensure that we only modify each superblock field only
996  * once because the application of the delta values may not be atomic. That can
997  * lead to ENOSPC races occurring if we have two separate modifcations of the
998  * free space counter to put back the entire reservation and then take away
999  * what we used.
1000  *
1001  * If we are not logging superblock counters, then the inode allocated/free and
1002  * used block counts are not updated in the on disk superblock. In this case,
1003  * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
1004  * still need to update the incore superblock with the changes.
1005  */
1006 void
1007 xfs_trans_unreserve_and_mod_sb(
1008 	xfs_trans_t	*tp)
1009 {
1010 	xfs_mod_sb_t	msb[9];	/* If you add cases, add entries */
1011 	xfs_mod_sb_t	*msbp;
1012 	xfs_mount_t	*mp = tp->t_mountp;
1013 	/* REFERENCED */
1014 	int		error;
1015 	int		rsvd;
1016 	int64_t		blkdelta = 0;
1017 	int64_t		rtxdelta = 0;
1018 	int64_t		idelta = 0;
1019 	int64_t		ifreedelta = 0;
1020 
1021 	msbp = msb;
1022 	rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
1023 
1024 	/* calculate deltas */
1025 	if (tp->t_blk_res > 0)
1026 		blkdelta = tp->t_blk_res;
1027 	if ((tp->t_fdblocks_delta != 0) &&
1028 	    (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1029 	     (tp->t_flags & XFS_TRANS_SB_DIRTY)))
1030 	        blkdelta += tp->t_fdblocks_delta;
1031 
1032 	if (tp->t_rtx_res > 0)
1033 		rtxdelta = tp->t_rtx_res;
1034 	if ((tp->t_frextents_delta != 0) &&
1035 	    (tp->t_flags & XFS_TRANS_SB_DIRTY))
1036 		rtxdelta += tp->t_frextents_delta;
1037 
1038 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1039 	     (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
1040 		idelta = tp->t_icount_delta;
1041 		ifreedelta = tp->t_ifree_delta;
1042 	}
1043 
1044 	/* apply the per-cpu counters */
1045 	if (blkdelta) {
1046 		error = xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS,
1047 						 blkdelta, rsvd);
1048 		if (error)
1049 			goto out;
1050 	}
1051 
1052 	if (idelta) {
1053 		error = xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT,
1054 						 idelta, rsvd);
1055 		if (error)
1056 			goto out_undo_fdblocks;
1057 	}
1058 
1059 	if (ifreedelta) {
1060 		error = xfs_icsb_modify_counters(mp, XFS_SBS_IFREE,
1061 						 ifreedelta, rsvd);
1062 		if (error)
1063 			goto out_undo_icount;
1064 	}
1065 
1066 	/* apply remaining deltas */
1067 	if (rtxdelta != 0) {
1068 		msbp->msb_field = XFS_SBS_FREXTENTS;
1069 		msbp->msb_delta = rtxdelta;
1070 		msbp++;
1071 	}
1072 
1073 	if (tp->t_flags & XFS_TRANS_SB_DIRTY) {
1074 		if (tp->t_dblocks_delta != 0) {
1075 			msbp->msb_field = XFS_SBS_DBLOCKS;
1076 			msbp->msb_delta = tp->t_dblocks_delta;
1077 			msbp++;
1078 		}
1079 		if (tp->t_agcount_delta != 0) {
1080 			msbp->msb_field = XFS_SBS_AGCOUNT;
1081 			msbp->msb_delta = tp->t_agcount_delta;
1082 			msbp++;
1083 		}
1084 		if (tp->t_imaxpct_delta != 0) {
1085 			msbp->msb_field = XFS_SBS_IMAX_PCT;
1086 			msbp->msb_delta = tp->t_imaxpct_delta;
1087 			msbp++;
1088 		}
1089 		if (tp->t_rextsize_delta != 0) {
1090 			msbp->msb_field = XFS_SBS_REXTSIZE;
1091 			msbp->msb_delta = tp->t_rextsize_delta;
1092 			msbp++;
1093 		}
1094 		if (tp->t_rbmblocks_delta != 0) {
1095 			msbp->msb_field = XFS_SBS_RBMBLOCKS;
1096 			msbp->msb_delta = tp->t_rbmblocks_delta;
1097 			msbp++;
1098 		}
1099 		if (tp->t_rblocks_delta != 0) {
1100 			msbp->msb_field = XFS_SBS_RBLOCKS;
1101 			msbp->msb_delta = tp->t_rblocks_delta;
1102 			msbp++;
1103 		}
1104 		if (tp->t_rextents_delta != 0) {
1105 			msbp->msb_field = XFS_SBS_REXTENTS;
1106 			msbp->msb_delta = tp->t_rextents_delta;
1107 			msbp++;
1108 		}
1109 		if (tp->t_rextslog_delta != 0) {
1110 			msbp->msb_field = XFS_SBS_REXTSLOG;
1111 			msbp->msb_delta = tp->t_rextslog_delta;
1112 			msbp++;
1113 		}
1114 	}
1115 
1116 	/*
1117 	 * If we need to change anything, do it.
1118 	 */
1119 	if (msbp > msb) {
1120 		error = xfs_mod_incore_sb_batch(tp->t_mountp, msb,
1121 			(uint)(msbp - msb), rsvd);
1122 		if (error)
1123 			goto out_undo_ifreecount;
1124 	}
1125 
1126 	return;
1127 
1128 out_undo_ifreecount:
1129 	if (ifreedelta)
1130 		xfs_icsb_modify_counters(mp, XFS_SBS_IFREE, -ifreedelta, rsvd);
1131 out_undo_icount:
1132 	if (idelta)
1133 		xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT, -idelta, rsvd);
1134 out_undo_fdblocks:
1135 	if (blkdelta)
1136 		xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS, -blkdelta, rsvd);
1137 out:
1138 	ASSERT(error == 0);
1139 	return;
1140 }
1141 
1142 /*
1143  * Add the given log item to the transaction's list of log items.
1144  *
1145  * The log item will now point to its new descriptor with its li_desc field.
1146  */
1147 void
1148 xfs_trans_add_item(
1149 	struct xfs_trans	*tp,
1150 	struct xfs_log_item	*lip)
1151 {
1152 	struct xfs_log_item_desc *lidp;
1153 
1154 	ASSERT(lip->li_mountp = tp->t_mountp);
1155 	ASSERT(lip->li_ailp = tp->t_mountp->m_ail);
1156 
1157 	lidp = kmem_zone_zalloc(xfs_log_item_desc_zone, KM_SLEEP | KM_NOFS);
1158 
1159 	lidp->lid_item = lip;
1160 	lidp->lid_flags = 0;
1161 	lidp->lid_size = 0;
1162 	list_add_tail(&lidp->lid_trans, &tp->t_items);
1163 
1164 	lip->li_desc = lidp;
1165 }
1166 
1167 STATIC void
1168 xfs_trans_free_item_desc(
1169 	struct xfs_log_item_desc *lidp)
1170 {
1171 	list_del_init(&lidp->lid_trans);
1172 	kmem_zone_free(xfs_log_item_desc_zone, lidp);
1173 }
1174 
1175 /*
1176  * Unlink and free the given descriptor.
1177  */
1178 void
1179 xfs_trans_del_item(
1180 	struct xfs_log_item	*lip)
1181 {
1182 	xfs_trans_free_item_desc(lip->li_desc);
1183 	lip->li_desc = NULL;
1184 }
1185 
1186 /*
1187  * Unlock all of the items of a transaction and free all the descriptors
1188  * of that transaction.
1189  */
1190 void
1191 xfs_trans_free_items(
1192 	struct xfs_trans	*tp,
1193 	xfs_lsn_t		commit_lsn,
1194 	int			flags)
1195 {
1196 	struct xfs_log_item_desc *lidp, *next;
1197 
1198 	list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
1199 		struct xfs_log_item	*lip = lidp->lid_item;
1200 
1201 		lip->li_desc = NULL;
1202 
1203 		if (commit_lsn != NULLCOMMITLSN)
1204 			IOP_COMMITTING(lip, commit_lsn);
1205 		if (flags & XFS_TRANS_ABORT)
1206 			lip->li_flags |= XFS_LI_ABORTED;
1207 		IOP_UNLOCK(lip);
1208 
1209 		xfs_trans_free_item_desc(lidp);
1210 	}
1211 }
1212 
1213 /*
1214  * Unlock the items associated with a transaction.
1215  *
1216  * Items which were not logged should be freed.  Those which were logged must
1217  * still be tracked so they can be unpinned when the transaction commits.
1218  */
1219 STATIC void
1220 xfs_trans_unlock_items(
1221 	struct xfs_trans	*tp,
1222 	xfs_lsn_t		commit_lsn)
1223 {
1224 	struct xfs_log_item_desc *lidp, *next;
1225 
1226 	list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
1227 		struct xfs_log_item	*lip = lidp->lid_item;
1228 
1229 		lip->li_desc = NULL;
1230 
1231 		if (commit_lsn != NULLCOMMITLSN)
1232 			IOP_COMMITTING(lip, commit_lsn);
1233 		IOP_UNLOCK(lip);
1234 
1235 		/*
1236 		 * Free the descriptor if the item is not dirty
1237 		 * within this transaction.
1238 		 */
1239 		if (!(lidp->lid_flags & XFS_LID_DIRTY))
1240 			xfs_trans_free_item_desc(lidp);
1241 	}
1242 }
1243 
1244 /*
1245  * Total up the number of log iovecs needed to commit this
1246  * transaction.  The transaction itself needs one for the
1247  * transaction header.  Ask each dirty item in turn how many
1248  * it needs to get the total.
1249  */
1250 static uint
1251 xfs_trans_count_vecs(
1252 	struct xfs_trans	*tp)
1253 {
1254 	int			nvecs;
1255 	struct xfs_log_item_desc *lidp;
1256 
1257 	nvecs = 1;
1258 
1259 	/* In the non-debug case we need to start bailing out if we
1260 	 * didn't find a log_item here, return zero and let trans_commit
1261 	 * deal with it.
1262 	 */
1263 	if (list_empty(&tp->t_items)) {
1264 		ASSERT(0);
1265 		return 0;
1266 	}
1267 
1268 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
1269 		/*
1270 		 * Skip items which aren't dirty in this transaction.
1271 		 */
1272 		if (!(lidp->lid_flags & XFS_LID_DIRTY))
1273 			continue;
1274 		lidp->lid_size = IOP_SIZE(lidp->lid_item);
1275 		nvecs += lidp->lid_size;
1276 	}
1277 
1278 	return nvecs;
1279 }
1280 
1281 /*
1282  * Fill in the vector with pointers to data to be logged
1283  * by this transaction.  The transaction header takes
1284  * the first vector, and then each dirty item takes the
1285  * number of vectors it indicated it needed in xfs_trans_count_vecs().
1286  *
1287  * As each item fills in the entries it needs, also pin the item
1288  * so that it cannot be flushed out until the log write completes.
1289  */
1290 static void
1291 xfs_trans_fill_vecs(
1292 	struct xfs_trans	*tp,
1293 	struct xfs_log_iovec	*log_vector)
1294 {
1295 	struct xfs_log_item_desc *lidp;
1296 	struct xfs_log_iovec	*vecp;
1297 	uint			nitems;
1298 
1299 	/*
1300 	 * Skip over the entry for the transaction header, we'll
1301 	 * fill that in at the end.
1302 	 */
1303 	vecp = log_vector + 1;
1304 
1305 	nitems = 0;
1306 	ASSERT(!list_empty(&tp->t_items));
1307 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
1308 		/* Skip items which aren't dirty in this transaction. */
1309 		if (!(lidp->lid_flags & XFS_LID_DIRTY))
1310 			continue;
1311 
1312 		/*
1313 		 * The item may be marked dirty but not log anything.  This can
1314 		 * be used to get called when a transaction is committed.
1315 		 */
1316 		if (lidp->lid_size)
1317 			nitems++;
1318 		IOP_FORMAT(lidp->lid_item, vecp);
1319 		vecp += lidp->lid_size;
1320 		IOP_PIN(lidp->lid_item);
1321 	}
1322 
1323 	/*
1324 	 * Now that we've counted the number of items in this transaction, fill
1325 	 * in the transaction header. Note that the transaction header does not
1326 	 * have a log item.
1327 	 */
1328 	tp->t_header.th_magic = XFS_TRANS_HEADER_MAGIC;
1329 	tp->t_header.th_type = tp->t_type;
1330 	tp->t_header.th_num_items = nitems;
1331 	log_vector->i_addr = (xfs_caddr_t)&tp->t_header;
1332 	log_vector->i_len = sizeof(xfs_trans_header_t);
1333 	log_vector->i_type = XLOG_REG_TYPE_TRANSHDR;
1334 }
1335 
1336 /*
1337  * The committed item processing consists of calling the committed routine of
1338  * each logged item, updating the item's position in the AIL if necessary, and
1339  * unpinning each item.  If the committed routine returns -1, then do nothing
1340  * further with the item because it may have been freed.
1341  *
1342  * Since items are unlocked when they are copied to the incore log, it is
1343  * possible for two transactions to be completing and manipulating the same
1344  * item simultaneously.  The AIL lock will protect the lsn field of each item.
1345  * The value of this field can never go backwards.
1346  *
1347  * We unpin the items after repositioning them in the AIL, because otherwise
1348  * they could be immediately flushed and we'd have to race with the flusher
1349  * trying to pull the item from the AIL as we add it.
1350  */
1351 static void
1352 xfs_trans_item_committed(
1353 	struct xfs_log_item	*lip,
1354 	xfs_lsn_t		commit_lsn,
1355 	int			aborted)
1356 {
1357 	xfs_lsn_t		item_lsn;
1358 	struct xfs_ail		*ailp;
1359 
1360 	if (aborted)
1361 		lip->li_flags |= XFS_LI_ABORTED;
1362 	item_lsn = IOP_COMMITTED(lip, commit_lsn);
1363 
1364 	/* item_lsn of -1 means the item needs no further processing */
1365 	if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
1366 		return;
1367 
1368 	/*
1369 	 * If the returned lsn is greater than what it contained before, update
1370 	 * the location of the item in the AIL.  If it is not, then do nothing.
1371 	 * Items can never move backwards in the AIL.
1372 	 *
1373 	 * While the new lsn should usually be greater, it is possible that a
1374 	 * later transaction completing simultaneously with an earlier one
1375 	 * using the same item could complete first with a higher lsn.  This
1376 	 * would cause the earlier transaction to fail the test below.
1377 	 */
1378 	ailp = lip->li_ailp;
1379 	spin_lock(&ailp->xa_lock);
1380 	if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) {
1381 		/*
1382 		 * This will set the item's lsn to item_lsn and update the
1383 		 * position of the item in the AIL.
1384 		 *
1385 		 * xfs_trans_ail_update() drops the AIL lock.
1386 		 */
1387 		xfs_trans_ail_update(ailp, lip, item_lsn);
1388 	} else {
1389 		spin_unlock(&ailp->xa_lock);
1390 	}
1391 
1392 	/*
1393 	 * Now that we've repositioned the item in the AIL, unpin it so it can
1394 	 * be flushed. Pass information about buffer stale state down from the
1395 	 * log item flags, if anyone else stales the buffer we do not want to
1396 	 * pay any attention to it.
1397 	 */
1398 	IOP_UNPIN(lip, 0);
1399 }
1400 
1401 /*
1402  * This is typically called by the LM when a transaction has been fully
1403  * committed to disk.  It needs to unpin the items which have
1404  * been logged by the transaction and update their positions
1405  * in the AIL if necessary.
1406  *
1407  * This also gets called when the transactions didn't get written out
1408  * because of an I/O error. Abortflag & XFS_LI_ABORTED is set then.
1409  */
1410 STATIC void
1411 xfs_trans_committed(
1412 	void			*arg,
1413 	int			abortflag)
1414 {
1415 	struct xfs_trans	*tp = arg;
1416 	struct xfs_log_item_desc *lidp, *next;
1417 
1418 	list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
1419 		xfs_trans_item_committed(lidp->lid_item, tp->t_lsn, abortflag);
1420 		xfs_trans_free_item_desc(lidp);
1421 	}
1422 
1423 	xfs_trans_free(tp);
1424 }
1425 
1426 static inline void
1427 xfs_log_item_batch_insert(
1428 	struct xfs_ail		*ailp,
1429 	struct xfs_ail_cursor	*cur,
1430 	struct xfs_log_item	**log_items,
1431 	int			nr_items,
1432 	xfs_lsn_t		commit_lsn)
1433 {
1434 	int	i;
1435 
1436 	spin_lock(&ailp->xa_lock);
1437 	/* xfs_trans_ail_update_bulk drops ailp->xa_lock */
1438 	xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
1439 
1440 	for (i = 0; i < nr_items; i++)
1441 		IOP_UNPIN(log_items[i], 0);
1442 }
1443 
1444 /*
1445  * Bulk operation version of xfs_trans_committed that takes a log vector of
1446  * items to insert into the AIL. This uses bulk AIL insertion techniques to
1447  * minimise lock traffic.
1448  *
1449  * If we are called with the aborted flag set, it is because a log write during
1450  * a CIL checkpoint commit has failed. In this case, all the items in the
1451  * checkpoint have already gone through IOP_COMMITED and IOP_UNLOCK, which
1452  * means that checkpoint commit abort handling is treated exactly the same
1453  * as an iclog write error even though we haven't started any IO yet. Hence in
1454  * this case all we need to do is IOP_COMMITTED processing, followed by an
1455  * IOP_UNPIN(aborted) call.
1456  *
1457  * The AIL cursor is used to optimise the insert process. If commit_lsn is not
1458  * at the end of the AIL, the insert cursor avoids the need to walk
1459  * the AIL to find the insertion point on every xfs_log_item_batch_insert()
1460  * call. This saves a lot of needless list walking and is a net win, even
1461  * though it slightly increases that amount of AIL lock traffic to set it up
1462  * and tear it down.
1463  */
1464 void
1465 xfs_trans_committed_bulk(
1466 	struct xfs_ail		*ailp,
1467 	struct xfs_log_vec	*log_vector,
1468 	xfs_lsn_t		commit_lsn,
1469 	int			aborted)
1470 {
1471 #define LOG_ITEM_BATCH_SIZE	32
1472 	struct xfs_log_item	*log_items[LOG_ITEM_BATCH_SIZE];
1473 	struct xfs_log_vec	*lv;
1474 	struct xfs_ail_cursor	cur;
1475 	int			i = 0;
1476 
1477 	spin_lock(&ailp->xa_lock);
1478 	xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
1479 	spin_unlock(&ailp->xa_lock);
1480 
1481 	/* unpin all the log items */
1482 	for (lv = log_vector; lv; lv = lv->lv_next ) {
1483 		struct xfs_log_item	*lip = lv->lv_item;
1484 		xfs_lsn_t		item_lsn;
1485 
1486 		if (aborted)
1487 			lip->li_flags |= XFS_LI_ABORTED;
1488 		item_lsn = IOP_COMMITTED(lip, commit_lsn);
1489 
1490 		/* item_lsn of -1 means the item needs no further processing */
1491 		if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
1492 			continue;
1493 
1494 		/*
1495 		 * if we are aborting the operation, no point in inserting the
1496 		 * object into the AIL as we are in a shutdown situation.
1497 		 */
1498 		if (aborted) {
1499 			ASSERT(XFS_FORCED_SHUTDOWN(ailp->xa_mount));
1500 			IOP_UNPIN(lip, 1);
1501 			continue;
1502 		}
1503 
1504 		if (item_lsn != commit_lsn) {
1505 
1506 			/*
1507 			 * Not a bulk update option due to unusual item_lsn.
1508 			 * Push into AIL immediately, rechecking the lsn once
1509 			 * we have the ail lock. Then unpin the item. This does
1510 			 * not affect the AIL cursor the bulk insert path is
1511 			 * using.
1512 			 */
1513 			spin_lock(&ailp->xa_lock);
1514 			if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
1515 				xfs_trans_ail_update(ailp, lip, item_lsn);
1516 			else
1517 				spin_unlock(&ailp->xa_lock);
1518 			IOP_UNPIN(lip, 0);
1519 			continue;
1520 		}
1521 
1522 		/* Item is a candidate for bulk AIL insert.  */
1523 		log_items[i++] = lv->lv_item;
1524 		if (i >= LOG_ITEM_BATCH_SIZE) {
1525 			xfs_log_item_batch_insert(ailp, &cur, log_items,
1526 					LOG_ITEM_BATCH_SIZE, commit_lsn);
1527 			i = 0;
1528 		}
1529 	}
1530 
1531 	/* make sure we insert the remainder! */
1532 	if (i)
1533 		xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
1534 
1535 	spin_lock(&ailp->xa_lock);
1536 	xfs_trans_ail_cursor_done(ailp, &cur);
1537 	spin_unlock(&ailp->xa_lock);
1538 }
1539 
1540 /*
1541  * Called from the trans_commit code when we notice that the filesystem is in
1542  * the middle of a forced shutdown.
1543  *
1544  * When we are called here, we have already pinned all the items in the
1545  * transaction. However, neither IOP_COMMITTING or IOP_UNLOCK has been called
1546  * so we can simply walk the items in the transaction, unpin them with an abort
1547  * flag and then free the items. Note that unpinning the items can result in
1548  * them being freed immediately, so we need to use a safe list traversal method
1549  * here.
1550  */
1551 STATIC void
1552 xfs_trans_uncommit(
1553 	struct xfs_trans	*tp,
1554 	uint			flags)
1555 {
1556 	struct xfs_log_item_desc *lidp, *n;
1557 
1558 	list_for_each_entry_safe(lidp, n, &tp->t_items, lid_trans) {
1559 		if (lidp->lid_flags & XFS_LID_DIRTY)
1560 			IOP_UNPIN(lidp->lid_item, 1);
1561 	}
1562 
1563 	xfs_trans_unreserve_and_mod_sb(tp);
1564 	xfs_trans_unreserve_and_mod_dquots(tp);
1565 
1566 	xfs_trans_free_items(tp, NULLCOMMITLSN, flags);
1567 	xfs_trans_free(tp);
1568 }
1569 
1570 /*
1571  * Format the transaction direct to the iclog. This isolates the physical
1572  * transaction commit operation from the logical operation and hence allows
1573  * other methods to be introduced without affecting the existing commit path.
1574  */
1575 static int
1576 xfs_trans_commit_iclog(
1577 	struct xfs_mount	*mp,
1578 	struct xfs_trans	*tp,
1579 	xfs_lsn_t		*commit_lsn,
1580 	int			flags)
1581 {
1582 	int			shutdown;
1583 	int			error;
1584 	int			log_flags = 0;
1585 	struct xlog_in_core	*commit_iclog;
1586 #define XFS_TRANS_LOGVEC_COUNT  16
1587 	struct xfs_log_iovec	log_vector_fast[XFS_TRANS_LOGVEC_COUNT];
1588 	struct xfs_log_iovec	*log_vector;
1589 	uint			nvec;
1590 
1591 
1592 	/*
1593 	 * Ask each log item how many log_vector entries it will
1594 	 * need so we can figure out how many to allocate.
1595 	 * Try to avoid the kmem_alloc() call in the common case
1596 	 * by using a vector from the stack when it fits.
1597 	 */
1598 	nvec = xfs_trans_count_vecs(tp);
1599 	if (nvec == 0) {
1600 		return ENOMEM;	/* triggers a shutdown! */
1601 	} else if (nvec <= XFS_TRANS_LOGVEC_COUNT) {
1602 		log_vector = log_vector_fast;
1603 	} else {
1604 		log_vector = (xfs_log_iovec_t *)kmem_alloc(nvec *
1605 						   sizeof(xfs_log_iovec_t),
1606 						   KM_SLEEP);
1607 	}
1608 
1609 	/*
1610 	 * Fill in the log_vector and pin the logged items, and
1611 	 * then write the transaction to the log.
1612 	 */
1613 	xfs_trans_fill_vecs(tp, log_vector);
1614 
1615 	if (flags & XFS_TRANS_RELEASE_LOG_RES)
1616 		log_flags = XFS_LOG_REL_PERM_RESERV;
1617 
1618 	error = xfs_log_write(mp, log_vector, nvec, tp->t_ticket, &(tp->t_lsn));
1619 
1620 	/*
1621 	 * The transaction is committed incore here, and can go out to disk
1622 	 * at any time after this call.  However, all the items associated
1623 	 * with the transaction are still locked and pinned in memory.
1624 	 */
1625 	*commit_lsn = xfs_log_done(mp, tp->t_ticket, &commit_iclog, log_flags);
1626 
1627 	tp->t_commit_lsn = *commit_lsn;
1628 	trace_xfs_trans_commit_lsn(tp);
1629 
1630 	if (nvec > XFS_TRANS_LOGVEC_COUNT)
1631 		kmem_free(log_vector);
1632 
1633 	/*
1634 	 * If we got a log write error. Unpin the logitems that we
1635 	 * had pinned, clean up, free trans structure, and return error.
1636 	 */
1637 	if (error || *commit_lsn == -1) {
1638 		current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1639 		xfs_trans_uncommit(tp, flags|XFS_TRANS_ABORT);
1640 		return XFS_ERROR(EIO);
1641 	}
1642 
1643 	/*
1644 	 * Once the transaction has committed, unused
1645 	 * reservations need to be released and changes to
1646 	 * the superblock need to be reflected in the in-core
1647 	 * version.  Do that now.
1648 	 */
1649 	xfs_trans_unreserve_and_mod_sb(tp);
1650 
1651 	/*
1652 	 * Tell the LM to call the transaction completion routine
1653 	 * when the log write with LSN commit_lsn completes (e.g.
1654 	 * when the transaction commit really hits the on-disk log).
1655 	 * After this call we cannot reference tp, because the call
1656 	 * can happen at any time and the call will free the transaction
1657 	 * structure pointed to by tp.  The only case where we call
1658 	 * the completion routine (xfs_trans_committed) directly is
1659 	 * if the log is turned off on a debug kernel or we're
1660 	 * running in simulation mode (the log is explicitly turned
1661 	 * off).
1662 	 */
1663 	tp->t_logcb.cb_func = xfs_trans_committed;
1664 	tp->t_logcb.cb_arg = tp;
1665 
1666 	/*
1667 	 * We need to pass the iclog buffer which was used for the
1668 	 * transaction commit record into this function, and attach
1669 	 * the callback to it. The callback must be attached before
1670 	 * the items are unlocked to avoid racing with other threads
1671 	 * waiting for an item to unlock.
1672 	 */
1673 	shutdown = xfs_log_notify(mp, commit_iclog, &(tp->t_logcb));
1674 
1675 	/*
1676 	 * Mark this thread as no longer being in a transaction
1677 	 */
1678 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1679 
1680 	/*
1681 	 * Once all the items of the transaction have been copied
1682 	 * to the in core log and the callback is attached, the
1683 	 * items can be unlocked.
1684 	 *
1685 	 * This will free descriptors pointing to items which were
1686 	 * not logged since there is nothing more to do with them.
1687 	 * For items which were logged, we will keep pointers to them
1688 	 * so they can be unpinned after the transaction commits to disk.
1689 	 * This will also stamp each modified meta-data item with
1690 	 * the commit lsn of this transaction for dependency tracking
1691 	 * purposes.
1692 	 */
1693 	xfs_trans_unlock_items(tp, *commit_lsn);
1694 
1695 	/*
1696 	 * If we detected a log error earlier, finish committing
1697 	 * the transaction now (unpin log items, etc).
1698 	 *
1699 	 * Order is critical here, to avoid using the transaction
1700 	 * pointer after its been freed (by xfs_trans_committed
1701 	 * either here now, or as a callback).  We cannot do this
1702 	 * step inside xfs_log_notify as was done earlier because
1703 	 * of this issue.
1704 	 */
1705 	if (shutdown)
1706 		xfs_trans_committed(tp, XFS_LI_ABORTED);
1707 
1708 	/*
1709 	 * Now that the xfs_trans_committed callback has been attached,
1710 	 * and the items are released we can finally allow the iclog to
1711 	 * go to disk.
1712 	 */
1713 	return xfs_log_release_iclog(mp, commit_iclog);
1714 }
1715 
1716 /*
1717  * Walk the log items and allocate log vector structures for
1718  * each item large enough to fit all the vectors they require.
1719  * Note that this format differs from the old log vector format in
1720  * that there is no transaction header in these log vectors.
1721  */
1722 STATIC struct xfs_log_vec *
1723 xfs_trans_alloc_log_vecs(
1724 	xfs_trans_t	*tp)
1725 {
1726 	struct xfs_log_item_desc *lidp;
1727 	struct xfs_log_vec	*lv = NULL;
1728 	struct xfs_log_vec	*ret_lv = NULL;
1729 
1730 
1731 	/* Bail out if we didn't find a log item.  */
1732 	if (list_empty(&tp->t_items)) {
1733 		ASSERT(0);
1734 		return NULL;
1735 	}
1736 
1737 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
1738 		struct xfs_log_vec *new_lv;
1739 
1740 		/* Skip items which aren't dirty in this transaction. */
1741 		if (!(lidp->lid_flags & XFS_LID_DIRTY))
1742 			continue;
1743 
1744 		/* Skip items that do not have any vectors for writing */
1745 		lidp->lid_size = IOP_SIZE(lidp->lid_item);
1746 		if (!lidp->lid_size)
1747 			continue;
1748 
1749 		new_lv = kmem_zalloc(sizeof(*new_lv) +
1750 				lidp->lid_size * sizeof(struct xfs_log_iovec),
1751 				KM_SLEEP);
1752 
1753 		/* The allocated iovec region lies beyond the log vector. */
1754 		new_lv->lv_iovecp = (struct xfs_log_iovec *)&new_lv[1];
1755 		new_lv->lv_niovecs = lidp->lid_size;
1756 		new_lv->lv_item = lidp->lid_item;
1757 		if (!ret_lv)
1758 			ret_lv = new_lv;
1759 		else
1760 			lv->lv_next = new_lv;
1761 		lv = new_lv;
1762 	}
1763 
1764 	return ret_lv;
1765 }
1766 
1767 static int
1768 xfs_trans_commit_cil(
1769 	struct xfs_mount	*mp,
1770 	struct xfs_trans	*tp,
1771 	xfs_lsn_t		*commit_lsn,
1772 	int			flags)
1773 {
1774 	struct xfs_log_vec	*log_vector;
1775 
1776 	/*
1777 	 * Get each log item to allocate a vector structure for
1778 	 * the log item to to pass to the log write code. The
1779 	 * CIL commit code will format the vector and save it away.
1780 	 */
1781 	log_vector = xfs_trans_alloc_log_vecs(tp);
1782 	if (!log_vector)
1783 		return ENOMEM;
1784 
1785 	xfs_log_commit_cil(mp, tp, log_vector, commit_lsn, flags);
1786 
1787 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1788 	xfs_trans_free(tp);
1789 	return 0;
1790 }
1791 
1792 /*
1793  * xfs_trans_commit
1794  *
1795  * Commit the given transaction to the log a/synchronously.
1796  *
1797  * XFS disk error handling mechanism is not based on a typical
1798  * transaction abort mechanism. Logically after the filesystem
1799  * gets marked 'SHUTDOWN', we can't let any new transactions
1800  * be durable - ie. committed to disk - because some metadata might
1801  * be inconsistent. In such cases, this returns an error, and the
1802  * caller may assume that all locked objects joined to the transaction
1803  * have already been unlocked as if the commit had succeeded.
1804  * Do not reference the transaction structure after this call.
1805  */
1806 int
1807 _xfs_trans_commit(
1808 	struct xfs_trans	*tp,
1809 	uint			flags,
1810 	int			*log_flushed)
1811 {
1812 	struct xfs_mount	*mp = tp->t_mountp;
1813 	xfs_lsn_t		commit_lsn = -1;
1814 	int			error = 0;
1815 	int			log_flags = 0;
1816 	int			sync = tp->t_flags & XFS_TRANS_SYNC;
1817 
1818 	/*
1819 	 * Determine whether this commit is releasing a permanent
1820 	 * log reservation or not.
1821 	 */
1822 	if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1823 		ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1824 		log_flags = XFS_LOG_REL_PERM_RESERV;
1825 	}
1826 
1827 	/*
1828 	 * If there is nothing to be logged by the transaction,
1829 	 * then unlock all of the items associated with the
1830 	 * transaction and free the transaction structure.
1831 	 * Also make sure to return any reserved blocks to
1832 	 * the free pool.
1833 	 */
1834 	if (!(tp->t_flags & XFS_TRANS_DIRTY))
1835 		goto out_unreserve;
1836 
1837 	if (XFS_FORCED_SHUTDOWN(mp)) {
1838 		error = XFS_ERROR(EIO);
1839 		goto out_unreserve;
1840 	}
1841 
1842 	ASSERT(tp->t_ticket != NULL);
1843 
1844 	/*
1845 	 * If we need to update the superblock, then do it now.
1846 	 */
1847 	if (tp->t_flags & XFS_TRANS_SB_DIRTY)
1848 		xfs_trans_apply_sb_deltas(tp);
1849 	xfs_trans_apply_dquot_deltas(tp);
1850 
1851 	if (mp->m_flags & XFS_MOUNT_DELAYLOG)
1852 		error = xfs_trans_commit_cil(mp, tp, &commit_lsn, flags);
1853 	else
1854 		error = xfs_trans_commit_iclog(mp, tp, &commit_lsn, flags);
1855 
1856 	if (error == ENOMEM) {
1857 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1858 		error = XFS_ERROR(EIO);
1859 		goto out_unreserve;
1860 	}
1861 
1862 	/*
1863 	 * If the transaction needs to be synchronous, then force the
1864 	 * log out now and wait for it.
1865 	 */
1866 	if (sync) {
1867 		if (!error) {
1868 			error = _xfs_log_force_lsn(mp, commit_lsn,
1869 				      XFS_LOG_SYNC, log_flushed);
1870 		}
1871 		XFS_STATS_INC(xs_trans_sync);
1872 	} else {
1873 		XFS_STATS_INC(xs_trans_async);
1874 	}
1875 
1876 	return error;
1877 
1878 out_unreserve:
1879 	xfs_trans_unreserve_and_mod_sb(tp);
1880 
1881 	/*
1882 	 * It is indeed possible for the transaction to be not dirty but
1883 	 * the dqinfo portion to be.  All that means is that we have some
1884 	 * (non-persistent) quota reservations that need to be unreserved.
1885 	 */
1886 	xfs_trans_unreserve_and_mod_dquots(tp);
1887 	if (tp->t_ticket) {
1888 		commit_lsn = xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1889 		if (commit_lsn == -1 && !error)
1890 			error = XFS_ERROR(EIO);
1891 	}
1892 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1893 	xfs_trans_free_items(tp, NULLCOMMITLSN, error ? XFS_TRANS_ABORT : 0);
1894 	xfs_trans_free(tp);
1895 
1896 	XFS_STATS_INC(xs_trans_empty);
1897 	return error;
1898 }
1899 
1900 /*
1901  * Unlock all of the transaction's items and free the transaction.
1902  * The transaction must not have modified any of its items, because
1903  * there is no way to restore them to their previous state.
1904  *
1905  * If the transaction has made a log reservation, make sure to release
1906  * it as well.
1907  */
1908 void
1909 xfs_trans_cancel(
1910 	xfs_trans_t		*tp,
1911 	int			flags)
1912 {
1913 	int			log_flags;
1914 	xfs_mount_t		*mp = tp->t_mountp;
1915 
1916 	/*
1917 	 * See if the caller is being too lazy to figure out if
1918 	 * the transaction really needs an abort.
1919 	 */
1920 	if ((flags & XFS_TRANS_ABORT) && !(tp->t_flags & XFS_TRANS_DIRTY))
1921 		flags &= ~XFS_TRANS_ABORT;
1922 	/*
1923 	 * See if the caller is relying on us to shut down the
1924 	 * filesystem.  This happens in paths where we detect
1925 	 * corruption and decide to give up.
1926 	 */
1927 	if ((tp->t_flags & XFS_TRANS_DIRTY) && !XFS_FORCED_SHUTDOWN(mp)) {
1928 		XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1929 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1930 	}
1931 #ifdef DEBUG
1932 	if (!(flags & XFS_TRANS_ABORT) && !XFS_FORCED_SHUTDOWN(mp)) {
1933 		struct xfs_log_item_desc *lidp;
1934 
1935 		list_for_each_entry(lidp, &tp->t_items, lid_trans)
1936 			ASSERT(!(lidp->lid_item->li_type == XFS_LI_EFD));
1937 	}
1938 #endif
1939 	xfs_trans_unreserve_and_mod_sb(tp);
1940 	xfs_trans_unreserve_and_mod_dquots(tp);
1941 
1942 	if (tp->t_ticket) {
1943 		if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1944 			ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1945 			log_flags = XFS_LOG_REL_PERM_RESERV;
1946 		} else {
1947 			log_flags = 0;
1948 		}
1949 		xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1950 	}
1951 
1952 	/* mark this thread as no longer being in a transaction */
1953 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1954 
1955 	xfs_trans_free_items(tp, NULLCOMMITLSN, flags);
1956 	xfs_trans_free(tp);
1957 }
1958 
1959 /*
1960  * Roll from one trans in the sequence of PERMANENT transactions to
1961  * the next: permanent transactions are only flushed out when
1962  * committed with XFS_TRANS_RELEASE_LOG_RES, but we still want as soon
1963  * as possible to let chunks of it go to the log. So we commit the
1964  * chunk we've been working on and get a new transaction to continue.
1965  */
1966 int
1967 xfs_trans_roll(
1968 	struct xfs_trans	**tpp,
1969 	struct xfs_inode	*dp)
1970 {
1971 	struct xfs_trans	*trans;
1972 	unsigned int		logres, count;
1973 	int			error;
1974 
1975 	/*
1976 	 * Ensure that the inode is always logged.
1977 	 */
1978 	trans = *tpp;
1979 	xfs_trans_log_inode(trans, dp, XFS_ILOG_CORE);
1980 
1981 	/*
1982 	 * Copy the critical parameters from one trans to the next.
1983 	 */
1984 	logres = trans->t_log_res;
1985 	count = trans->t_log_count;
1986 	*tpp = xfs_trans_dup(trans);
1987 
1988 	/*
1989 	 * Commit the current transaction.
1990 	 * If this commit failed, then it'd just unlock those items that
1991 	 * are not marked ihold. That also means that a filesystem shutdown
1992 	 * is in progress. The caller takes the responsibility to cancel
1993 	 * the duplicate transaction that gets returned.
1994 	 */
1995 	error = xfs_trans_commit(trans, 0);
1996 	if (error)
1997 		return (error);
1998 
1999 	trans = *tpp;
2000 
2001 	/*
2002 	 * transaction commit worked ok so we can drop the extra ticket
2003 	 * reference that we gained in xfs_trans_dup()
2004 	 */
2005 	xfs_log_ticket_put(trans->t_ticket);
2006 
2007 
2008 	/*
2009 	 * Reserve space in the log for th next transaction.
2010 	 * This also pushes items in the "AIL", the list of logged items,
2011 	 * out to disk if they are taking up space at the tail of the log
2012 	 * that we want to use.  This requires that either nothing be locked
2013 	 * across this call, or that anything that is locked be logged in
2014 	 * the prior and the next transactions.
2015 	 */
2016 	error = xfs_trans_reserve(trans, 0, logres, 0,
2017 				  XFS_TRANS_PERM_LOG_RES, count);
2018 	/*
2019 	 *  Ensure that the inode is in the new transaction and locked.
2020 	 */
2021 	if (error)
2022 		return error;
2023 
2024 	xfs_trans_ijoin(trans, dp);
2025 	return 0;
2026 }
2027