1 /* 2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. 3 * Copyright (C) 2010 Red Hat, Inc. 4 * All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it would be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 */ 19 #include "xfs.h" 20 #include "xfs_fs.h" 21 #include "xfs_types.h" 22 #include "xfs_bit.h" 23 #include "xfs_log.h" 24 #include "xfs_inum.h" 25 #include "xfs_trans.h" 26 #include "xfs_sb.h" 27 #include "xfs_ag.h" 28 #include "xfs_mount.h" 29 #include "xfs_error.h" 30 #include "xfs_da_btree.h" 31 #include "xfs_bmap_btree.h" 32 #include "xfs_alloc_btree.h" 33 #include "xfs_ialloc_btree.h" 34 #include "xfs_dinode.h" 35 #include "xfs_inode.h" 36 #include "xfs_btree.h" 37 #include "xfs_ialloc.h" 38 #include "xfs_alloc.h" 39 #include "xfs_bmap.h" 40 #include "xfs_quota.h" 41 #include "xfs_trans_priv.h" 42 #include "xfs_trans_space.h" 43 #include "xfs_inode_item.h" 44 #include "xfs_trace.h" 45 46 kmem_zone_t *xfs_trans_zone; 47 kmem_zone_t *xfs_log_item_desc_zone; 48 49 50 /* 51 * Various log reservation values. 52 * 53 * These are based on the size of the file system block because that is what 54 * most transactions manipulate. Each adds in an additional 128 bytes per 55 * item logged to try to account for the overhead of the transaction mechanism. 56 * 57 * Note: Most of the reservations underestimate the number of allocation 58 * groups into which they could free extents in the xfs_bmap_finish() call. 59 * This is because the number in the worst case is quite high and quite 60 * unusual. In order to fix this we need to change xfs_bmap_finish() to free 61 * extents in only a single AG at a time. This will require changes to the 62 * EFI code as well, however, so that the EFI for the extents not freed is 63 * logged again in each transaction. See SGI PV #261917. 64 * 65 * Reservation functions here avoid a huge stack in xfs_trans_init due to 66 * register overflow from temporaries in the calculations. 67 */ 68 69 70 /* 71 * In a write transaction we can allocate a maximum of 2 72 * extents. This gives: 73 * the inode getting the new extents: inode size 74 * the inode's bmap btree: max depth * block size 75 * the agfs of the ags from which the extents are allocated: 2 * sector 76 * the superblock free block counter: sector size 77 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size 78 * And the bmap_finish transaction can free bmap blocks in a join: 79 * the agfs of the ags containing the blocks: 2 * sector size 80 * the agfls of the ags containing the blocks: 2 * sector size 81 * the super block free block counter: sector size 82 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size 83 */ 84 STATIC uint 85 xfs_calc_write_reservation( 86 struct xfs_mount *mp) 87 { 88 return XFS_DQUOT_LOGRES(mp) + 89 MAX((mp->m_sb.sb_inodesize + 90 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) + 91 2 * mp->m_sb.sb_sectsize + 92 mp->m_sb.sb_sectsize + 93 XFS_ALLOCFREE_LOG_RES(mp, 2) + 94 128 * (4 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 95 XFS_ALLOCFREE_LOG_COUNT(mp, 2))), 96 (2 * mp->m_sb.sb_sectsize + 97 2 * mp->m_sb.sb_sectsize + 98 mp->m_sb.sb_sectsize + 99 XFS_ALLOCFREE_LOG_RES(mp, 2) + 100 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2)))); 101 } 102 103 /* 104 * In truncating a file we free up to two extents at once. We can modify: 105 * the inode being truncated: inode size 106 * the inode's bmap btree: (max depth + 1) * block size 107 * And the bmap_finish transaction can free the blocks and bmap blocks: 108 * the agf for each of the ags: 4 * sector size 109 * the agfl for each of the ags: 4 * sector size 110 * the super block to reflect the freed blocks: sector size 111 * worst case split in allocation btrees per extent assuming 4 extents: 112 * 4 exts * 2 trees * (2 * max depth - 1) * block size 113 * the inode btree: max depth * blocksize 114 * the allocation btrees: 2 trees * (max depth - 1) * block size 115 */ 116 STATIC uint 117 xfs_calc_itruncate_reservation( 118 struct xfs_mount *mp) 119 { 120 return XFS_DQUOT_LOGRES(mp) + 121 MAX((mp->m_sb.sb_inodesize + 122 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1) + 123 128 * (2 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))), 124 (4 * mp->m_sb.sb_sectsize + 125 4 * mp->m_sb.sb_sectsize + 126 mp->m_sb.sb_sectsize + 127 XFS_ALLOCFREE_LOG_RES(mp, 4) + 128 128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4)) + 129 128 * 5 + 130 XFS_ALLOCFREE_LOG_RES(mp, 1) + 131 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels + 132 XFS_ALLOCFREE_LOG_COUNT(mp, 1)))); 133 } 134 135 /* 136 * In renaming a files we can modify: 137 * the four inodes involved: 4 * inode size 138 * the two directory btrees: 2 * (max depth + v2) * dir block size 139 * the two directory bmap btrees: 2 * max depth * block size 140 * And the bmap_finish transaction can free dir and bmap blocks (two sets 141 * of bmap blocks) giving: 142 * the agf for the ags in which the blocks live: 3 * sector size 143 * the agfl for the ags in which the blocks live: 3 * sector size 144 * the superblock for the free block count: sector size 145 * the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size 146 */ 147 STATIC uint 148 xfs_calc_rename_reservation( 149 struct xfs_mount *mp) 150 { 151 return XFS_DQUOT_LOGRES(mp) + 152 MAX((4 * mp->m_sb.sb_inodesize + 153 2 * XFS_DIROP_LOG_RES(mp) + 154 128 * (4 + 2 * XFS_DIROP_LOG_COUNT(mp))), 155 (3 * mp->m_sb.sb_sectsize + 156 3 * mp->m_sb.sb_sectsize + 157 mp->m_sb.sb_sectsize + 158 XFS_ALLOCFREE_LOG_RES(mp, 3) + 159 128 * (7 + XFS_ALLOCFREE_LOG_COUNT(mp, 3)))); 160 } 161 162 /* 163 * For creating a link to an inode: 164 * the parent directory inode: inode size 165 * the linked inode: inode size 166 * the directory btree could split: (max depth + v2) * dir block size 167 * the directory bmap btree could join or split: (max depth + v2) * blocksize 168 * And the bmap_finish transaction can free some bmap blocks giving: 169 * the agf for the ag in which the blocks live: sector size 170 * the agfl for the ag in which the blocks live: sector size 171 * the superblock for the free block count: sector size 172 * the allocation btrees: 2 trees * (2 * max depth - 1) * block size 173 */ 174 STATIC uint 175 xfs_calc_link_reservation( 176 struct xfs_mount *mp) 177 { 178 return XFS_DQUOT_LOGRES(mp) + 179 MAX((mp->m_sb.sb_inodesize + 180 mp->m_sb.sb_inodesize + 181 XFS_DIROP_LOG_RES(mp) + 182 128 * (2 + XFS_DIROP_LOG_COUNT(mp))), 183 (mp->m_sb.sb_sectsize + 184 mp->m_sb.sb_sectsize + 185 mp->m_sb.sb_sectsize + 186 XFS_ALLOCFREE_LOG_RES(mp, 1) + 187 128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1)))); 188 } 189 190 /* 191 * For removing a directory entry we can modify: 192 * the parent directory inode: inode size 193 * the removed inode: inode size 194 * the directory btree could join: (max depth + v2) * dir block size 195 * the directory bmap btree could join or split: (max depth + v2) * blocksize 196 * And the bmap_finish transaction can free the dir and bmap blocks giving: 197 * the agf for the ag in which the blocks live: 2 * sector size 198 * the agfl for the ag in which the blocks live: 2 * sector size 199 * the superblock for the free block count: sector size 200 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size 201 */ 202 STATIC uint 203 xfs_calc_remove_reservation( 204 struct xfs_mount *mp) 205 { 206 return XFS_DQUOT_LOGRES(mp) + 207 MAX((mp->m_sb.sb_inodesize + 208 mp->m_sb.sb_inodesize + 209 XFS_DIROP_LOG_RES(mp) + 210 128 * (2 + XFS_DIROP_LOG_COUNT(mp))), 211 (2 * mp->m_sb.sb_sectsize + 212 2 * mp->m_sb.sb_sectsize + 213 mp->m_sb.sb_sectsize + 214 XFS_ALLOCFREE_LOG_RES(mp, 2) + 215 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2)))); 216 } 217 218 /* 219 * For symlink we can modify: 220 * the parent directory inode: inode size 221 * the new inode: inode size 222 * the inode btree entry: 1 block 223 * the directory btree: (max depth + v2) * dir block size 224 * the directory inode's bmap btree: (max depth + v2) * block size 225 * the blocks for the symlink: 1 kB 226 * Or in the first xact we allocate some inodes giving: 227 * the agi and agf of the ag getting the new inodes: 2 * sectorsize 228 * the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize 229 * the inode btree: max depth * blocksize 230 * the allocation btrees: 2 trees * (2 * max depth - 1) * block size 231 */ 232 STATIC uint 233 xfs_calc_symlink_reservation( 234 struct xfs_mount *mp) 235 { 236 return XFS_DQUOT_LOGRES(mp) + 237 MAX((mp->m_sb.sb_inodesize + 238 mp->m_sb.sb_inodesize + 239 XFS_FSB_TO_B(mp, 1) + 240 XFS_DIROP_LOG_RES(mp) + 241 1024 + 242 128 * (4 + XFS_DIROP_LOG_COUNT(mp))), 243 (2 * mp->m_sb.sb_sectsize + 244 XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) + 245 XFS_FSB_TO_B(mp, mp->m_in_maxlevels) + 246 XFS_ALLOCFREE_LOG_RES(mp, 1) + 247 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels + 248 XFS_ALLOCFREE_LOG_COUNT(mp, 1)))); 249 } 250 251 /* 252 * For create we can modify: 253 * the parent directory inode: inode size 254 * the new inode: inode size 255 * the inode btree entry: block size 256 * the superblock for the nlink flag: sector size 257 * the directory btree: (max depth + v2) * dir block size 258 * the directory inode's bmap btree: (max depth + v2) * block size 259 * Or in the first xact we allocate some inodes giving: 260 * the agi and agf of the ag getting the new inodes: 2 * sectorsize 261 * the superblock for the nlink flag: sector size 262 * the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize 263 * the inode btree: max depth * blocksize 264 * the allocation btrees: 2 trees * (max depth - 1) * block size 265 */ 266 STATIC uint 267 xfs_calc_create_reservation( 268 struct xfs_mount *mp) 269 { 270 return XFS_DQUOT_LOGRES(mp) + 271 MAX((mp->m_sb.sb_inodesize + 272 mp->m_sb.sb_inodesize + 273 mp->m_sb.sb_sectsize + 274 XFS_FSB_TO_B(mp, 1) + 275 XFS_DIROP_LOG_RES(mp) + 276 128 * (3 + XFS_DIROP_LOG_COUNT(mp))), 277 (3 * mp->m_sb.sb_sectsize + 278 XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) + 279 XFS_FSB_TO_B(mp, mp->m_in_maxlevels) + 280 XFS_ALLOCFREE_LOG_RES(mp, 1) + 281 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels + 282 XFS_ALLOCFREE_LOG_COUNT(mp, 1)))); 283 } 284 285 /* 286 * Making a new directory is the same as creating a new file. 287 */ 288 STATIC uint 289 xfs_calc_mkdir_reservation( 290 struct xfs_mount *mp) 291 { 292 return xfs_calc_create_reservation(mp); 293 } 294 295 /* 296 * In freeing an inode we can modify: 297 * the inode being freed: inode size 298 * the super block free inode counter: sector size 299 * the agi hash list and counters: sector size 300 * the inode btree entry: block size 301 * the on disk inode before ours in the agi hash list: inode cluster size 302 * the inode btree: max depth * blocksize 303 * the allocation btrees: 2 trees * (max depth - 1) * block size 304 */ 305 STATIC uint 306 xfs_calc_ifree_reservation( 307 struct xfs_mount *mp) 308 { 309 return XFS_DQUOT_LOGRES(mp) + 310 mp->m_sb.sb_inodesize + 311 mp->m_sb.sb_sectsize + 312 mp->m_sb.sb_sectsize + 313 XFS_FSB_TO_B(mp, 1) + 314 MAX((__uint16_t)XFS_FSB_TO_B(mp, 1), 315 XFS_INODE_CLUSTER_SIZE(mp)) + 316 128 * 5 + 317 XFS_ALLOCFREE_LOG_RES(mp, 1) + 318 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels + 319 XFS_ALLOCFREE_LOG_COUNT(mp, 1)); 320 } 321 322 /* 323 * When only changing the inode we log the inode and possibly the superblock 324 * We also add a bit of slop for the transaction stuff. 325 */ 326 STATIC uint 327 xfs_calc_ichange_reservation( 328 struct xfs_mount *mp) 329 { 330 return XFS_DQUOT_LOGRES(mp) + 331 mp->m_sb.sb_inodesize + 332 mp->m_sb.sb_sectsize + 333 512; 334 335 } 336 337 /* 338 * Growing the data section of the filesystem. 339 * superblock 340 * agi and agf 341 * allocation btrees 342 */ 343 STATIC uint 344 xfs_calc_growdata_reservation( 345 struct xfs_mount *mp) 346 { 347 return mp->m_sb.sb_sectsize * 3 + 348 XFS_ALLOCFREE_LOG_RES(mp, 1) + 349 128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1)); 350 } 351 352 /* 353 * Growing the rt section of the filesystem. 354 * In the first set of transactions (ALLOC) we allocate space to the 355 * bitmap or summary files. 356 * superblock: sector size 357 * agf of the ag from which the extent is allocated: sector size 358 * bmap btree for bitmap/summary inode: max depth * blocksize 359 * bitmap/summary inode: inode size 360 * allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize 361 */ 362 STATIC uint 363 xfs_calc_growrtalloc_reservation( 364 struct xfs_mount *mp) 365 { 366 return 2 * mp->m_sb.sb_sectsize + 367 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) + 368 mp->m_sb.sb_inodesize + 369 XFS_ALLOCFREE_LOG_RES(mp, 1) + 370 128 * (3 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 371 XFS_ALLOCFREE_LOG_COUNT(mp, 1)); 372 } 373 374 /* 375 * Growing the rt section of the filesystem. 376 * In the second set of transactions (ZERO) we zero the new metadata blocks. 377 * one bitmap/summary block: blocksize 378 */ 379 STATIC uint 380 xfs_calc_growrtzero_reservation( 381 struct xfs_mount *mp) 382 { 383 return mp->m_sb.sb_blocksize + 128; 384 } 385 386 /* 387 * Growing the rt section of the filesystem. 388 * In the third set of transactions (FREE) we update metadata without 389 * allocating any new blocks. 390 * superblock: sector size 391 * bitmap inode: inode size 392 * summary inode: inode size 393 * one bitmap block: blocksize 394 * summary blocks: new summary size 395 */ 396 STATIC uint 397 xfs_calc_growrtfree_reservation( 398 struct xfs_mount *mp) 399 { 400 return mp->m_sb.sb_sectsize + 401 2 * mp->m_sb.sb_inodesize + 402 mp->m_sb.sb_blocksize + 403 mp->m_rsumsize + 404 128 * 5; 405 } 406 407 /* 408 * Logging the inode modification timestamp on a synchronous write. 409 * inode 410 */ 411 STATIC uint 412 xfs_calc_swrite_reservation( 413 struct xfs_mount *mp) 414 { 415 return mp->m_sb.sb_inodesize + 128; 416 } 417 418 /* 419 * Logging the inode mode bits when writing a setuid/setgid file 420 * inode 421 */ 422 STATIC uint 423 xfs_calc_writeid_reservation(xfs_mount_t *mp) 424 { 425 return mp->m_sb.sb_inodesize + 128; 426 } 427 428 /* 429 * Converting the inode from non-attributed to attributed. 430 * the inode being converted: inode size 431 * agf block and superblock (for block allocation) 432 * the new block (directory sized) 433 * bmap blocks for the new directory block 434 * allocation btrees 435 */ 436 STATIC uint 437 xfs_calc_addafork_reservation( 438 struct xfs_mount *mp) 439 { 440 return XFS_DQUOT_LOGRES(mp) + 441 mp->m_sb.sb_inodesize + 442 mp->m_sb.sb_sectsize * 2 + 443 mp->m_dirblksize + 444 XFS_FSB_TO_B(mp, XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1) + 445 XFS_ALLOCFREE_LOG_RES(mp, 1) + 446 128 * (4 + XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1 + 447 XFS_ALLOCFREE_LOG_COUNT(mp, 1)); 448 } 449 450 /* 451 * Removing the attribute fork of a file 452 * the inode being truncated: inode size 453 * the inode's bmap btree: max depth * block size 454 * And the bmap_finish transaction can free the blocks and bmap blocks: 455 * the agf for each of the ags: 4 * sector size 456 * the agfl for each of the ags: 4 * sector size 457 * the super block to reflect the freed blocks: sector size 458 * worst case split in allocation btrees per extent assuming 4 extents: 459 * 4 exts * 2 trees * (2 * max depth - 1) * block size 460 */ 461 STATIC uint 462 xfs_calc_attrinval_reservation( 463 struct xfs_mount *mp) 464 { 465 return MAX((mp->m_sb.sb_inodesize + 466 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) + 467 128 * (1 + XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK))), 468 (4 * mp->m_sb.sb_sectsize + 469 4 * mp->m_sb.sb_sectsize + 470 mp->m_sb.sb_sectsize + 471 XFS_ALLOCFREE_LOG_RES(mp, 4) + 472 128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4)))); 473 } 474 475 /* 476 * Setting an attribute. 477 * the inode getting the attribute 478 * the superblock for allocations 479 * the agfs extents are allocated from 480 * the attribute btree * max depth 481 * the inode allocation btree 482 * Since attribute transaction space is dependent on the size of the attribute, 483 * the calculation is done partially at mount time and partially at runtime. 484 */ 485 STATIC uint 486 xfs_calc_attrset_reservation( 487 struct xfs_mount *mp) 488 { 489 return XFS_DQUOT_LOGRES(mp) + 490 mp->m_sb.sb_inodesize + 491 mp->m_sb.sb_sectsize + 492 XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) + 493 128 * (2 + XFS_DA_NODE_MAXDEPTH); 494 } 495 496 /* 497 * Removing an attribute. 498 * the inode: inode size 499 * the attribute btree could join: max depth * block size 500 * the inode bmap btree could join or split: max depth * block size 501 * And the bmap_finish transaction can free the attr blocks freed giving: 502 * the agf for the ag in which the blocks live: 2 * sector size 503 * the agfl for the ag in which the blocks live: 2 * sector size 504 * the superblock for the free block count: sector size 505 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size 506 */ 507 STATIC uint 508 xfs_calc_attrrm_reservation( 509 struct xfs_mount *mp) 510 { 511 return XFS_DQUOT_LOGRES(mp) + 512 MAX((mp->m_sb.sb_inodesize + 513 XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) + 514 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) + 515 128 * (1 + XFS_DA_NODE_MAXDEPTH + 516 XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))), 517 (2 * mp->m_sb.sb_sectsize + 518 2 * mp->m_sb.sb_sectsize + 519 mp->m_sb.sb_sectsize + 520 XFS_ALLOCFREE_LOG_RES(mp, 2) + 521 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2)))); 522 } 523 524 /* 525 * Clearing a bad agino number in an agi hash bucket. 526 */ 527 STATIC uint 528 xfs_calc_clear_agi_bucket_reservation( 529 struct xfs_mount *mp) 530 { 531 return mp->m_sb.sb_sectsize + 128; 532 } 533 534 /* 535 * Initialize the precomputed transaction reservation values 536 * in the mount structure. 537 */ 538 void 539 xfs_trans_init( 540 struct xfs_mount *mp) 541 { 542 struct xfs_trans_reservations *resp = &mp->m_reservations; 543 544 resp->tr_write = xfs_calc_write_reservation(mp); 545 resp->tr_itruncate = xfs_calc_itruncate_reservation(mp); 546 resp->tr_rename = xfs_calc_rename_reservation(mp); 547 resp->tr_link = xfs_calc_link_reservation(mp); 548 resp->tr_remove = xfs_calc_remove_reservation(mp); 549 resp->tr_symlink = xfs_calc_symlink_reservation(mp); 550 resp->tr_create = xfs_calc_create_reservation(mp); 551 resp->tr_mkdir = xfs_calc_mkdir_reservation(mp); 552 resp->tr_ifree = xfs_calc_ifree_reservation(mp); 553 resp->tr_ichange = xfs_calc_ichange_reservation(mp); 554 resp->tr_growdata = xfs_calc_growdata_reservation(mp); 555 resp->tr_swrite = xfs_calc_swrite_reservation(mp); 556 resp->tr_writeid = xfs_calc_writeid_reservation(mp); 557 resp->tr_addafork = xfs_calc_addafork_reservation(mp); 558 resp->tr_attrinval = xfs_calc_attrinval_reservation(mp); 559 resp->tr_attrset = xfs_calc_attrset_reservation(mp); 560 resp->tr_attrrm = xfs_calc_attrrm_reservation(mp); 561 resp->tr_clearagi = xfs_calc_clear_agi_bucket_reservation(mp); 562 resp->tr_growrtalloc = xfs_calc_growrtalloc_reservation(mp); 563 resp->tr_growrtzero = xfs_calc_growrtzero_reservation(mp); 564 resp->tr_growrtfree = xfs_calc_growrtfree_reservation(mp); 565 } 566 567 /* 568 * This routine is called to allocate a transaction structure. 569 * The type parameter indicates the type of the transaction. These 570 * are enumerated in xfs_trans.h. 571 * 572 * Dynamically allocate the transaction structure from the transaction 573 * zone, initialize it, and return it to the caller. 574 */ 575 xfs_trans_t * 576 xfs_trans_alloc( 577 xfs_mount_t *mp, 578 uint type) 579 { 580 xfs_wait_for_freeze(mp, SB_FREEZE_TRANS); 581 return _xfs_trans_alloc(mp, type, KM_SLEEP); 582 } 583 584 xfs_trans_t * 585 _xfs_trans_alloc( 586 xfs_mount_t *mp, 587 uint type, 588 uint memflags) 589 { 590 xfs_trans_t *tp; 591 592 atomic_inc(&mp->m_active_trans); 593 594 tp = kmem_zone_zalloc(xfs_trans_zone, memflags); 595 tp->t_magic = XFS_TRANS_MAGIC; 596 tp->t_type = type; 597 tp->t_mountp = mp; 598 INIT_LIST_HEAD(&tp->t_items); 599 INIT_LIST_HEAD(&tp->t_busy); 600 return tp; 601 } 602 603 /* 604 * Free the transaction structure. If there is more clean up 605 * to do when the structure is freed, add it here. 606 */ 607 STATIC void 608 xfs_trans_free( 609 struct xfs_trans *tp) 610 { 611 xfs_alloc_busy_sort(&tp->t_busy); 612 xfs_alloc_busy_clear(tp->t_mountp, &tp->t_busy, false); 613 614 atomic_dec(&tp->t_mountp->m_active_trans); 615 xfs_trans_free_dqinfo(tp); 616 kmem_zone_free(xfs_trans_zone, tp); 617 } 618 619 /* 620 * This is called to create a new transaction which will share the 621 * permanent log reservation of the given transaction. The remaining 622 * unused block and rt extent reservations are also inherited. This 623 * implies that the original transaction is no longer allowed to allocate 624 * blocks. Locks and log items, however, are no inherited. They must 625 * be added to the new transaction explicitly. 626 */ 627 xfs_trans_t * 628 xfs_trans_dup( 629 xfs_trans_t *tp) 630 { 631 xfs_trans_t *ntp; 632 633 ntp = kmem_zone_zalloc(xfs_trans_zone, KM_SLEEP); 634 635 /* 636 * Initialize the new transaction structure. 637 */ 638 ntp->t_magic = XFS_TRANS_MAGIC; 639 ntp->t_type = tp->t_type; 640 ntp->t_mountp = tp->t_mountp; 641 INIT_LIST_HEAD(&ntp->t_items); 642 INIT_LIST_HEAD(&ntp->t_busy); 643 644 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 645 ASSERT(tp->t_ticket != NULL); 646 647 ntp->t_flags = XFS_TRANS_PERM_LOG_RES | (tp->t_flags & XFS_TRANS_RESERVE); 648 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket); 649 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used; 650 tp->t_blk_res = tp->t_blk_res_used; 651 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used; 652 tp->t_rtx_res = tp->t_rtx_res_used; 653 ntp->t_pflags = tp->t_pflags; 654 655 xfs_trans_dup_dqinfo(tp, ntp); 656 657 atomic_inc(&tp->t_mountp->m_active_trans); 658 return ntp; 659 } 660 661 /* 662 * This is called to reserve free disk blocks and log space for the 663 * given transaction. This must be done before allocating any resources 664 * within the transaction. 665 * 666 * This will return ENOSPC if there are not enough blocks available. 667 * It will sleep waiting for available log space. 668 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which 669 * is used by long running transactions. If any one of the reservations 670 * fails then they will all be backed out. 671 * 672 * This does not do quota reservations. That typically is done by the 673 * caller afterwards. 674 */ 675 int 676 xfs_trans_reserve( 677 xfs_trans_t *tp, 678 uint blocks, 679 uint logspace, 680 uint rtextents, 681 uint flags, 682 uint logcount) 683 { 684 int log_flags; 685 int error = 0; 686 int rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0; 687 688 /* Mark this thread as being in a transaction */ 689 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS); 690 691 /* 692 * Attempt to reserve the needed disk blocks by decrementing 693 * the number needed from the number available. This will 694 * fail if the count would go below zero. 695 */ 696 if (blocks > 0) { 697 error = xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS, 698 -((int64_t)blocks), rsvd); 699 if (error != 0) { 700 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 701 return (XFS_ERROR(ENOSPC)); 702 } 703 tp->t_blk_res += blocks; 704 } 705 706 /* 707 * Reserve the log space needed for this transaction. 708 */ 709 if (logspace > 0) { 710 ASSERT((tp->t_log_res == 0) || (tp->t_log_res == logspace)); 711 ASSERT((tp->t_log_count == 0) || 712 (tp->t_log_count == logcount)); 713 if (flags & XFS_TRANS_PERM_LOG_RES) { 714 log_flags = XFS_LOG_PERM_RESERV; 715 tp->t_flags |= XFS_TRANS_PERM_LOG_RES; 716 } else { 717 ASSERT(tp->t_ticket == NULL); 718 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES)); 719 log_flags = 0; 720 } 721 722 error = xfs_log_reserve(tp->t_mountp, logspace, logcount, 723 &tp->t_ticket, 724 XFS_TRANSACTION, log_flags, tp->t_type); 725 if (error) { 726 goto undo_blocks; 727 } 728 tp->t_log_res = logspace; 729 tp->t_log_count = logcount; 730 } 731 732 /* 733 * Attempt to reserve the needed realtime extents by decrementing 734 * the number needed from the number available. This will 735 * fail if the count would go below zero. 736 */ 737 if (rtextents > 0) { 738 error = xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FREXTENTS, 739 -((int64_t)rtextents), rsvd); 740 if (error) { 741 error = XFS_ERROR(ENOSPC); 742 goto undo_log; 743 } 744 tp->t_rtx_res += rtextents; 745 } 746 747 return 0; 748 749 /* 750 * Error cases jump to one of these labels to undo any 751 * reservations which have already been performed. 752 */ 753 undo_log: 754 if (logspace > 0) { 755 if (flags & XFS_TRANS_PERM_LOG_RES) { 756 log_flags = XFS_LOG_REL_PERM_RESERV; 757 } else { 758 log_flags = 0; 759 } 760 xfs_log_done(tp->t_mountp, tp->t_ticket, NULL, log_flags); 761 tp->t_ticket = NULL; 762 tp->t_log_res = 0; 763 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES; 764 } 765 766 undo_blocks: 767 if (blocks > 0) { 768 xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS, 769 (int64_t)blocks, rsvd); 770 tp->t_blk_res = 0; 771 } 772 773 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 774 775 return error; 776 } 777 778 /* 779 * Record the indicated change to the given field for application 780 * to the file system's superblock when the transaction commits. 781 * For now, just store the change in the transaction structure. 782 * 783 * Mark the transaction structure to indicate that the superblock 784 * needs to be updated before committing. 785 * 786 * Because we may not be keeping track of allocated/free inodes and 787 * used filesystem blocks in the superblock, we do not mark the 788 * superblock dirty in this transaction if we modify these fields. 789 * We still need to update the transaction deltas so that they get 790 * applied to the incore superblock, but we don't want them to 791 * cause the superblock to get locked and logged if these are the 792 * only fields in the superblock that the transaction modifies. 793 */ 794 void 795 xfs_trans_mod_sb( 796 xfs_trans_t *tp, 797 uint field, 798 int64_t delta) 799 { 800 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY); 801 xfs_mount_t *mp = tp->t_mountp; 802 803 switch (field) { 804 case XFS_TRANS_SB_ICOUNT: 805 tp->t_icount_delta += delta; 806 if (xfs_sb_version_haslazysbcount(&mp->m_sb)) 807 flags &= ~XFS_TRANS_SB_DIRTY; 808 break; 809 case XFS_TRANS_SB_IFREE: 810 tp->t_ifree_delta += delta; 811 if (xfs_sb_version_haslazysbcount(&mp->m_sb)) 812 flags &= ~XFS_TRANS_SB_DIRTY; 813 break; 814 case XFS_TRANS_SB_FDBLOCKS: 815 /* 816 * Track the number of blocks allocated in the 817 * transaction. Make sure it does not exceed the 818 * number reserved. 819 */ 820 if (delta < 0) { 821 tp->t_blk_res_used += (uint)-delta; 822 ASSERT(tp->t_blk_res_used <= tp->t_blk_res); 823 } 824 tp->t_fdblocks_delta += delta; 825 if (xfs_sb_version_haslazysbcount(&mp->m_sb)) 826 flags &= ~XFS_TRANS_SB_DIRTY; 827 break; 828 case XFS_TRANS_SB_RES_FDBLOCKS: 829 /* 830 * The allocation has already been applied to the 831 * in-core superblock's counter. This should only 832 * be applied to the on-disk superblock. 833 */ 834 ASSERT(delta < 0); 835 tp->t_res_fdblocks_delta += delta; 836 if (xfs_sb_version_haslazysbcount(&mp->m_sb)) 837 flags &= ~XFS_TRANS_SB_DIRTY; 838 break; 839 case XFS_TRANS_SB_FREXTENTS: 840 /* 841 * Track the number of blocks allocated in the 842 * transaction. Make sure it does not exceed the 843 * number reserved. 844 */ 845 if (delta < 0) { 846 tp->t_rtx_res_used += (uint)-delta; 847 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res); 848 } 849 tp->t_frextents_delta += delta; 850 break; 851 case XFS_TRANS_SB_RES_FREXTENTS: 852 /* 853 * The allocation has already been applied to the 854 * in-core superblock's counter. This should only 855 * be applied to the on-disk superblock. 856 */ 857 ASSERT(delta < 0); 858 tp->t_res_frextents_delta += delta; 859 break; 860 case XFS_TRANS_SB_DBLOCKS: 861 ASSERT(delta > 0); 862 tp->t_dblocks_delta += delta; 863 break; 864 case XFS_TRANS_SB_AGCOUNT: 865 ASSERT(delta > 0); 866 tp->t_agcount_delta += delta; 867 break; 868 case XFS_TRANS_SB_IMAXPCT: 869 tp->t_imaxpct_delta += delta; 870 break; 871 case XFS_TRANS_SB_REXTSIZE: 872 tp->t_rextsize_delta += delta; 873 break; 874 case XFS_TRANS_SB_RBMBLOCKS: 875 tp->t_rbmblocks_delta += delta; 876 break; 877 case XFS_TRANS_SB_RBLOCKS: 878 tp->t_rblocks_delta += delta; 879 break; 880 case XFS_TRANS_SB_REXTENTS: 881 tp->t_rextents_delta += delta; 882 break; 883 case XFS_TRANS_SB_REXTSLOG: 884 tp->t_rextslog_delta += delta; 885 break; 886 default: 887 ASSERT(0); 888 return; 889 } 890 891 tp->t_flags |= flags; 892 } 893 894 /* 895 * xfs_trans_apply_sb_deltas() is called from the commit code 896 * to bring the superblock buffer into the current transaction 897 * and modify it as requested by earlier calls to xfs_trans_mod_sb(). 898 * 899 * For now we just look at each field allowed to change and change 900 * it if necessary. 901 */ 902 STATIC void 903 xfs_trans_apply_sb_deltas( 904 xfs_trans_t *tp) 905 { 906 xfs_dsb_t *sbp; 907 xfs_buf_t *bp; 908 int whole = 0; 909 910 bp = xfs_trans_getsb(tp, tp->t_mountp, 0); 911 sbp = XFS_BUF_TO_SBP(bp); 912 913 /* 914 * Check that superblock mods match the mods made to AGF counters. 915 */ 916 ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) == 917 (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta + 918 tp->t_ag_btree_delta)); 919 920 /* 921 * Only update the superblock counters if we are logging them 922 */ 923 if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) { 924 if (tp->t_icount_delta) 925 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta); 926 if (tp->t_ifree_delta) 927 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta); 928 if (tp->t_fdblocks_delta) 929 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta); 930 if (tp->t_res_fdblocks_delta) 931 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta); 932 } 933 934 if (tp->t_frextents_delta) 935 be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta); 936 if (tp->t_res_frextents_delta) 937 be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta); 938 939 if (tp->t_dblocks_delta) { 940 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta); 941 whole = 1; 942 } 943 if (tp->t_agcount_delta) { 944 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta); 945 whole = 1; 946 } 947 if (tp->t_imaxpct_delta) { 948 sbp->sb_imax_pct += tp->t_imaxpct_delta; 949 whole = 1; 950 } 951 if (tp->t_rextsize_delta) { 952 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta); 953 whole = 1; 954 } 955 if (tp->t_rbmblocks_delta) { 956 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta); 957 whole = 1; 958 } 959 if (tp->t_rblocks_delta) { 960 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta); 961 whole = 1; 962 } 963 if (tp->t_rextents_delta) { 964 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta); 965 whole = 1; 966 } 967 if (tp->t_rextslog_delta) { 968 sbp->sb_rextslog += tp->t_rextslog_delta; 969 whole = 1; 970 } 971 972 if (whole) 973 /* 974 * Log the whole thing, the fields are noncontiguous. 975 */ 976 xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1); 977 else 978 /* 979 * Since all the modifiable fields are contiguous, we 980 * can get away with this. 981 */ 982 xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount), 983 offsetof(xfs_dsb_t, sb_frextents) + 984 sizeof(sbp->sb_frextents) - 1); 985 } 986 987 /* 988 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations 989 * and apply superblock counter changes to the in-core superblock. The 990 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT 991 * applied to the in-core superblock. The idea is that that has already been 992 * done. 993 * 994 * This is done efficiently with a single call to xfs_mod_incore_sb_batch(). 995 * However, we have to ensure that we only modify each superblock field only 996 * once because the application of the delta values may not be atomic. That can 997 * lead to ENOSPC races occurring if we have two separate modifcations of the 998 * free space counter to put back the entire reservation and then take away 999 * what we used. 1000 * 1001 * If we are not logging superblock counters, then the inode allocated/free and 1002 * used block counts are not updated in the on disk superblock. In this case, 1003 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we 1004 * still need to update the incore superblock with the changes. 1005 */ 1006 void 1007 xfs_trans_unreserve_and_mod_sb( 1008 xfs_trans_t *tp) 1009 { 1010 xfs_mod_sb_t msb[9]; /* If you add cases, add entries */ 1011 xfs_mod_sb_t *msbp; 1012 xfs_mount_t *mp = tp->t_mountp; 1013 /* REFERENCED */ 1014 int error; 1015 int rsvd; 1016 int64_t blkdelta = 0; 1017 int64_t rtxdelta = 0; 1018 int64_t idelta = 0; 1019 int64_t ifreedelta = 0; 1020 1021 msbp = msb; 1022 rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0; 1023 1024 /* calculate deltas */ 1025 if (tp->t_blk_res > 0) 1026 blkdelta = tp->t_blk_res; 1027 if ((tp->t_fdblocks_delta != 0) && 1028 (xfs_sb_version_haslazysbcount(&mp->m_sb) || 1029 (tp->t_flags & XFS_TRANS_SB_DIRTY))) 1030 blkdelta += tp->t_fdblocks_delta; 1031 1032 if (tp->t_rtx_res > 0) 1033 rtxdelta = tp->t_rtx_res; 1034 if ((tp->t_frextents_delta != 0) && 1035 (tp->t_flags & XFS_TRANS_SB_DIRTY)) 1036 rtxdelta += tp->t_frextents_delta; 1037 1038 if (xfs_sb_version_haslazysbcount(&mp->m_sb) || 1039 (tp->t_flags & XFS_TRANS_SB_DIRTY)) { 1040 idelta = tp->t_icount_delta; 1041 ifreedelta = tp->t_ifree_delta; 1042 } 1043 1044 /* apply the per-cpu counters */ 1045 if (blkdelta) { 1046 error = xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS, 1047 blkdelta, rsvd); 1048 if (error) 1049 goto out; 1050 } 1051 1052 if (idelta) { 1053 error = xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT, 1054 idelta, rsvd); 1055 if (error) 1056 goto out_undo_fdblocks; 1057 } 1058 1059 if (ifreedelta) { 1060 error = xfs_icsb_modify_counters(mp, XFS_SBS_IFREE, 1061 ifreedelta, rsvd); 1062 if (error) 1063 goto out_undo_icount; 1064 } 1065 1066 /* apply remaining deltas */ 1067 if (rtxdelta != 0) { 1068 msbp->msb_field = XFS_SBS_FREXTENTS; 1069 msbp->msb_delta = rtxdelta; 1070 msbp++; 1071 } 1072 1073 if (tp->t_flags & XFS_TRANS_SB_DIRTY) { 1074 if (tp->t_dblocks_delta != 0) { 1075 msbp->msb_field = XFS_SBS_DBLOCKS; 1076 msbp->msb_delta = tp->t_dblocks_delta; 1077 msbp++; 1078 } 1079 if (tp->t_agcount_delta != 0) { 1080 msbp->msb_field = XFS_SBS_AGCOUNT; 1081 msbp->msb_delta = tp->t_agcount_delta; 1082 msbp++; 1083 } 1084 if (tp->t_imaxpct_delta != 0) { 1085 msbp->msb_field = XFS_SBS_IMAX_PCT; 1086 msbp->msb_delta = tp->t_imaxpct_delta; 1087 msbp++; 1088 } 1089 if (tp->t_rextsize_delta != 0) { 1090 msbp->msb_field = XFS_SBS_REXTSIZE; 1091 msbp->msb_delta = tp->t_rextsize_delta; 1092 msbp++; 1093 } 1094 if (tp->t_rbmblocks_delta != 0) { 1095 msbp->msb_field = XFS_SBS_RBMBLOCKS; 1096 msbp->msb_delta = tp->t_rbmblocks_delta; 1097 msbp++; 1098 } 1099 if (tp->t_rblocks_delta != 0) { 1100 msbp->msb_field = XFS_SBS_RBLOCKS; 1101 msbp->msb_delta = tp->t_rblocks_delta; 1102 msbp++; 1103 } 1104 if (tp->t_rextents_delta != 0) { 1105 msbp->msb_field = XFS_SBS_REXTENTS; 1106 msbp->msb_delta = tp->t_rextents_delta; 1107 msbp++; 1108 } 1109 if (tp->t_rextslog_delta != 0) { 1110 msbp->msb_field = XFS_SBS_REXTSLOG; 1111 msbp->msb_delta = tp->t_rextslog_delta; 1112 msbp++; 1113 } 1114 } 1115 1116 /* 1117 * If we need to change anything, do it. 1118 */ 1119 if (msbp > msb) { 1120 error = xfs_mod_incore_sb_batch(tp->t_mountp, msb, 1121 (uint)(msbp - msb), rsvd); 1122 if (error) 1123 goto out_undo_ifreecount; 1124 } 1125 1126 return; 1127 1128 out_undo_ifreecount: 1129 if (ifreedelta) 1130 xfs_icsb_modify_counters(mp, XFS_SBS_IFREE, -ifreedelta, rsvd); 1131 out_undo_icount: 1132 if (idelta) 1133 xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT, -idelta, rsvd); 1134 out_undo_fdblocks: 1135 if (blkdelta) 1136 xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS, -blkdelta, rsvd); 1137 out: 1138 ASSERT(error == 0); 1139 return; 1140 } 1141 1142 /* 1143 * Add the given log item to the transaction's list of log items. 1144 * 1145 * The log item will now point to its new descriptor with its li_desc field. 1146 */ 1147 void 1148 xfs_trans_add_item( 1149 struct xfs_trans *tp, 1150 struct xfs_log_item *lip) 1151 { 1152 struct xfs_log_item_desc *lidp; 1153 1154 ASSERT(lip->li_mountp = tp->t_mountp); 1155 ASSERT(lip->li_ailp = tp->t_mountp->m_ail); 1156 1157 lidp = kmem_zone_zalloc(xfs_log_item_desc_zone, KM_SLEEP | KM_NOFS); 1158 1159 lidp->lid_item = lip; 1160 lidp->lid_flags = 0; 1161 lidp->lid_size = 0; 1162 list_add_tail(&lidp->lid_trans, &tp->t_items); 1163 1164 lip->li_desc = lidp; 1165 } 1166 1167 STATIC void 1168 xfs_trans_free_item_desc( 1169 struct xfs_log_item_desc *lidp) 1170 { 1171 list_del_init(&lidp->lid_trans); 1172 kmem_zone_free(xfs_log_item_desc_zone, lidp); 1173 } 1174 1175 /* 1176 * Unlink and free the given descriptor. 1177 */ 1178 void 1179 xfs_trans_del_item( 1180 struct xfs_log_item *lip) 1181 { 1182 xfs_trans_free_item_desc(lip->li_desc); 1183 lip->li_desc = NULL; 1184 } 1185 1186 /* 1187 * Unlock all of the items of a transaction and free all the descriptors 1188 * of that transaction. 1189 */ 1190 void 1191 xfs_trans_free_items( 1192 struct xfs_trans *tp, 1193 xfs_lsn_t commit_lsn, 1194 int flags) 1195 { 1196 struct xfs_log_item_desc *lidp, *next; 1197 1198 list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) { 1199 struct xfs_log_item *lip = lidp->lid_item; 1200 1201 lip->li_desc = NULL; 1202 1203 if (commit_lsn != NULLCOMMITLSN) 1204 IOP_COMMITTING(lip, commit_lsn); 1205 if (flags & XFS_TRANS_ABORT) 1206 lip->li_flags |= XFS_LI_ABORTED; 1207 IOP_UNLOCK(lip); 1208 1209 xfs_trans_free_item_desc(lidp); 1210 } 1211 } 1212 1213 /* 1214 * Unlock the items associated with a transaction. 1215 * 1216 * Items which were not logged should be freed. Those which were logged must 1217 * still be tracked so they can be unpinned when the transaction commits. 1218 */ 1219 STATIC void 1220 xfs_trans_unlock_items( 1221 struct xfs_trans *tp, 1222 xfs_lsn_t commit_lsn) 1223 { 1224 struct xfs_log_item_desc *lidp, *next; 1225 1226 list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) { 1227 struct xfs_log_item *lip = lidp->lid_item; 1228 1229 lip->li_desc = NULL; 1230 1231 if (commit_lsn != NULLCOMMITLSN) 1232 IOP_COMMITTING(lip, commit_lsn); 1233 IOP_UNLOCK(lip); 1234 1235 /* 1236 * Free the descriptor if the item is not dirty 1237 * within this transaction. 1238 */ 1239 if (!(lidp->lid_flags & XFS_LID_DIRTY)) 1240 xfs_trans_free_item_desc(lidp); 1241 } 1242 } 1243 1244 /* 1245 * Total up the number of log iovecs needed to commit this 1246 * transaction. The transaction itself needs one for the 1247 * transaction header. Ask each dirty item in turn how many 1248 * it needs to get the total. 1249 */ 1250 static uint 1251 xfs_trans_count_vecs( 1252 struct xfs_trans *tp) 1253 { 1254 int nvecs; 1255 struct xfs_log_item_desc *lidp; 1256 1257 nvecs = 1; 1258 1259 /* In the non-debug case we need to start bailing out if we 1260 * didn't find a log_item here, return zero and let trans_commit 1261 * deal with it. 1262 */ 1263 if (list_empty(&tp->t_items)) { 1264 ASSERT(0); 1265 return 0; 1266 } 1267 1268 list_for_each_entry(lidp, &tp->t_items, lid_trans) { 1269 /* 1270 * Skip items which aren't dirty in this transaction. 1271 */ 1272 if (!(lidp->lid_flags & XFS_LID_DIRTY)) 1273 continue; 1274 lidp->lid_size = IOP_SIZE(lidp->lid_item); 1275 nvecs += lidp->lid_size; 1276 } 1277 1278 return nvecs; 1279 } 1280 1281 /* 1282 * Fill in the vector with pointers to data to be logged 1283 * by this transaction. The transaction header takes 1284 * the first vector, and then each dirty item takes the 1285 * number of vectors it indicated it needed in xfs_trans_count_vecs(). 1286 * 1287 * As each item fills in the entries it needs, also pin the item 1288 * so that it cannot be flushed out until the log write completes. 1289 */ 1290 static void 1291 xfs_trans_fill_vecs( 1292 struct xfs_trans *tp, 1293 struct xfs_log_iovec *log_vector) 1294 { 1295 struct xfs_log_item_desc *lidp; 1296 struct xfs_log_iovec *vecp; 1297 uint nitems; 1298 1299 /* 1300 * Skip over the entry for the transaction header, we'll 1301 * fill that in at the end. 1302 */ 1303 vecp = log_vector + 1; 1304 1305 nitems = 0; 1306 ASSERT(!list_empty(&tp->t_items)); 1307 list_for_each_entry(lidp, &tp->t_items, lid_trans) { 1308 /* Skip items which aren't dirty in this transaction. */ 1309 if (!(lidp->lid_flags & XFS_LID_DIRTY)) 1310 continue; 1311 1312 /* 1313 * The item may be marked dirty but not log anything. This can 1314 * be used to get called when a transaction is committed. 1315 */ 1316 if (lidp->lid_size) 1317 nitems++; 1318 IOP_FORMAT(lidp->lid_item, vecp); 1319 vecp += lidp->lid_size; 1320 IOP_PIN(lidp->lid_item); 1321 } 1322 1323 /* 1324 * Now that we've counted the number of items in this transaction, fill 1325 * in the transaction header. Note that the transaction header does not 1326 * have a log item. 1327 */ 1328 tp->t_header.th_magic = XFS_TRANS_HEADER_MAGIC; 1329 tp->t_header.th_type = tp->t_type; 1330 tp->t_header.th_num_items = nitems; 1331 log_vector->i_addr = (xfs_caddr_t)&tp->t_header; 1332 log_vector->i_len = sizeof(xfs_trans_header_t); 1333 log_vector->i_type = XLOG_REG_TYPE_TRANSHDR; 1334 } 1335 1336 /* 1337 * The committed item processing consists of calling the committed routine of 1338 * each logged item, updating the item's position in the AIL if necessary, and 1339 * unpinning each item. If the committed routine returns -1, then do nothing 1340 * further with the item because it may have been freed. 1341 * 1342 * Since items are unlocked when they are copied to the incore log, it is 1343 * possible for two transactions to be completing and manipulating the same 1344 * item simultaneously. The AIL lock will protect the lsn field of each item. 1345 * The value of this field can never go backwards. 1346 * 1347 * We unpin the items after repositioning them in the AIL, because otherwise 1348 * they could be immediately flushed and we'd have to race with the flusher 1349 * trying to pull the item from the AIL as we add it. 1350 */ 1351 static void 1352 xfs_trans_item_committed( 1353 struct xfs_log_item *lip, 1354 xfs_lsn_t commit_lsn, 1355 int aborted) 1356 { 1357 xfs_lsn_t item_lsn; 1358 struct xfs_ail *ailp; 1359 1360 if (aborted) 1361 lip->li_flags |= XFS_LI_ABORTED; 1362 item_lsn = IOP_COMMITTED(lip, commit_lsn); 1363 1364 /* item_lsn of -1 means the item needs no further processing */ 1365 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0) 1366 return; 1367 1368 /* 1369 * If the returned lsn is greater than what it contained before, update 1370 * the location of the item in the AIL. If it is not, then do nothing. 1371 * Items can never move backwards in the AIL. 1372 * 1373 * While the new lsn should usually be greater, it is possible that a 1374 * later transaction completing simultaneously with an earlier one 1375 * using the same item could complete first with a higher lsn. This 1376 * would cause the earlier transaction to fail the test below. 1377 */ 1378 ailp = lip->li_ailp; 1379 spin_lock(&ailp->xa_lock); 1380 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) { 1381 /* 1382 * This will set the item's lsn to item_lsn and update the 1383 * position of the item in the AIL. 1384 * 1385 * xfs_trans_ail_update() drops the AIL lock. 1386 */ 1387 xfs_trans_ail_update(ailp, lip, item_lsn); 1388 } else { 1389 spin_unlock(&ailp->xa_lock); 1390 } 1391 1392 /* 1393 * Now that we've repositioned the item in the AIL, unpin it so it can 1394 * be flushed. Pass information about buffer stale state down from the 1395 * log item flags, if anyone else stales the buffer we do not want to 1396 * pay any attention to it. 1397 */ 1398 IOP_UNPIN(lip, 0); 1399 } 1400 1401 /* 1402 * This is typically called by the LM when a transaction has been fully 1403 * committed to disk. It needs to unpin the items which have 1404 * been logged by the transaction and update their positions 1405 * in the AIL if necessary. 1406 * 1407 * This also gets called when the transactions didn't get written out 1408 * because of an I/O error. Abortflag & XFS_LI_ABORTED is set then. 1409 */ 1410 STATIC void 1411 xfs_trans_committed( 1412 void *arg, 1413 int abortflag) 1414 { 1415 struct xfs_trans *tp = arg; 1416 struct xfs_log_item_desc *lidp, *next; 1417 1418 list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) { 1419 xfs_trans_item_committed(lidp->lid_item, tp->t_lsn, abortflag); 1420 xfs_trans_free_item_desc(lidp); 1421 } 1422 1423 xfs_trans_free(tp); 1424 } 1425 1426 static inline void 1427 xfs_log_item_batch_insert( 1428 struct xfs_ail *ailp, 1429 struct xfs_ail_cursor *cur, 1430 struct xfs_log_item **log_items, 1431 int nr_items, 1432 xfs_lsn_t commit_lsn) 1433 { 1434 int i; 1435 1436 spin_lock(&ailp->xa_lock); 1437 /* xfs_trans_ail_update_bulk drops ailp->xa_lock */ 1438 xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn); 1439 1440 for (i = 0; i < nr_items; i++) 1441 IOP_UNPIN(log_items[i], 0); 1442 } 1443 1444 /* 1445 * Bulk operation version of xfs_trans_committed that takes a log vector of 1446 * items to insert into the AIL. This uses bulk AIL insertion techniques to 1447 * minimise lock traffic. 1448 * 1449 * If we are called with the aborted flag set, it is because a log write during 1450 * a CIL checkpoint commit has failed. In this case, all the items in the 1451 * checkpoint have already gone through IOP_COMMITED and IOP_UNLOCK, which 1452 * means that checkpoint commit abort handling is treated exactly the same 1453 * as an iclog write error even though we haven't started any IO yet. Hence in 1454 * this case all we need to do is IOP_COMMITTED processing, followed by an 1455 * IOP_UNPIN(aborted) call. 1456 * 1457 * The AIL cursor is used to optimise the insert process. If commit_lsn is not 1458 * at the end of the AIL, the insert cursor avoids the need to walk 1459 * the AIL to find the insertion point on every xfs_log_item_batch_insert() 1460 * call. This saves a lot of needless list walking and is a net win, even 1461 * though it slightly increases that amount of AIL lock traffic to set it up 1462 * and tear it down. 1463 */ 1464 void 1465 xfs_trans_committed_bulk( 1466 struct xfs_ail *ailp, 1467 struct xfs_log_vec *log_vector, 1468 xfs_lsn_t commit_lsn, 1469 int aborted) 1470 { 1471 #define LOG_ITEM_BATCH_SIZE 32 1472 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE]; 1473 struct xfs_log_vec *lv; 1474 struct xfs_ail_cursor cur; 1475 int i = 0; 1476 1477 spin_lock(&ailp->xa_lock); 1478 xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn); 1479 spin_unlock(&ailp->xa_lock); 1480 1481 /* unpin all the log items */ 1482 for (lv = log_vector; lv; lv = lv->lv_next ) { 1483 struct xfs_log_item *lip = lv->lv_item; 1484 xfs_lsn_t item_lsn; 1485 1486 if (aborted) 1487 lip->li_flags |= XFS_LI_ABORTED; 1488 item_lsn = IOP_COMMITTED(lip, commit_lsn); 1489 1490 /* item_lsn of -1 means the item needs no further processing */ 1491 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0) 1492 continue; 1493 1494 /* 1495 * if we are aborting the operation, no point in inserting the 1496 * object into the AIL as we are in a shutdown situation. 1497 */ 1498 if (aborted) { 1499 ASSERT(XFS_FORCED_SHUTDOWN(ailp->xa_mount)); 1500 IOP_UNPIN(lip, 1); 1501 continue; 1502 } 1503 1504 if (item_lsn != commit_lsn) { 1505 1506 /* 1507 * Not a bulk update option due to unusual item_lsn. 1508 * Push into AIL immediately, rechecking the lsn once 1509 * we have the ail lock. Then unpin the item. This does 1510 * not affect the AIL cursor the bulk insert path is 1511 * using. 1512 */ 1513 spin_lock(&ailp->xa_lock); 1514 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) 1515 xfs_trans_ail_update(ailp, lip, item_lsn); 1516 else 1517 spin_unlock(&ailp->xa_lock); 1518 IOP_UNPIN(lip, 0); 1519 continue; 1520 } 1521 1522 /* Item is a candidate for bulk AIL insert. */ 1523 log_items[i++] = lv->lv_item; 1524 if (i >= LOG_ITEM_BATCH_SIZE) { 1525 xfs_log_item_batch_insert(ailp, &cur, log_items, 1526 LOG_ITEM_BATCH_SIZE, commit_lsn); 1527 i = 0; 1528 } 1529 } 1530 1531 /* make sure we insert the remainder! */ 1532 if (i) 1533 xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn); 1534 1535 spin_lock(&ailp->xa_lock); 1536 xfs_trans_ail_cursor_done(ailp, &cur); 1537 spin_unlock(&ailp->xa_lock); 1538 } 1539 1540 /* 1541 * Called from the trans_commit code when we notice that the filesystem is in 1542 * the middle of a forced shutdown. 1543 * 1544 * When we are called here, we have already pinned all the items in the 1545 * transaction. However, neither IOP_COMMITTING or IOP_UNLOCK has been called 1546 * so we can simply walk the items in the transaction, unpin them with an abort 1547 * flag and then free the items. Note that unpinning the items can result in 1548 * them being freed immediately, so we need to use a safe list traversal method 1549 * here. 1550 */ 1551 STATIC void 1552 xfs_trans_uncommit( 1553 struct xfs_trans *tp, 1554 uint flags) 1555 { 1556 struct xfs_log_item_desc *lidp, *n; 1557 1558 list_for_each_entry_safe(lidp, n, &tp->t_items, lid_trans) { 1559 if (lidp->lid_flags & XFS_LID_DIRTY) 1560 IOP_UNPIN(lidp->lid_item, 1); 1561 } 1562 1563 xfs_trans_unreserve_and_mod_sb(tp); 1564 xfs_trans_unreserve_and_mod_dquots(tp); 1565 1566 xfs_trans_free_items(tp, NULLCOMMITLSN, flags); 1567 xfs_trans_free(tp); 1568 } 1569 1570 /* 1571 * Format the transaction direct to the iclog. This isolates the physical 1572 * transaction commit operation from the logical operation and hence allows 1573 * other methods to be introduced without affecting the existing commit path. 1574 */ 1575 static int 1576 xfs_trans_commit_iclog( 1577 struct xfs_mount *mp, 1578 struct xfs_trans *tp, 1579 xfs_lsn_t *commit_lsn, 1580 int flags) 1581 { 1582 int shutdown; 1583 int error; 1584 int log_flags = 0; 1585 struct xlog_in_core *commit_iclog; 1586 #define XFS_TRANS_LOGVEC_COUNT 16 1587 struct xfs_log_iovec log_vector_fast[XFS_TRANS_LOGVEC_COUNT]; 1588 struct xfs_log_iovec *log_vector; 1589 uint nvec; 1590 1591 1592 /* 1593 * Ask each log item how many log_vector entries it will 1594 * need so we can figure out how many to allocate. 1595 * Try to avoid the kmem_alloc() call in the common case 1596 * by using a vector from the stack when it fits. 1597 */ 1598 nvec = xfs_trans_count_vecs(tp); 1599 if (nvec == 0) { 1600 return ENOMEM; /* triggers a shutdown! */ 1601 } else if (nvec <= XFS_TRANS_LOGVEC_COUNT) { 1602 log_vector = log_vector_fast; 1603 } else { 1604 log_vector = (xfs_log_iovec_t *)kmem_alloc(nvec * 1605 sizeof(xfs_log_iovec_t), 1606 KM_SLEEP); 1607 } 1608 1609 /* 1610 * Fill in the log_vector and pin the logged items, and 1611 * then write the transaction to the log. 1612 */ 1613 xfs_trans_fill_vecs(tp, log_vector); 1614 1615 if (flags & XFS_TRANS_RELEASE_LOG_RES) 1616 log_flags = XFS_LOG_REL_PERM_RESERV; 1617 1618 error = xfs_log_write(mp, log_vector, nvec, tp->t_ticket, &(tp->t_lsn)); 1619 1620 /* 1621 * The transaction is committed incore here, and can go out to disk 1622 * at any time after this call. However, all the items associated 1623 * with the transaction are still locked and pinned in memory. 1624 */ 1625 *commit_lsn = xfs_log_done(mp, tp->t_ticket, &commit_iclog, log_flags); 1626 1627 tp->t_commit_lsn = *commit_lsn; 1628 trace_xfs_trans_commit_lsn(tp); 1629 1630 if (nvec > XFS_TRANS_LOGVEC_COUNT) 1631 kmem_free(log_vector); 1632 1633 /* 1634 * If we got a log write error. Unpin the logitems that we 1635 * had pinned, clean up, free trans structure, and return error. 1636 */ 1637 if (error || *commit_lsn == -1) { 1638 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 1639 xfs_trans_uncommit(tp, flags|XFS_TRANS_ABORT); 1640 return XFS_ERROR(EIO); 1641 } 1642 1643 /* 1644 * Once the transaction has committed, unused 1645 * reservations need to be released and changes to 1646 * the superblock need to be reflected in the in-core 1647 * version. Do that now. 1648 */ 1649 xfs_trans_unreserve_and_mod_sb(tp); 1650 1651 /* 1652 * Tell the LM to call the transaction completion routine 1653 * when the log write with LSN commit_lsn completes (e.g. 1654 * when the transaction commit really hits the on-disk log). 1655 * After this call we cannot reference tp, because the call 1656 * can happen at any time and the call will free the transaction 1657 * structure pointed to by tp. The only case where we call 1658 * the completion routine (xfs_trans_committed) directly is 1659 * if the log is turned off on a debug kernel or we're 1660 * running in simulation mode (the log is explicitly turned 1661 * off). 1662 */ 1663 tp->t_logcb.cb_func = xfs_trans_committed; 1664 tp->t_logcb.cb_arg = tp; 1665 1666 /* 1667 * We need to pass the iclog buffer which was used for the 1668 * transaction commit record into this function, and attach 1669 * the callback to it. The callback must be attached before 1670 * the items are unlocked to avoid racing with other threads 1671 * waiting for an item to unlock. 1672 */ 1673 shutdown = xfs_log_notify(mp, commit_iclog, &(tp->t_logcb)); 1674 1675 /* 1676 * Mark this thread as no longer being in a transaction 1677 */ 1678 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 1679 1680 /* 1681 * Once all the items of the transaction have been copied 1682 * to the in core log and the callback is attached, the 1683 * items can be unlocked. 1684 * 1685 * This will free descriptors pointing to items which were 1686 * not logged since there is nothing more to do with them. 1687 * For items which were logged, we will keep pointers to them 1688 * so they can be unpinned after the transaction commits to disk. 1689 * This will also stamp each modified meta-data item with 1690 * the commit lsn of this transaction for dependency tracking 1691 * purposes. 1692 */ 1693 xfs_trans_unlock_items(tp, *commit_lsn); 1694 1695 /* 1696 * If we detected a log error earlier, finish committing 1697 * the transaction now (unpin log items, etc). 1698 * 1699 * Order is critical here, to avoid using the transaction 1700 * pointer after its been freed (by xfs_trans_committed 1701 * either here now, or as a callback). We cannot do this 1702 * step inside xfs_log_notify as was done earlier because 1703 * of this issue. 1704 */ 1705 if (shutdown) 1706 xfs_trans_committed(tp, XFS_LI_ABORTED); 1707 1708 /* 1709 * Now that the xfs_trans_committed callback has been attached, 1710 * and the items are released we can finally allow the iclog to 1711 * go to disk. 1712 */ 1713 return xfs_log_release_iclog(mp, commit_iclog); 1714 } 1715 1716 /* 1717 * Walk the log items and allocate log vector structures for 1718 * each item large enough to fit all the vectors they require. 1719 * Note that this format differs from the old log vector format in 1720 * that there is no transaction header in these log vectors. 1721 */ 1722 STATIC struct xfs_log_vec * 1723 xfs_trans_alloc_log_vecs( 1724 xfs_trans_t *tp) 1725 { 1726 struct xfs_log_item_desc *lidp; 1727 struct xfs_log_vec *lv = NULL; 1728 struct xfs_log_vec *ret_lv = NULL; 1729 1730 1731 /* Bail out if we didn't find a log item. */ 1732 if (list_empty(&tp->t_items)) { 1733 ASSERT(0); 1734 return NULL; 1735 } 1736 1737 list_for_each_entry(lidp, &tp->t_items, lid_trans) { 1738 struct xfs_log_vec *new_lv; 1739 1740 /* Skip items which aren't dirty in this transaction. */ 1741 if (!(lidp->lid_flags & XFS_LID_DIRTY)) 1742 continue; 1743 1744 /* Skip items that do not have any vectors for writing */ 1745 lidp->lid_size = IOP_SIZE(lidp->lid_item); 1746 if (!lidp->lid_size) 1747 continue; 1748 1749 new_lv = kmem_zalloc(sizeof(*new_lv) + 1750 lidp->lid_size * sizeof(struct xfs_log_iovec), 1751 KM_SLEEP); 1752 1753 /* The allocated iovec region lies beyond the log vector. */ 1754 new_lv->lv_iovecp = (struct xfs_log_iovec *)&new_lv[1]; 1755 new_lv->lv_niovecs = lidp->lid_size; 1756 new_lv->lv_item = lidp->lid_item; 1757 if (!ret_lv) 1758 ret_lv = new_lv; 1759 else 1760 lv->lv_next = new_lv; 1761 lv = new_lv; 1762 } 1763 1764 return ret_lv; 1765 } 1766 1767 static int 1768 xfs_trans_commit_cil( 1769 struct xfs_mount *mp, 1770 struct xfs_trans *tp, 1771 xfs_lsn_t *commit_lsn, 1772 int flags) 1773 { 1774 struct xfs_log_vec *log_vector; 1775 1776 /* 1777 * Get each log item to allocate a vector structure for 1778 * the log item to to pass to the log write code. The 1779 * CIL commit code will format the vector and save it away. 1780 */ 1781 log_vector = xfs_trans_alloc_log_vecs(tp); 1782 if (!log_vector) 1783 return ENOMEM; 1784 1785 xfs_log_commit_cil(mp, tp, log_vector, commit_lsn, flags); 1786 1787 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 1788 xfs_trans_free(tp); 1789 return 0; 1790 } 1791 1792 /* 1793 * xfs_trans_commit 1794 * 1795 * Commit the given transaction to the log a/synchronously. 1796 * 1797 * XFS disk error handling mechanism is not based on a typical 1798 * transaction abort mechanism. Logically after the filesystem 1799 * gets marked 'SHUTDOWN', we can't let any new transactions 1800 * be durable - ie. committed to disk - because some metadata might 1801 * be inconsistent. In such cases, this returns an error, and the 1802 * caller may assume that all locked objects joined to the transaction 1803 * have already been unlocked as if the commit had succeeded. 1804 * Do not reference the transaction structure after this call. 1805 */ 1806 int 1807 _xfs_trans_commit( 1808 struct xfs_trans *tp, 1809 uint flags, 1810 int *log_flushed) 1811 { 1812 struct xfs_mount *mp = tp->t_mountp; 1813 xfs_lsn_t commit_lsn = -1; 1814 int error = 0; 1815 int log_flags = 0; 1816 int sync = tp->t_flags & XFS_TRANS_SYNC; 1817 1818 /* 1819 * Determine whether this commit is releasing a permanent 1820 * log reservation or not. 1821 */ 1822 if (flags & XFS_TRANS_RELEASE_LOG_RES) { 1823 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1824 log_flags = XFS_LOG_REL_PERM_RESERV; 1825 } 1826 1827 /* 1828 * If there is nothing to be logged by the transaction, 1829 * then unlock all of the items associated with the 1830 * transaction and free the transaction structure. 1831 * Also make sure to return any reserved blocks to 1832 * the free pool. 1833 */ 1834 if (!(tp->t_flags & XFS_TRANS_DIRTY)) 1835 goto out_unreserve; 1836 1837 if (XFS_FORCED_SHUTDOWN(mp)) { 1838 error = XFS_ERROR(EIO); 1839 goto out_unreserve; 1840 } 1841 1842 ASSERT(tp->t_ticket != NULL); 1843 1844 /* 1845 * If we need to update the superblock, then do it now. 1846 */ 1847 if (tp->t_flags & XFS_TRANS_SB_DIRTY) 1848 xfs_trans_apply_sb_deltas(tp); 1849 xfs_trans_apply_dquot_deltas(tp); 1850 1851 if (mp->m_flags & XFS_MOUNT_DELAYLOG) 1852 error = xfs_trans_commit_cil(mp, tp, &commit_lsn, flags); 1853 else 1854 error = xfs_trans_commit_iclog(mp, tp, &commit_lsn, flags); 1855 1856 if (error == ENOMEM) { 1857 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 1858 error = XFS_ERROR(EIO); 1859 goto out_unreserve; 1860 } 1861 1862 /* 1863 * If the transaction needs to be synchronous, then force the 1864 * log out now and wait for it. 1865 */ 1866 if (sync) { 1867 if (!error) { 1868 error = _xfs_log_force_lsn(mp, commit_lsn, 1869 XFS_LOG_SYNC, log_flushed); 1870 } 1871 XFS_STATS_INC(xs_trans_sync); 1872 } else { 1873 XFS_STATS_INC(xs_trans_async); 1874 } 1875 1876 return error; 1877 1878 out_unreserve: 1879 xfs_trans_unreserve_and_mod_sb(tp); 1880 1881 /* 1882 * It is indeed possible for the transaction to be not dirty but 1883 * the dqinfo portion to be. All that means is that we have some 1884 * (non-persistent) quota reservations that need to be unreserved. 1885 */ 1886 xfs_trans_unreserve_and_mod_dquots(tp); 1887 if (tp->t_ticket) { 1888 commit_lsn = xfs_log_done(mp, tp->t_ticket, NULL, log_flags); 1889 if (commit_lsn == -1 && !error) 1890 error = XFS_ERROR(EIO); 1891 } 1892 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 1893 xfs_trans_free_items(tp, NULLCOMMITLSN, error ? XFS_TRANS_ABORT : 0); 1894 xfs_trans_free(tp); 1895 1896 XFS_STATS_INC(xs_trans_empty); 1897 return error; 1898 } 1899 1900 /* 1901 * Unlock all of the transaction's items and free the transaction. 1902 * The transaction must not have modified any of its items, because 1903 * there is no way to restore them to their previous state. 1904 * 1905 * If the transaction has made a log reservation, make sure to release 1906 * it as well. 1907 */ 1908 void 1909 xfs_trans_cancel( 1910 xfs_trans_t *tp, 1911 int flags) 1912 { 1913 int log_flags; 1914 xfs_mount_t *mp = tp->t_mountp; 1915 1916 /* 1917 * See if the caller is being too lazy to figure out if 1918 * the transaction really needs an abort. 1919 */ 1920 if ((flags & XFS_TRANS_ABORT) && !(tp->t_flags & XFS_TRANS_DIRTY)) 1921 flags &= ~XFS_TRANS_ABORT; 1922 /* 1923 * See if the caller is relying on us to shut down the 1924 * filesystem. This happens in paths where we detect 1925 * corruption and decide to give up. 1926 */ 1927 if ((tp->t_flags & XFS_TRANS_DIRTY) && !XFS_FORCED_SHUTDOWN(mp)) { 1928 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp); 1929 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1930 } 1931 #ifdef DEBUG 1932 if (!(flags & XFS_TRANS_ABORT) && !XFS_FORCED_SHUTDOWN(mp)) { 1933 struct xfs_log_item_desc *lidp; 1934 1935 list_for_each_entry(lidp, &tp->t_items, lid_trans) 1936 ASSERT(!(lidp->lid_item->li_type == XFS_LI_EFD)); 1937 } 1938 #endif 1939 xfs_trans_unreserve_and_mod_sb(tp); 1940 xfs_trans_unreserve_and_mod_dquots(tp); 1941 1942 if (tp->t_ticket) { 1943 if (flags & XFS_TRANS_RELEASE_LOG_RES) { 1944 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1945 log_flags = XFS_LOG_REL_PERM_RESERV; 1946 } else { 1947 log_flags = 0; 1948 } 1949 xfs_log_done(mp, tp->t_ticket, NULL, log_flags); 1950 } 1951 1952 /* mark this thread as no longer being in a transaction */ 1953 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 1954 1955 xfs_trans_free_items(tp, NULLCOMMITLSN, flags); 1956 xfs_trans_free(tp); 1957 } 1958 1959 /* 1960 * Roll from one trans in the sequence of PERMANENT transactions to 1961 * the next: permanent transactions are only flushed out when 1962 * committed with XFS_TRANS_RELEASE_LOG_RES, but we still want as soon 1963 * as possible to let chunks of it go to the log. So we commit the 1964 * chunk we've been working on and get a new transaction to continue. 1965 */ 1966 int 1967 xfs_trans_roll( 1968 struct xfs_trans **tpp, 1969 struct xfs_inode *dp) 1970 { 1971 struct xfs_trans *trans; 1972 unsigned int logres, count; 1973 int error; 1974 1975 /* 1976 * Ensure that the inode is always logged. 1977 */ 1978 trans = *tpp; 1979 xfs_trans_log_inode(trans, dp, XFS_ILOG_CORE); 1980 1981 /* 1982 * Copy the critical parameters from one trans to the next. 1983 */ 1984 logres = trans->t_log_res; 1985 count = trans->t_log_count; 1986 *tpp = xfs_trans_dup(trans); 1987 1988 /* 1989 * Commit the current transaction. 1990 * If this commit failed, then it'd just unlock those items that 1991 * are not marked ihold. That also means that a filesystem shutdown 1992 * is in progress. The caller takes the responsibility to cancel 1993 * the duplicate transaction that gets returned. 1994 */ 1995 error = xfs_trans_commit(trans, 0); 1996 if (error) 1997 return (error); 1998 1999 trans = *tpp; 2000 2001 /* 2002 * transaction commit worked ok so we can drop the extra ticket 2003 * reference that we gained in xfs_trans_dup() 2004 */ 2005 xfs_log_ticket_put(trans->t_ticket); 2006 2007 2008 /* 2009 * Reserve space in the log for th next transaction. 2010 * This also pushes items in the "AIL", the list of logged items, 2011 * out to disk if they are taking up space at the tail of the log 2012 * that we want to use. This requires that either nothing be locked 2013 * across this call, or that anything that is locked be logged in 2014 * the prior and the next transactions. 2015 */ 2016 error = xfs_trans_reserve(trans, 0, logres, 0, 2017 XFS_TRANS_PERM_LOG_RES, count); 2018 /* 2019 * Ensure that the inode is in the new transaction and locked. 2020 */ 2021 if (error) 2022 return error; 2023 2024 xfs_trans_ijoin(trans, dp); 2025 return 0; 2026 } 2027