1 /* 2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. 3 * Copyright (C) 2010 Red Hat, Inc. 4 * All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it would be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 */ 19 #include "xfs.h" 20 #include "xfs_fs.h" 21 #include "xfs_types.h" 22 #include "xfs_bit.h" 23 #include "xfs_log.h" 24 #include "xfs_inum.h" 25 #include "xfs_trans.h" 26 #include "xfs_sb.h" 27 #include "xfs_ag.h" 28 #include "xfs_mount.h" 29 #include "xfs_error.h" 30 #include "xfs_da_btree.h" 31 #include "xfs_bmap_btree.h" 32 #include "xfs_alloc_btree.h" 33 #include "xfs_ialloc_btree.h" 34 #include "xfs_dinode.h" 35 #include "xfs_inode.h" 36 #include "xfs_btree.h" 37 #include "xfs_ialloc.h" 38 #include "xfs_alloc.h" 39 #include "xfs_bmap.h" 40 #include "xfs_quota.h" 41 #include "xfs_trans_priv.h" 42 #include "xfs_trans_space.h" 43 #include "xfs_inode_item.h" 44 #include "xfs_trace.h" 45 46 kmem_zone_t *xfs_trans_zone; 47 kmem_zone_t *xfs_log_item_desc_zone; 48 49 50 /* 51 * Various log reservation values. 52 * 53 * These are based on the size of the file system block because that is what 54 * most transactions manipulate. Each adds in an additional 128 bytes per 55 * item logged to try to account for the overhead of the transaction mechanism. 56 * 57 * Note: Most of the reservations underestimate the number of allocation 58 * groups into which they could free extents in the xfs_bmap_finish() call. 59 * This is because the number in the worst case is quite high and quite 60 * unusual. In order to fix this we need to change xfs_bmap_finish() to free 61 * extents in only a single AG at a time. This will require changes to the 62 * EFI code as well, however, so that the EFI for the extents not freed is 63 * logged again in each transaction. See SGI PV #261917. 64 * 65 * Reservation functions here avoid a huge stack in xfs_trans_init due to 66 * register overflow from temporaries in the calculations. 67 */ 68 69 70 /* 71 * In a write transaction we can allocate a maximum of 2 72 * extents. This gives: 73 * the inode getting the new extents: inode size 74 * the inode's bmap btree: max depth * block size 75 * the agfs of the ags from which the extents are allocated: 2 * sector 76 * the superblock free block counter: sector size 77 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size 78 * And the bmap_finish transaction can free bmap blocks in a join: 79 * the agfs of the ags containing the blocks: 2 * sector size 80 * the agfls of the ags containing the blocks: 2 * sector size 81 * the super block free block counter: sector size 82 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size 83 */ 84 STATIC uint 85 xfs_calc_write_reservation( 86 struct xfs_mount *mp) 87 { 88 return XFS_DQUOT_LOGRES(mp) + 89 MAX((mp->m_sb.sb_inodesize + 90 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) + 91 2 * mp->m_sb.sb_sectsize + 92 mp->m_sb.sb_sectsize + 93 XFS_ALLOCFREE_LOG_RES(mp, 2) + 94 128 * (4 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 95 XFS_ALLOCFREE_LOG_COUNT(mp, 2))), 96 (2 * mp->m_sb.sb_sectsize + 97 2 * mp->m_sb.sb_sectsize + 98 mp->m_sb.sb_sectsize + 99 XFS_ALLOCFREE_LOG_RES(mp, 2) + 100 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2)))); 101 } 102 103 /* 104 * In truncating a file we free up to two extents at once. We can modify: 105 * the inode being truncated: inode size 106 * the inode's bmap btree: (max depth + 1) * block size 107 * And the bmap_finish transaction can free the blocks and bmap blocks: 108 * the agf for each of the ags: 4 * sector size 109 * the agfl for each of the ags: 4 * sector size 110 * the super block to reflect the freed blocks: sector size 111 * worst case split in allocation btrees per extent assuming 4 extents: 112 * 4 exts * 2 trees * (2 * max depth - 1) * block size 113 * the inode btree: max depth * blocksize 114 * the allocation btrees: 2 trees * (max depth - 1) * block size 115 */ 116 STATIC uint 117 xfs_calc_itruncate_reservation( 118 struct xfs_mount *mp) 119 { 120 return XFS_DQUOT_LOGRES(mp) + 121 MAX((mp->m_sb.sb_inodesize + 122 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1) + 123 128 * (2 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))), 124 (4 * mp->m_sb.sb_sectsize + 125 4 * mp->m_sb.sb_sectsize + 126 mp->m_sb.sb_sectsize + 127 XFS_ALLOCFREE_LOG_RES(mp, 4) + 128 128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4)) + 129 128 * 5 + 130 XFS_ALLOCFREE_LOG_RES(mp, 1) + 131 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels + 132 XFS_ALLOCFREE_LOG_COUNT(mp, 1)))); 133 } 134 135 /* 136 * In renaming a files we can modify: 137 * the four inodes involved: 4 * inode size 138 * the two directory btrees: 2 * (max depth + v2) * dir block size 139 * the two directory bmap btrees: 2 * max depth * block size 140 * And the bmap_finish transaction can free dir and bmap blocks (two sets 141 * of bmap blocks) giving: 142 * the agf for the ags in which the blocks live: 3 * sector size 143 * the agfl for the ags in which the blocks live: 3 * sector size 144 * the superblock for the free block count: sector size 145 * the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size 146 */ 147 STATIC uint 148 xfs_calc_rename_reservation( 149 struct xfs_mount *mp) 150 { 151 return XFS_DQUOT_LOGRES(mp) + 152 MAX((4 * mp->m_sb.sb_inodesize + 153 2 * XFS_DIROP_LOG_RES(mp) + 154 128 * (4 + 2 * XFS_DIROP_LOG_COUNT(mp))), 155 (3 * mp->m_sb.sb_sectsize + 156 3 * mp->m_sb.sb_sectsize + 157 mp->m_sb.sb_sectsize + 158 XFS_ALLOCFREE_LOG_RES(mp, 3) + 159 128 * (7 + XFS_ALLOCFREE_LOG_COUNT(mp, 3)))); 160 } 161 162 /* 163 * For creating a link to an inode: 164 * the parent directory inode: inode size 165 * the linked inode: inode size 166 * the directory btree could split: (max depth + v2) * dir block size 167 * the directory bmap btree could join or split: (max depth + v2) * blocksize 168 * And the bmap_finish transaction can free some bmap blocks giving: 169 * the agf for the ag in which the blocks live: sector size 170 * the agfl for the ag in which the blocks live: sector size 171 * the superblock for the free block count: sector size 172 * the allocation btrees: 2 trees * (2 * max depth - 1) * block size 173 */ 174 STATIC uint 175 xfs_calc_link_reservation( 176 struct xfs_mount *mp) 177 { 178 return XFS_DQUOT_LOGRES(mp) + 179 MAX((mp->m_sb.sb_inodesize + 180 mp->m_sb.sb_inodesize + 181 XFS_DIROP_LOG_RES(mp) + 182 128 * (2 + XFS_DIROP_LOG_COUNT(mp))), 183 (mp->m_sb.sb_sectsize + 184 mp->m_sb.sb_sectsize + 185 mp->m_sb.sb_sectsize + 186 XFS_ALLOCFREE_LOG_RES(mp, 1) + 187 128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1)))); 188 } 189 190 /* 191 * For removing a directory entry we can modify: 192 * the parent directory inode: inode size 193 * the removed inode: inode size 194 * the directory btree could join: (max depth + v2) * dir block size 195 * the directory bmap btree could join or split: (max depth + v2) * blocksize 196 * And the bmap_finish transaction can free the dir and bmap blocks giving: 197 * the agf for the ag in which the blocks live: 2 * sector size 198 * the agfl for the ag in which the blocks live: 2 * sector size 199 * the superblock for the free block count: sector size 200 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size 201 */ 202 STATIC uint 203 xfs_calc_remove_reservation( 204 struct xfs_mount *mp) 205 { 206 return XFS_DQUOT_LOGRES(mp) + 207 MAX((mp->m_sb.sb_inodesize + 208 mp->m_sb.sb_inodesize + 209 XFS_DIROP_LOG_RES(mp) + 210 128 * (2 + XFS_DIROP_LOG_COUNT(mp))), 211 (2 * mp->m_sb.sb_sectsize + 212 2 * mp->m_sb.sb_sectsize + 213 mp->m_sb.sb_sectsize + 214 XFS_ALLOCFREE_LOG_RES(mp, 2) + 215 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2)))); 216 } 217 218 /* 219 * For symlink we can modify: 220 * the parent directory inode: inode size 221 * the new inode: inode size 222 * the inode btree entry: 1 block 223 * the directory btree: (max depth + v2) * dir block size 224 * the directory inode's bmap btree: (max depth + v2) * block size 225 * the blocks for the symlink: 1 kB 226 * Or in the first xact we allocate some inodes giving: 227 * the agi and agf of the ag getting the new inodes: 2 * sectorsize 228 * the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize 229 * the inode btree: max depth * blocksize 230 * the allocation btrees: 2 trees * (2 * max depth - 1) * block size 231 */ 232 STATIC uint 233 xfs_calc_symlink_reservation( 234 struct xfs_mount *mp) 235 { 236 return XFS_DQUOT_LOGRES(mp) + 237 MAX((mp->m_sb.sb_inodesize + 238 mp->m_sb.sb_inodesize + 239 XFS_FSB_TO_B(mp, 1) + 240 XFS_DIROP_LOG_RES(mp) + 241 1024 + 242 128 * (4 + XFS_DIROP_LOG_COUNT(mp))), 243 (2 * mp->m_sb.sb_sectsize + 244 XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) + 245 XFS_FSB_TO_B(mp, mp->m_in_maxlevels) + 246 XFS_ALLOCFREE_LOG_RES(mp, 1) + 247 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels + 248 XFS_ALLOCFREE_LOG_COUNT(mp, 1)))); 249 } 250 251 /* 252 * For create we can modify: 253 * the parent directory inode: inode size 254 * the new inode: inode size 255 * the inode btree entry: block size 256 * the superblock for the nlink flag: sector size 257 * the directory btree: (max depth + v2) * dir block size 258 * the directory inode's bmap btree: (max depth + v2) * block size 259 * Or in the first xact we allocate some inodes giving: 260 * the agi and agf of the ag getting the new inodes: 2 * sectorsize 261 * the superblock for the nlink flag: sector size 262 * the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize 263 * the inode btree: max depth * blocksize 264 * the allocation btrees: 2 trees * (max depth - 1) * block size 265 */ 266 STATIC uint 267 xfs_calc_create_reservation( 268 struct xfs_mount *mp) 269 { 270 return XFS_DQUOT_LOGRES(mp) + 271 MAX((mp->m_sb.sb_inodesize + 272 mp->m_sb.sb_inodesize + 273 mp->m_sb.sb_sectsize + 274 XFS_FSB_TO_B(mp, 1) + 275 XFS_DIROP_LOG_RES(mp) + 276 128 * (3 + XFS_DIROP_LOG_COUNT(mp))), 277 (3 * mp->m_sb.sb_sectsize + 278 XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) + 279 XFS_FSB_TO_B(mp, mp->m_in_maxlevels) + 280 XFS_ALLOCFREE_LOG_RES(mp, 1) + 281 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels + 282 XFS_ALLOCFREE_LOG_COUNT(mp, 1)))); 283 } 284 285 /* 286 * Making a new directory is the same as creating a new file. 287 */ 288 STATIC uint 289 xfs_calc_mkdir_reservation( 290 struct xfs_mount *mp) 291 { 292 return xfs_calc_create_reservation(mp); 293 } 294 295 /* 296 * In freeing an inode we can modify: 297 * the inode being freed: inode size 298 * the super block free inode counter: sector size 299 * the agi hash list and counters: sector size 300 * the inode btree entry: block size 301 * the on disk inode before ours in the agi hash list: inode cluster size 302 * the inode btree: max depth * blocksize 303 * the allocation btrees: 2 trees * (max depth - 1) * block size 304 */ 305 STATIC uint 306 xfs_calc_ifree_reservation( 307 struct xfs_mount *mp) 308 { 309 return XFS_DQUOT_LOGRES(mp) + 310 mp->m_sb.sb_inodesize + 311 mp->m_sb.sb_sectsize + 312 mp->m_sb.sb_sectsize + 313 XFS_FSB_TO_B(mp, 1) + 314 MAX((__uint16_t)XFS_FSB_TO_B(mp, 1), 315 XFS_INODE_CLUSTER_SIZE(mp)) + 316 128 * 5 + 317 XFS_ALLOCFREE_LOG_RES(mp, 1) + 318 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels + 319 XFS_ALLOCFREE_LOG_COUNT(mp, 1)); 320 } 321 322 /* 323 * When only changing the inode we log the inode and possibly the superblock 324 * We also add a bit of slop for the transaction stuff. 325 */ 326 STATIC uint 327 xfs_calc_ichange_reservation( 328 struct xfs_mount *mp) 329 { 330 return XFS_DQUOT_LOGRES(mp) + 331 mp->m_sb.sb_inodesize + 332 mp->m_sb.sb_sectsize + 333 512; 334 335 } 336 337 /* 338 * Growing the data section of the filesystem. 339 * superblock 340 * agi and agf 341 * allocation btrees 342 */ 343 STATIC uint 344 xfs_calc_growdata_reservation( 345 struct xfs_mount *mp) 346 { 347 return mp->m_sb.sb_sectsize * 3 + 348 XFS_ALLOCFREE_LOG_RES(mp, 1) + 349 128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1)); 350 } 351 352 /* 353 * Growing the rt section of the filesystem. 354 * In the first set of transactions (ALLOC) we allocate space to the 355 * bitmap or summary files. 356 * superblock: sector size 357 * agf of the ag from which the extent is allocated: sector size 358 * bmap btree for bitmap/summary inode: max depth * blocksize 359 * bitmap/summary inode: inode size 360 * allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize 361 */ 362 STATIC uint 363 xfs_calc_growrtalloc_reservation( 364 struct xfs_mount *mp) 365 { 366 return 2 * mp->m_sb.sb_sectsize + 367 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) + 368 mp->m_sb.sb_inodesize + 369 XFS_ALLOCFREE_LOG_RES(mp, 1) + 370 128 * (3 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 371 XFS_ALLOCFREE_LOG_COUNT(mp, 1)); 372 } 373 374 /* 375 * Growing the rt section of the filesystem. 376 * In the second set of transactions (ZERO) we zero the new metadata blocks. 377 * one bitmap/summary block: blocksize 378 */ 379 STATIC uint 380 xfs_calc_growrtzero_reservation( 381 struct xfs_mount *mp) 382 { 383 return mp->m_sb.sb_blocksize + 128; 384 } 385 386 /* 387 * Growing the rt section of the filesystem. 388 * In the third set of transactions (FREE) we update metadata without 389 * allocating any new blocks. 390 * superblock: sector size 391 * bitmap inode: inode size 392 * summary inode: inode size 393 * one bitmap block: blocksize 394 * summary blocks: new summary size 395 */ 396 STATIC uint 397 xfs_calc_growrtfree_reservation( 398 struct xfs_mount *mp) 399 { 400 return mp->m_sb.sb_sectsize + 401 2 * mp->m_sb.sb_inodesize + 402 mp->m_sb.sb_blocksize + 403 mp->m_rsumsize + 404 128 * 5; 405 } 406 407 /* 408 * Logging the inode modification timestamp on a synchronous write. 409 * inode 410 */ 411 STATIC uint 412 xfs_calc_swrite_reservation( 413 struct xfs_mount *mp) 414 { 415 return mp->m_sb.sb_inodesize + 128; 416 } 417 418 /* 419 * Logging the inode mode bits when writing a setuid/setgid file 420 * inode 421 */ 422 STATIC uint 423 xfs_calc_writeid_reservation(xfs_mount_t *mp) 424 { 425 return mp->m_sb.sb_inodesize + 128; 426 } 427 428 /* 429 * Converting the inode from non-attributed to attributed. 430 * the inode being converted: inode size 431 * agf block and superblock (for block allocation) 432 * the new block (directory sized) 433 * bmap blocks for the new directory block 434 * allocation btrees 435 */ 436 STATIC uint 437 xfs_calc_addafork_reservation( 438 struct xfs_mount *mp) 439 { 440 return XFS_DQUOT_LOGRES(mp) + 441 mp->m_sb.sb_inodesize + 442 mp->m_sb.sb_sectsize * 2 + 443 mp->m_dirblksize + 444 XFS_FSB_TO_B(mp, XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1) + 445 XFS_ALLOCFREE_LOG_RES(mp, 1) + 446 128 * (4 + XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1 + 447 XFS_ALLOCFREE_LOG_COUNT(mp, 1)); 448 } 449 450 /* 451 * Removing the attribute fork of a file 452 * the inode being truncated: inode size 453 * the inode's bmap btree: max depth * block size 454 * And the bmap_finish transaction can free the blocks and bmap blocks: 455 * the agf for each of the ags: 4 * sector size 456 * the agfl for each of the ags: 4 * sector size 457 * the super block to reflect the freed blocks: sector size 458 * worst case split in allocation btrees per extent assuming 4 extents: 459 * 4 exts * 2 trees * (2 * max depth - 1) * block size 460 */ 461 STATIC uint 462 xfs_calc_attrinval_reservation( 463 struct xfs_mount *mp) 464 { 465 return MAX((mp->m_sb.sb_inodesize + 466 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) + 467 128 * (1 + XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK))), 468 (4 * mp->m_sb.sb_sectsize + 469 4 * mp->m_sb.sb_sectsize + 470 mp->m_sb.sb_sectsize + 471 XFS_ALLOCFREE_LOG_RES(mp, 4) + 472 128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4)))); 473 } 474 475 /* 476 * Setting an attribute. 477 * the inode getting the attribute 478 * the superblock for allocations 479 * the agfs extents are allocated from 480 * the attribute btree * max depth 481 * the inode allocation btree 482 * Since attribute transaction space is dependent on the size of the attribute, 483 * the calculation is done partially at mount time and partially at runtime. 484 */ 485 STATIC uint 486 xfs_calc_attrset_reservation( 487 struct xfs_mount *mp) 488 { 489 return XFS_DQUOT_LOGRES(mp) + 490 mp->m_sb.sb_inodesize + 491 mp->m_sb.sb_sectsize + 492 XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) + 493 128 * (2 + XFS_DA_NODE_MAXDEPTH); 494 } 495 496 /* 497 * Removing an attribute. 498 * the inode: inode size 499 * the attribute btree could join: max depth * block size 500 * the inode bmap btree could join or split: max depth * block size 501 * And the bmap_finish transaction can free the attr blocks freed giving: 502 * the agf for the ag in which the blocks live: 2 * sector size 503 * the agfl for the ag in which the blocks live: 2 * sector size 504 * the superblock for the free block count: sector size 505 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size 506 */ 507 STATIC uint 508 xfs_calc_attrrm_reservation( 509 struct xfs_mount *mp) 510 { 511 return XFS_DQUOT_LOGRES(mp) + 512 MAX((mp->m_sb.sb_inodesize + 513 XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) + 514 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) + 515 128 * (1 + XFS_DA_NODE_MAXDEPTH + 516 XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))), 517 (2 * mp->m_sb.sb_sectsize + 518 2 * mp->m_sb.sb_sectsize + 519 mp->m_sb.sb_sectsize + 520 XFS_ALLOCFREE_LOG_RES(mp, 2) + 521 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2)))); 522 } 523 524 /* 525 * Clearing a bad agino number in an agi hash bucket. 526 */ 527 STATIC uint 528 xfs_calc_clear_agi_bucket_reservation( 529 struct xfs_mount *mp) 530 { 531 return mp->m_sb.sb_sectsize + 128; 532 } 533 534 /* 535 * Initialize the precomputed transaction reservation values 536 * in the mount structure. 537 */ 538 void 539 xfs_trans_init( 540 struct xfs_mount *mp) 541 { 542 struct xfs_trans_reservations *resp = &mp->m_reservations; 543 544 resp->tr_write = xfs_calc_write_reservation(mp); 545 resp->tr_itruncate = xfs_calc_itruncate_reservation(mp); 546 resp->tr_rename = xfs_calc_rename_reservation(mp); 547 resp->tr_link = xfs_calc_link_reservation(mp); 548 resp->tr_remove = xfs_calc_remove_reservation(mp); 549 resp->tr_symlink = xfs_calc_symlink_reservation(mp); 550 resp->tr_create = xfs_calc_create_reservation(mp); 551 resp->tr_mkdir = xfs_calc_mkdir_reservation(mp); 552 resp->tr_ifree = xfs_calc_ifree_reservation(mp); 553 resp->tr_ichange = xfs_calc_ichange_reservation(mp); 554 resp->tr_growdata = xfs_calc_growdata_reservation(mp); 555 resp->tr_swrite = xfs_calc_swrite_reservation(mp); 556 resp->tr_writeid = xfs_calc_writeid_reservation(mp); 557 resp->tr_addafork = xfs_calc_addafork_reservation(mp); 558 resp->tr_attrinval = xfs_calc_attrinval_reservation(mp); 559 resp->tr_attrset = xfs_calc_attrset_reservation(mp); 560 resp->tr_attrrm = xfs_calc_attrrm_reservation(mp); 561 resp->tr_clearagi = xfs_calc_clear_agi_bucket_reservation(mp); 562 resp->tr_growrtalloc = xfs_calc_growrtalloc_reservation(mp); 563 resp->tr_growrtzero = xfs_calc_growrtzero_reservation(mp); 564 resp->tr_growrtfree = xfs_calc_growrtfree_reservation(mp); 565 } 566 567 /* 568 * This routine is called to allocate a transaction structure. 569 * The type parameter indicates the type of the transaction. These 570 * are enumerated in xfs_trans.h. 571 * 572 * Dynamically allocate the transaction structure from the transaction 573 * zone, initialize it, and return it to the caller. 574 */ 575 xfs_trans_t * 576 xfs_trans_alloc( 577 xfs_mount_t *mp, 578 uint type) 579 { 580 xfs_wait_for_freeze(mp, SB_FREEZE_TRANS); 581 return _xfs_trans_alloc(mp, type, KM_SLEEP); 582 } 583 584 xfs_trans_t * 585 _xfs_trans_alloc( 586 xfs_mount_t *mp, 587 uint type, 588 uint memflags) 589 { 590 xfs_trans_t *tp; 591 592 atomic_inc(&mp->m_active_trans); 593 594 tp = kmem_zone_zalloc(xfs_trans_zone, memflags); 595 tp->t_magic = XFS_TRANS_MAGIC; 596 tp->t_type = type; 597 tp->t_mountp = mp; 598 INIT_LIST_HEAD(&tp->t_items); 599 INIT_LIST_HEAD(&tp->t_busy); 600 return tp; 601 } 602 603 /* 604 * Free the transaction structure. If there is more clean up 605 * to do when the structure is freed, add it here. 606 */ 607 STATIC void 608 xfs_trans_free( 609 struct xfs_trans *tp) 610 { 611 struct xfs_busy_extent *busyp, *n; 612 613 list_for_each_entry_safe(busyp, n, &tp->t_busy, list) 614 xfs_alloc_busy_clear(tp->t_mountp, busyp); 615 616 atomic_dec(&tp->t_mountp->m_active_trans); 617 xfs_trans_free_dqinfo(tp); 618 kmem_zone_free(xfs_trans_zone, tp); 619 } 620 621 /* 622 * This is called to create a new transaction which will share the 623 * permanent log reservation of the given transaction. The remaining 624 * unused block and rt extent reservations are also inherited. This 625 * implies that the original transaction is no longer allowed to allocate 626 * blocks. Locks and log items, however, are no inherited. They must 627 * be added to the new transaction explicitly. 628 */ 629 xfs_trans_t * 630 xfs_trans_dup( 631 xfs_trans_t *tp) 632 { 633 xfs_trans_t *ntp; 634 635 ntp = kmem_zone_zalloc(xfs_trans_zone, KM_SLEEP); 636 637 /* 638 * Initialize the new transaction structure. 639 */ 640 ntp->t_magic = XFS_TRANS_MAGIC; 641 ntp->t_type = tp->t_type; 642 ntp->t_mountp = tp->t_mountp; 643 INIT_LIST_HEAD(&ntp->t_items); 644 INIT_LIST_HEAD(&ntp->t_busy); 645 646 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 647 ASSERT(tp->t_ticket != NULL); 648 649 ntp->t_flags = XFS_TRANS_PERM_LOG_RES | (tp->t_flags & XFS_TRANS_RESERVE); 650 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket); 651 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used; 652 tp->t_blk_res = tp->t_blk_res_used; 653 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used; 654 tp->t_rtx_res = tp->t_rtx_res_used; 655 ntp->t_pflags = tp->t_pflags; 656 657 xfs_trans_dup_dqinfo(tp, ntp); 658 659 atomic_inc(&tp->t_mountp->m_active_trans); 660 return ntp; 661 } 662 663 /* 664 * This is called to reserve free disk blocks and log space for the 665 * given transaction. This must be done before allocating any resources 666 * within the transaction. 667 * 668 * This will return ENOSPC if there are not enough blocks available. 669 * It will sleep waiting for available log space. 670 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which 671 * is used by long running transactions. If any one of the reservations 672 * fails then they will all be backed out. 673 * 674 * This does not do quota reservations. That typically is done by the 675 * caller afterwards. 676 */ 677 int 678 xfs_trans_reserve( 679 xfs_trans_t *tp, 680 uint blocks, 681 uint logspace, 682 uint rtextents, 683 uint flags, 684 uint logcount) 685 { 686 int log_flags; 687 int error = 0; 688 int rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0; 689 690 /* Mark this thread as being in a transaction */ 691 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS); 692 693 /* 694 * Attempt to reserve the needed disk blocks by decrementing 695 * the number needed from the number available. This will 696 * fail if the count would go below zero. 697 */ 698 if (blocks > 0) { 699 error = xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS, 700 -((int64_t)blocks), rsvd); 701 if (error != 0) { 702 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 703 return (XFS_ERROR(ENOSPC)); 704 } 705 tp->t_blk_res += blocks; 706 } 707 708 /* 709 * Reserve the log space needed for this transaction. 710 */ 711 if (logspace > 0) { 712 ASSERT((tp->t_log_res == 0) || (tp->t_log_res == logspace)); 713 ASSERT((tp->t_log_count == 0) || 714 (tp->t_log_count == logcount)); 715 if (flags & XFS_TRANS_PERM_LOG_RES) { 716 log_flags = XFS_LOG_PERM_RESERV; 717 tp->t_flags |= XFS_TRANS_PERM_LOG_RES; 718 } else { 719 ASSERT(tp->t_ticket == NULL); 720 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES)); 721 log_flags = 0; 722 } 723 724 error = xfs_log_reserve(tp->t_mountp, logspace, logcount, 725 &tp->t_ticket, 726 XFS_TRANSACTION, log_flags, tp->t_type); 727 if (error) { 728 goto undo_blocks; 729 } 730 tp->t_log_res = logspace; 731 tp->t_log_count = logcount; 732 } 733 734 /* 735 * Attempt to reserve the needed realtime extents by decrementing 736 * the number needed from the number available. This will 737 * fail if the count would go below zero. 738 */ 739 if (rtextents > 0) { 740 error = xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FREXTENTS, 741 -((int64_t)rtextents), rsvd); 742 if (error) { 743 error = XFS_ERROR(ENOSPC); 744 goto undo_log; 745 } 746 tp->t_rtx_res += rtextents; 747 } 748 749 return 0; 750 751 /* 752 * Error cases jump to one of these labels to undo any 753 * reservations which have already been performed. 754 */ 755 undo_log: 756 if (logspace > 0) { 757 if (flags & XFS_TRANS_PERM_LOG_RES) { 758 log_flags = XFS_LOG_REL_PERM_RESERV; 759 } else { 760 log_flags = 0; 761 } 762 xfs_log_done(tp->t_mountp, tp->t_ticket, NULL, log_flags); 763 tp->t_ticket = NULL; 764 tp->t_log_res = 0; 765 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES; 766 } 767 768 undo_blocks: 769 if (blocks > 0) { 770 xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS, 771 (int64_t)blocks, rsvd); 772 tp->t_blk_res = 0; 773 } 774 775 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 776 777 return error; 778 } 779 780 /* 781 * Record the indicated change to the given field for application 782 * to the file system's superblock when the transaction commits. 783 * For now, just store the change in the transaction structure. 784 * 785 * Mark the transaction structure to indicate that the superblock 786 * needs to be updated before committing. 787 * 788 * Because we may not be keeping track of allocated/free inodes and 789 * used filesystem blocks in the superblock, we do not mark the 790 * superblock dirty in this transaction if we modify these fields. 791 * We still need to update the transaction deltas so that they get 792 * applied to the incore superblock, but we don't want them to 793 * cause the superblock to get locked and logged if these are the 794 * only fields in the superblock that the transaction modifies. 795 */ 796 void 797 xfs_trans_mod_sb( 798 xfs_trans_t *tp, 799 uint field, 800 int64_t delta) 801 { 802 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY); 803 xfs_mount_t *mp = tp->t_mountp; 804 805 switch (field) { 806 case XFS_TRANS_SB_ICOUNT: 807 tp->t_icount_delta += delta; 808 if (xfs_sb_version_haslazysbcount(&mp->m_sb)) 809 flags &= ~XFS_TRANS_SB_DIRTY; 810 break; 811 case XFS_TRANS_SB_IFREE: 812 tp->t_ifree_delta += delta; 813 if (xfs_sb_version_haslazysbcount(&mp->m_sb)) 814 flags &= ~XFS_TRANS_SB_DIRTY; 815 break; 816 case XFS_TRANS_SB_FDBLOCKS: 817 /* 818 * Track the number of blocks allocated in the 819 * transaction. Make sure it does not exceed the 820 * number reserved. 821 */ 822 if (delta < 0) { 823 tp->t_blk_res_used += (uint)-delta; 824 ASSERT(tp->t_blk_res_used <= tp->t_blk_res); 825 } 826 tp->t_fdblocks_delta += delta; 827 if (xfs_sb_version_haslazysbcount(&mp->m_sb)) 828 flags &= ~XFS_TRANS_SB_DIRTY; 829 break; 830 case XFS_TRANS_SB_RES_FDBLOCKS: 831 /* 832 * The allocation has already been applied to the 833 * in-core superblock's counter. This should only 834 * be applied to the on-disk superblock. 835 */ 836 ASSERT(delta < 0); 837 tp->t_res_fdblocks_delta += delta; 838 if (xfs_sb_version_haslazysbcount(&mp->m_sb)) 839 flags &= ~XFS_TRANS_SB_DIRTY; 840 break; 841 case XFS_TRANS_SB_FREXTENTS: 842 /* 843 * Track the number of blocks allocated in the 844 * transaction. Make sure it does not exceed the 845 * number reserved. 846 */ 847 if (delta < 0) { 848 tp->t_rtx_res_used += (uint)-delta; 849 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res); 850 } 851 tp->t_frextents_delta += delta; 852 break; 853 case XFS_TRANS_SB_RES_FREXTENTS: 854 /* 855 * The allocation has already been applied to the 856 * in-core superblock's counter. This should only 857 * be applied to the on-disk superblock. 858 */ 859 ASSERT(delta < 0); 860 tp->t_res_frextents_delta += delta; 861 break; 862 case XFS_TRANS_SB_DBLOCKS: 863 ASSERT(delta > 0); 864 tp->t_dblocks_delta += delta; 865 break; 866 case XFS_TRANS_SB_AGCOUNT: 867 ASSERT(delta > 0); 868 tp->t_agcount_delta += delta; 869 break; 870 case XFS_TRANS_SB_IMAXPCT: 871 tp->t_imaxpct_delta += delta; 872 break; 873 case XFS_TRANS_SB_REXTSIZE: 874 tp->t_rextsize_delta += delta; 875 break; 876 case XFS_TRANS_SB_RBMBLOCKS: 877 tp->t_rbmblocks_delta += delta; 878 break; 879 case XFS_TRANS_SB_RBLOCKS: 880 tp->t_rblocks_delta += delta; 881 break; 882 case XFS_TRANS_SB_REXTENTS: 883 tp->t_rextents_delta += delta; 884 break; 885 case XFS_TRANS_SB_REXTSLOG: 886 tp->t_rextslog_delta += delta; 887 break; 888 default: 889 ASSERT(0); 890 return; 891 } 892 893 tp->t_flags |= flags; 894 } 895 896 /* 897 * xfs_trans_apply_sb_deltas() is called from the commit code 898 * to bring the superblock buffer into the current transaction 899 * and modify it as requested by earlier calls to xfs_trans_mod_sb(). 900 * 901 * For now we just look at each field allowed to change and change 902 * it if necessary. 903 */ 904 STATIC void 905 xfs_trans_apply_sb_deltas( 906 xfs_trans_t *tp) 907 { 908 xfs_dsb_t *sbp; 909 xfs_buf_t *bp; 910 int whole = 0; 911 912 bp = xfs_trans_getsb(tp, tp->t_mountp, 0); 913 sbp = XFS_BUF_TO_SBP(bp); 914 915 /* 916 * Check that superblock mods match the mods made to AGF counters. 917 */ 918 ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) == 919 (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta + 920 tp->t_ag_btree_delta)); 921 922 /* 923 * Only update the superblock counters if we are logging them 924 */ 925 if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) { 926 if (tp->t_icount_delta) 927 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta); 928 if (tp->t_ifree_delta) 929 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta); 930 if (tp->t_fdblocks_delta) 931 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta); 932 if (tp->t_res_fdblocks_delta) 933 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta); 934 } 935 936 if (tp->t_frextents_delta) 937 be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta); 938 if (tp->t_res_frextents_delta) 939 be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta); 940 941 if (tp->t_dblocks_delta) { 942 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta); 943 whole = 1; 944 } 945 if (tp->t_agcount_delta) { 946 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta); 947 whole = 1; 948 } 949 if (tp->t_imaxpct_delta) { 950 sbp->sb_imax_pct += tp->t_imaxpct_delta; 951 whole = 1; 952 } 953 if (tp->t_rextsize_delta) { 954 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta); 955 whole = 1; 956 } 957 if (tp->t_rbmblocks_delta) { 958 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta); 959 whole = 1; 960 } 961 if (tp->t_rblocks_delta) { 962 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta); 963 whole = 1; 964 } 965 if (tp->t_rextents_delta) { 966 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta); 967 whole = 1; 968 } 969 if (tp->t_rextslog_delta) { 970 sbp->sb_rextslog += tp->t_rextslog_delta; 971 whole = 1; 972 } 973 974 if (whole) 975 /* 976 * Log the whole thing, the fields are noncontiguous. 977 */ 978 xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1); 979 else 980 /* 981 * Since all the modifiable fields are contiguous, we 982 * can get away with this. 983 */ 984 xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount), 985 offsetof(xfs_dsb_t, sb_frextents) + 986 sizeof(sbp->sb_frextents) - 1); 987 } 988 989 /* 990 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations 991 * and apply superblock counter changes to the in-core superblock. The 992 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT 993 * applied to the in-core superblock. The idea is that that has already been 994 * done. 995 * 996 * This is done efficiently with a single call to xfs_mod_incore_sb_batch(). 997 * However, we have to ensure that we only modify each superblock field only 998 * once because the application of the delta values may not be atomic. That can 999 * lead to ENOSPC races occurring if we have two separate modifcations of the 1000 * free space counter to put back the entire reservation and then take away 1001 * what we used. 1002 * 1003 * If we are not logging superblock counters, then the inode allocated/free and 1004 * used block counts are not updated in the on disk superblock. In this case, 1005 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we 1006 * still need to update the incore superblock with the changes. 1007 */ 1008 void 1009 xfs_trans_unreserve_and_mod_sb( 1010 xfs_trans_t *tp) 1011 { 1012 xfs_mod_sb_t msb[9]; /* If you add cases, add entries */ 1013 xfs_mod_sb_t *msbp; 1014 xfs_mount_t *mp = tp->t_mountp; 1015 /* REFERENCED */ 1016 int error; 1017 int rsvd; 1018 int64_t blkdelta = 0; 1019 int64_t rtxdelta = 0; 1020 int64_t idelta = 0; 1021 int64_t ifreedelta = 0; 1022 1023 msbp = msb; 1024 rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0; 1025 1026 /* calculate deltas */ 1027 if (tp->t_blk_res > 0) 1028 blkdelta = tp->t_blk_res; 1029 if ((tp->t_fdblocks_delta != 0) && 1030 (xfs_sb_version_haslazysbcount(&mp->m_sb) || 1031 (tp->t_flags & XFS_TRANS_SB_DIRTY))) 1032 blkdelta += tp->t_fdblocks_delta; 1033 1034 if (tp->t_rtx_res > 0) 1035 rtxdelta = tp->t_rtx_res; 1036 if ((tp->t_frextents_delta != 0) && 1037 (tp->t_flags & XFS_TRANS_SB_DIRTY)) 1038 rtxdelta += tp->t_frextents_delta; 1039 1040 if (xfs_sb_version_haslazysbcount(&mp->m_sb) || 1041 (tp->t_flags & XFS_TRANS_SB_DIRTY)) { 1042 idelta = tp->t_icount_delta; 1043 ifreedelta = tp->t_ifree_delta; 1044 } 1045 1046 /* apply the per-cpu counters */ 1047 if (blkdelta) { 1048 error = xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS, 1049 blkdelta, rsvd); 1050 if (error) 1051 goto out; 1052 } 1053 1054 if (idelta) { 1055 error = xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT, 1056 idelta, rsvd); 1057 if (error) 1058 goto out_undo_fdblocks; 1059 } 1060 1061 if (ifreedelta) { 1062 error = xfs_icsb_modify_counters(mp, XFS_SBS_IFREE, 1063 ifreedelta, rsvd); 1064 if (error) 1065 goto out_undo_icount; 1066 } 1067 1068 /* apply remaining deltas */ 1069 if (rtxdelta != 0) { 1070 msbp->msb_field = XFS_SBS_FREXTENTS; 1071 msbp->msb_delta = rtxdelta; 1072 msbp++; 1073 } 1074 1075 if (tp->t_flags & XFS_TRANS_SB_DIRTY) { 1076 if (tp->t_dblocks_delta != 0) { 1077 msbp->msb_field = XFS_SBS_DBLOCKS; 1078 msbp->msb_delta = tp->t_dblocks_delta; 1079 msbp++; 1080 } 1081 if (tp->t_agcount_delta != 0) { 1082 msbp->msb_field = XFS_SBS_AGCOUNT; 1083 msbp->msb_delta = tp->t_agcount_delta; 1084 msbp++; 1085 } 1086 if (tp->t_imaxpct_delta != 0) { 1087 msbp->msb_field = XFS_SBS_IMAX_PCT; 1088 msbp->msb_delta = tp->t_imaxpct_delta; 1089 msbp++; 1090 } 1091 if (tp->t_rextsize_delta != 0) { 1092 msbp->msb_field = XFS_SBS_REXTSIZE; 1093 msbp->msb_delta = tp->t_rextsize_delta; 1094 msbp++; 1095 } 1096 if (tp->t_rbmblocks_delta != 0) { 1097 msbp->msb_field = XFS_SBS_RBMBLOCKS; 1098 msbp->msb_delta = tp->t_rbmblocks_delta; 1099 msbp++; 1100 } 1101 if (tp->t_rblocks_delta != 0) { 1102 msbp->msb_field = XFS_SBS_RBLOCKS; 1103 msbp->msb_delta = tp->t_rblocks_delta; 1104 msbp++; 1105 } 1106 if (tp->t_rextents_delta != 0) { 1107 msbp->msb_field = XFS_SBS_REXTENTS; 1108 msbp->msb_delta = tp->t_rextents_delta; 1109 msbp++; 1110 } 1111 if (tp->t_rextslog_delta != 0) { 1112 msbp->msb_field = XFS_SBS_REXTSLOG; 1113 msbp->msb_delta = tp->t_rextslog_delta; 1114 msbp++; 1115 } 1116 } 1117 1118 /* 1119 * If we need to change anything, do it. 1120 */ 1121 if (msbp > msb) { 1122 error = xfs_mod_incore_sb_batch(tp->t_mountp, msb, 1123 (uint)(msbp - msb), rsvd); 1124 if (error) 1125 goto out_undo_ifreecount; 1126 } 1127 1128 return; 1129 1130 out_undo_ifreecount: 1131 if (ifreedelta) 1132 xfs_icsb_modify_counters(mp, XFS_SBS_IFREE, -ifreedelta, rsvd); 1133 out_undo_icount: 1134 if (idelta) 1135 xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT, -idelta, rsvd); 1136 out_undo_fdblocks: 1137 if (blkdelta) 1138 xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS, -blkdelta, rsvd); 1139 out: 1140 ASSERT(error == 0); 1141 return; 1142 } 1143 1144 /* 1145 * Add the given log item to the transaction's list of log items. 1146 * 1147 * The log item will now point to its new descriptor with its li_desc field. 1148 */ 1149 void 1150 xfs_trans_add_item( 1151 struct xfs_trans *tp, 1152 struct xfs_log_item *lip) 1153 { 1154 struct xfs_log_item_desc *lidp; 1155 1156 ASSERT(lip->li_mountp = tp->t_mountp); 1157 ASSERT(lip->li_ailp = tp->t_mountp->m_ail); 1158 1159 lidp = kmem_zone_zalloc(xfs_log_item_desc_zone, KM_SLEEP | KM_NOFS); 1160 1161 lidp->lid_item = lip; 1162 lidp->lid_flags = 0; 1163 lidp->lid_size = 0; 1164 list_add_tail(&lidp->lid_trans, &tp->t_items); 1165 1166 lip->li_desc = lidp; 1167 } 1168 1169 STATIC void 1170 xfs_trans_free_item_desc( 1171 struct xfs_log_item_desc *lidp) 1172 { 1173 list_del_init(&lidp->lid_trans); 1174 kmem_zone_free(xfs_log_item_desc_zone, lidp); 1175 } 1176 1177 /* 1178 * Unlink and free the given descriptor. 1179 */ 1180 void 1181 xfs_trans_del_item( 1182 struct xfs_log_item *lip) 1183 { 1184 xfs_trans_free_item_desc(lip->li_desc); 1185 lip->li_desc = NULL; 1186 } 1187 1188 /* 1189 * Unlock all of the items of a transaction and free all the descriptors 1190 * of that transaction. 1191 */ 1192 void 1193 xfs_trans_free_items( 1194 struct xfs_trans *tp, 1195 xfs_lsn_t commit_lsn, 1196 int flags) 1197 { 1198 struct xfs_log_item_desc *lidp, *next; 1199 1200 list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) { 1201 struct xfs_log_item *lip = lidp->lid_item; 1202 1203 lip->li_desc = NULL; 1204 1205 if (commit_lsn != NULLCOMMITLSN) 1206 IOP_COMMITTING(lip, commit_lsn); 1207 if (flags & XFS_TRANS_ABORT) 1208 lip->li_flags |= XFS_LI_ABORTED; 1209 IOP_UNLOCK(lip); 1210 1211 xfs_trans_free_item_desc(lidp); 1212 } 1213 } 1214 1215 /* 1216 * Unlock the items associated with a transaction. 1217 * 1218 * Items which were not logged should be freed. Those which were logged must 1219 * still be tracked so they can be unpinned when the transaction commits. 1220 */ 1221 STATIC void 1222 xfs_trans_unlock_items( 1223 struct xfs_trans *tp, 1224 xfs_lsn_t commit_lsn) 1225 { 1226 struct xfs_log_item_desc *lidp, *next; 1227 1228 list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) { 1229 struct xfs_log_item *lip = lidp->lid_item; 1230 1231 lip->li_desc = NULL; 1232 1233 if (commit_lsn != NULLCOMMITLSN) 1234 IOP_COMMITTING(lip, commit_lsn); 1235 IOP_UNLOCK(lip); 1236 1237 /* 1238 * Free the descriptor if the item is not dirty 1239 * within this transaction. 1240 */ 1241 if (!(lidp->lid_flags & XFS_LID_DIRTY)) 1242 xfs_trans_free_item_desc(lidp); 1243 } 1244 } 1245 1246 /* 1247 * Total up the number of log iovecs needed to commit this 1248 * transaction. The transaction itself needs one for the 1249 * transaction header. Ask each dirty item in turn how many 1250 * it needs to get the total. 1251 */ 1252 static uint 1253 xfs_trans_count_vecs( 1254 struct xfs_trans *tp) 1255 { 1256 int nvecs; 1257 struct xfs_log_item_desc *lidp; 1258 1259 nvecs = 1; 1260 1261 /* In the non-debug case we need to start bailing out if we 1262 * didn't find a log_item here, return zero and let trans_commit 1263 * deal with it. 1264 */ 1265 if (list_empty(&tp->t_items)) { 1266 ASSERT(0); 1267 return 0; 1268 } 1269 1270 list_for_each_entry(lidp, &tp->t_items, lid_trans) { 1271 /* 1272 * Skip items which aren't dirty in this transaction. 1273 */ 1274 if (!(lidp->lid_flags & XFS_LID_DIRTY)) 1275 continue; 1276 lidp->lid_size = IOP_SIZE(lidp->lid_item); 1277 nvecs += lidp->lid_size; 1278 } 1279 1280 return nvecs; 1281 } 1282 1283 /* 1284 * Fill in the vector with pointers to data to be logged 1285 * by this transaction. The transaction header takes 1286 * the first vector, and then each dirty item takes the 1287 * number of vectors it indicated it needed in xfs_trans_count_vecs(). 1288 * 1289 * As each item fills in the entries it needs, also pin the item 1290 * so that it cannot be flushed out until the log write completes. 1291 */ 1292 static void 1293 xfs_trans_fill_vecs( 1294 struct xfs_trans *tp, 1295 struct xfs_log_iovec *log_vector) 1296 { 1297 struct xfs_log_item_desc *lidp; 1298 struct xfs_log_iovec *vecp; 1299 uint nitems; 1300 1301 /* 1302 * Skip over the entry for the transaction header, we'll 1303 * fill that in at the end. 1304 */ 1305 vecp = log_vector + 1; 1306 1307 nitems = 0; 1308 ASSERT(!list_empty(&tp->t_items)); 1309 list_for_each_entry(lidp, &tp->t_items, lid_trans) { 1310 /* Skip items which aren't dirty in this transaction. */ 1311 if (!(lidp->lid_flags & XFS_LID_DIRTY)) 1312 continue; 1313 1314 /* 1315 * The item may be marked dirty but not log anything. This can 1316 * be used to get called when a transaction is committed. 1317 */ 1318 if (lidp->lid_size) 1319 nitems++; 1320 IOP_FORMAT(lidp->lid_item, vecp); 1321 vecp += lidp->lid_size; 1322 IOP_PIN(lidp->lid_item); 1323 } 1324 1325 /* 1326 * Now that we've counted the number of items in this transaction, fill 1327 * in the transaction header. Note that the transaction header does not 1328 * have a log item. 1329 */ 1330 tp->t_header.th_magic = XFS_TRANS_HEADER_MAGIC; 1331 tp->t_header.th_type = tp->t_type; 1332 tp->t_header.th_num_items = nitems; 1333 log_vector->i_addr = (xfs_caddr_t)&tp->t_header; 1334 log_vector->i_len = sizeof(xfs_trans_header_t); 1335 log_vector->i_type = XLOG_REG_TYPE_TRANSHDR; 1336 } 1337 1338 /* 1339 * The committed item processing consists of calling the committed routine of 1340 * each logged item, updating the item's position in the AIL if necessary, and 1341 * unpinning each item. If the committed routine returns -1, then do nothing 1342 * further with the item because it may have been freed. 1343 * 1344 * Since items are unlocked when they are copied to the incore log, it is 1345 * possible for two transactions to be completing and manipulating the same 1346 * item simultaneously. The AIL lock will protect the lsn field of each item. 1347 * The value of this field can never go backwards. 1348 * 1349 * We unpin the items after repositioning them in the AIL, because otherwise 1350 * they could be immediately flushed and we'd have to race with the flusher 1351 * trying to pull the item from the AIL as we add it. 1352 */ 1353 static void 1354 xfs_trans_item_committed( 1355 struct xfs_log_item *lip, 1356 xfs_lsn_t commit_lsn, 1357 int aborted) 1358 { 1359 xfs_lsn_t item_lsn; 1360 struct xfs_ail *ailp; 1361 1362 if (aborted) 1363 lip->li_flags |= XFS_LI_ABORTED; 1364 item_lsn = IOP_COMMITTED(lip, commit_lsn); 1365 1366 /* If the committed routine returns -1, item has been freed. */ 1367 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0) 1368 return; 1369 1370 /* 1371 * If the returned lsn is greater than what it contained before, update 1372 * the location of the item in the AIL. If it is not, then do nothing. 1373 * Items can never move backwards in the AIL. 1374 * 1375 * While the new lsn should usually be greater, it is possible that a 1376 * later transaction completing simultaneously with an earlier one 1377 * using the same item could complete first with a higher lsn. This 1378 * would cause the earlier transaction to fail the test below. 1379 */ 1380 ailp = lip->li_ailp; 1381 spin_lock(&ailp->xa_lock); 1382 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) { 1383 /* 1384 * This will set the item's lsn to item_lsn and update the 1385 * position of the item in the AIL. 1386 * 1387 * xfs_trans_ail_update() drops the AIL lock. 1388 */ 1389 xfs_trans_ail_update(ailp, lip, item_lsn); 1390 } else { 1391 spin_unlock(&ailp->xa_lock); 1392 } 1393 1394 /* 1395 * Now that we've repositioned the item in the AIL, unpin it so it can 1396 * be flushed. Pass information about buffer stale state down from the 1397 * log item flags, if anyone else stales the buffer we do not want to 1398 * pay any attention to it. 1399 */ 1400 IOP_UNPIN(lip, 0); 1401 } 1402 1403 /* 1404 * This is typically called by the LM when a transaction has been fully 1405 * committed to disk. It needs to unpin the items which have 1406 * been logged by the transaction and update their positions 1407 * in the AIL if necessary. 1408 * 1409 * This also gets called when the transactions didn't get written out 1410 * because of an I/O error. Abortflag & XFS_LI_ABORTED is set then. 1411 */ 1412 STATIC void 1413 xfs_trans_committed( 1414 void *arg, 1415 int abortflag) 1416 { 1417 struct xfs_trans *tp = arg; 1418 struct xfs_log_item_desc *lidp, *next; 1419 1420 list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) { 1421 xfs_trans_item_committed(lidp->lid_item, tp->t_lsn, abortflag); 1422 xfs_trans_free_item_desc(lidp); 1423 } 1424 1425 xfs_trans_free(tp); 1426 } 1427 1428 static inline void 1429 xfs_log_item_batch_insert( 1430 struct xfs_ail *ailp, 1431 struct xfs_log_item **log_items, 1432 int nr_items, 1433 xfs_lsn_t commit_lsn) 1434 { 1435 int i; 1436 1437 spin_lock(&ailp->xa_lock); 1438 /* xfs_trans_ail_update_bulk drops ailp->xa_lock */ 1439 xfs_trans_ail_update_bulk(ailp, log_items, nr_items, commit_lsn); 1440 1441 for (i = 0; i < nr_items; i++) 1442 IOP_UNPIN(log_items[i], 0); 1443 } 1444 1445 /* 1446 * Bulk operation version of xfs_trans_committed that takes a log vector of 1447 * items to insert into the AIL. This uses bulk AIL insertion techniques to 1448 * minimise lock traffic. 1449 * 1450 * If we are called with the aborted flag set, it is because a log write during 1451 * a CIL checkpoint commit has failed. In this case, all the items in the 1452 * checkpoint have already gone through IOP_COMMITED and IOP_UNLOCK, which 1453 * means that checkpoint commit abort handling is treated exactly the same 1454 * as an iclog write error even though we haven't started any IO yet. Hence in 1455 * this case all we need to do is IOP_COMMITTED processing, followed by an 1456 * IOP_UNPIN(aborted) call. 1457 */ 1458 void 1459 xfs_trans_committed_bulk( 1460 struct xfs_ail *ailp, 1461 struct xfs_log_vec *log_vector, 1462 xfs_lsn_t commit_lsn, 1463 int aborted) 1464 { 1465 #define LOG_ITEM_BATCH_SIZE 32 1466 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE]; 1467 struct xfs_log_vec *lv; 1468 int i = 0; 1469 1470 /* unpin all the log items */ 1471 for (lv = log_vector; lv; lv = lv->lv_next ) { 1472 struct xfs_log_item *lip = lv->lv_item; 1473 xfs_lsn_t item_lsn; 1474 1475 if (aborted) 1476 lip->li_flags |= XFS_LI_ABORTED; 1477 item_lsn = IOP_COMMITTED(lip, commit_lsn); 1478 1479 /* item_lsn of -1 means the item was freed */ 1480 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0) 1481 continue; 1482 1483 /* 1484 * if we are aborting the operation, no point in inserting the 1485 * object into the AIL as we are in a shutdown situation. 1486 */ 1487 if (aborted) { 1488 ASSERT(XFS_FORCED_SHUTDOWN(ailp->xa_mount)); 1489 IOP_UNPIN(lip, 1); 1490 continue; 1491 } 1492 1493 if (item_lsn != commit_lsn) { 1494 1495 /* 1496 * Not a bulk update option due to unusual item_lsn. 1497 * Push into AIL immediately, rechecking the lsn once 1498 * we have the ail lock. Then unpin the item. 1499 */ 1500 spin_lock(&ailp->xa_lock); 1501 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) 1502 xfs_trans_ail_update(ailp, lip, item_lsn); 1503 else 1504 spin_unlock(&ailp->xa_lock); 1505 IOP_UNPIN(lip, 0); 1506 continue; 1507 } 1508 1509 /* Item is a candidate for bulk AIL insert. */ 1510 log_items[i++] = lv->lv_item; 1511 if (i >= LOG_ITEM_BATCH_SIZE) { 1512 xfs_log_item_batch_insert(ailp, log_items, 1513 LOG_ITEM_BATCH_SIZE, commit_lsn); 1514 i = 0; 1515 } 1516 } 1517 1518 /* make sure we insert the remainder! */ 1519 if (i) 1520 xfs_log_item_batch_insert(ailp, log_items, i, commit_lsn); 1521 } 1522 1523 /* 1524 * Called from the trans_commit code when we notice that the filesystem is in 1525 * the middle of a forced shutdown. 1526 * 1527 * When we are called here, we have already pinned all the items in the 1528 * transaction. However, neither IOP_COMMITTING or IOP_UNLOCK has been called 1529 * so we can simply walk the items in the transaction, unpin them with an abort 1530 * flag and then free the items. Note that unpinning the items can result in 1531 * them being freed immediately, so we need to use a safe list traversal method 1532 * here. 1533 */ 1534 STATIC void 1535 xfs_trans_uncommit( 1536 struct xfs_trans *tp, 1537 uint flags) 1538 { 1539 struct xfs_log_item_desc *lidp, *n; 1540 1541 list_for_each_entry_safe(lidp, n, &tp->t_items, lid_trans) { 1542 if (lidp->lid_flags & XFS_LID_DIRTY) 1543 IOP_UNPIN(lidp->lid_item, 1); 1544 } 1545 1546 xfs_trans_unreserve_and_mod_sb(tp); 1547 xfs_trans_unreserve_and_mod_dquots(tp); 1548 1549 xfs_trans_free_items(tp, NULLCOMMITLSN, flags); 1550 xfs_trans_free(tp); 1551 } 1552 1553 /* 1554 * Format the transaction direct to the iclog. This isolates the physical 1555 * transaction commit operation from the logical operation and hence allows 1556 * other methods to be introduced without affecting the existing commit path. 1557 */ 1558 static int 1559 xfs_trans_commit_iclog( 1560 struct xfs_mount *mp, 1561 struct xfs_trans *tp, 1562 xfs_lsn_t *commit_lsn, 1563 int flags) 1564 { 1565 int shutdown; 1566 int error; 1567 int log_flags = 0; 1568 struct xlog_in_core *commit_iclog; 1569 #define XFS_TRANS_LOGVEC_COUNT 16 1570 struct xfs_log_iovec log_vector_fast[XFS_TRANS_LOGVEC_COUNT]; 1571 struct xfs_log_iovec *log_vector; 1572 uint nvec; 1573 1574 1575 /* 1576 * Ask each log item how many log_vector entries it will 1577 * need so we can figure out how many to allocate. 1578 * Try to avoid the kmem_alloc() call in the common case 1579 * by using a vector from the stack when it fits. 1580 */ 1581 nvec = xfs_trans_count_vecs(tp); 1582 if (nvec == 0) { 1583 return ENOMEM; /* triggers a shutdown! */ 1584 } else if (nvec <= XFS_TRANS_LOGVEC_COUNT) { 1585 log_vector = log_vector_fast; 1586 } else { 1587 log_vector = (xfs_log_iovec_t *)kmem_alloc(nvec * 1588 sizeof(xfs_log_iovec_t), 1589 KM_SLEEP); 1590 } 1591 1592 /* 1593 * Fill in the log_vector and pin the logged items, and 1594 * then write the transaction to the log. 1595 */ 1596 xfs_trans_fill_vecs(tp, log_vector); 1597 1598 if (flags & XFS_TRANS_RELEASE_LOG_RES) 1599 log_flags = XFS_LOG_REL_PERM_RESERV; 1600 1601 error = xfs_log_write(mp, log_vector, nvec, tp->t_ticket, &(tp->t_lsn)); 1602 1603 /* 1604 * The transaction is committed incore here, and can go out to disk 1605 * at any time after this call. However, all the items associated 1606 * with the transaction are still locked and pinned in memory. 1607 */ 1608 *commit_lsn = xfs_log_done(mp, tp->t_ticket, &commit_iclog, log_flags); 1609 1610 tp->t_commit_lsn = *commit_lsn; 1611 trace_xfs_trans_commit_lsn(tp); 1612 1613 if (nvec > XFS_TRANS_LOGVEC_COUNT) 1614 kmem_free(log_vector); 1615 1616 /* 1617 * If we got a log write error. Unpin the logitems that we 1618 * had pinned, clean up, free trans structure, and return error. 1619 */ 1620 if (error || *commit_lsn == -1) { 1621 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 1622 xfs_trans_uncommit(tp, flags|XFS_TRANS_ABORT); 1623 return XFS_ERROR(EIO); 1624 } 1625 1626 /* 1627 * Once the transaction has committed, unused 1628 * reservations need to be released and changes to 1629 * the superblock need to be reflected in the in-core 1630 * version. Do that now. 1631 */ 1632 xfs_trans_unreserve_and_mod_sb(tp); 1633 1634 /* 1635 * Tell the LM to call the transaction completion routine 1636 * when the log write with LSN commit_lsn completes (e.g. 1637 * when the transaction commit really hits the on-disk log). 1638 * After this call we cannot reference tp, because the call 1639 * can happen at any time and the call will free the transaction 1640 * structure pointed to by tp. The only case where we call 1641 * the completion routine (xfs_trans_committed) directly is 1642 * if the log is turned off on a debug kernel or we're 1643 * running in simulation mode (the log is explicitly turned 1644 * off). 1645 */ 1646 tp->t_logcb.cb_func = xfs_trans_committed; 1647 tp->t_logcb.cb_arg = tp; 1648 1649 /* 1650 * We need to pass the iclog buffer which was used for the 1651 * transaction commit record into this function, and attach 1652 * the callback to it. The callback must be attached before 1653 * the items are unlocked to avoid racing with other threads 1654 * waiting for an item to unlock. 1655 */ 1656 shutdown = xfs_log_notify(mp, commit_iclog, &(tp->t_logcb)); 1657 1658 /* 1659 * Mark this thread as no longer being in a transaction 1660 */ 1661 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 1662 1663 /* 1664 * Once all the items of the transaction have been copied 1665 * to the in core log and the callback is attached, the 1666 * items can be unlocked. 1667 * 1668 * This will free descriptors pointing to items which were 1669 * not logged since there is nothing more to do with them. 1670 * For items which were logged, we will keep pointers to them 1671 * so they can be unpinned after the transaction commits to disk. 1672 * This will also stamp each modified meta-data item with 1673 * the commit lsn of this transaction for dependency tracking 1674 * purposes. 1675 */ 1676 xfs_trans_unlock_items(tp, *commit_lsn); 1677 1678 /* 1679 * If we detected a log error earlier, finish committing 1680 * the transaction now (unpin log items, etc). 1681 * 1682 * Order is critical here, to avoid using the transaction 1683 * pointer after its been freed (by xfs_trans_committed 1684 * either here now, or as a callback). We cannot do this 1685 * step inside xfs_log_notify as was done earlier because 1686 * of this issue. 1687 */ 1688 if (shutdown) 1689 xfs_trans_committed(tp, XFS_LI_ABORTED); 1690 1691 /* 1692 * Now that the xfs_trans_committed callback has been attached, 1693 * and the items are released we can finally allow the iclog to 1694 * go to disk. 1695 */ 1696 return xfs_log_release_iclog(mp, commit_iclog); 1697 } 1698 1699 /* 1700 * Walk the log items and allocate log vector structures for 1701 * each item large enough to fit all the vectors they require. 1702 * Note that this format differs from the old log vector format in 1703 * that there is no transaction header in these log vectors. 1704 */ 1705 STATIC struct xfs_log_vec * 1706 xfs_trans_alloc_log_vecs( 1707 xfs_trans_t *tp) 1708 { 1709 struct xfs_log_item_desc *lidp; 1710 struct xfs_log_vec *lv = NULL; 1711 struct xfs_log_vec *ret_lv = NULL; 1712 1713 1714 /* Bail out if we didn't find a log item. */ 1715 if (list_empty(&tp->t_items)) { 1716 ASSERT(0); 1717 return NULL; 1718 } 1719 1720 list_for_each_entry(lidp, &tp->t_items, lid_trans) { 1721 struct xfs_log_vec *new_lv; 1722 1723 /* Skip items which aren't dirty in this transaction. */ 1724 if (!(lidp->lid_flags & XFS_LID_DIRTY)) 1725 continue; 1726 1727 /* Skip items that do not have any vectors for writing */ 1728 lidp->lid_size = IOP_SIZE(lidp->lid_item); 1729 if (!lidp->lid_size) 1730 continue; 1731 1732 new_lv = kmem_zalloc(sizeof(*new_lv) + 1733 lidp->lid_size * sizeof(struct xfs_log_iovec), 1734 KM_SLEEP); 1735 1736 /* The allocated iovec region lies beyond the log vector. */ 1737 new_lv->lv_iovecp = (struct xfs_log_iovec *)&new_lv[1]; 1738 new_lv->lv_niovecs = lidp->lid_size; 1739 new_lv->lv_item = lidp->lid_item; 1740 if (!ret_lv) 1741 ret_lv = new_lv; 1742 else 1743 lv->lv_next = new_lv; 1744 lv = new_lv; 1745 } 1746 1747 return ret_lv; 1748 } 1749 1750 static int 1751 xfs_trans_commit_cil( 1752 struct xfs_mount *mp, 1753 struct xfs_trans *tp, 1754 xfs_lsn_t *commit_lsn, 1755 int flags) 1756 { 1757 struct xfs_log_vec *log_vector; 1758 1759 /* 1760 * Get each log item to allocate a vector structure for 1761 * the log item to to pass to the log write code. The 1762 * CIL commit code will format the vector and save it away. 1763 */ 1764 log_vector = xfs_trans_alloc_log_vecs(tp); 1765 if (!log_vector) 1766 return ENOMEM; 1767 1768 xfs_log_commit_cil(mp, tp, log_vector, commit_lsn, flags); 1769 1770 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 1771 xfs_trans_free(tp); 1772 return 0; 1773 } 1774 1775 /* 1776 * xfs_trans_commit 1777 * 1778 * Commit the given transaction to the log a/synchronously. 1779 * 1780 * XFS disk error handling mechanism is not based on a typical 1781 * transaction abort mechanism. Logically after the filesystem 1782 * gets marked 'SHUTDOWN', we can't let any new transactions 1783 * be durable - ie. committed to disk - because some metadata might 1784 * be inconsistent. In such cases, this returns an error, and the 1785 * caller may assume that all locked objects joined to the transaction 1786 * have already been unlocked as if the commit had succeeded. 1787 * Do not reference the transaction structure after this call. 1788 */ 1789 int 1790 _xfs_trans_commit( 1791 struct xfs_trans *tp, 1792 uint flags, 1793 int *log_flushed) 1794 { 1795 struct xfs_mount *mp = tp->t_mountp; 1796 xfs_lsn_t commit_lsn = -1; 1797 int error = 0; 1798 int log_flags = 0; 1799 int sync = tp->t_flags & XFS_TRANS_SYNC; 1800 1801 /* 1802 * Determine whether this commit is releasing a permanent 1803 * log reservation or not. 1804 */ 1805 if (flags & XFS_TRANS_RELEASE_LOG_RES) { 1806 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1807 log_flags = XFS_LOG_REL_PERM_RESERV; 1808 } 1809 1810 /* 1811 * If there is nothing to be logged by the transaction, 1812 * then unlock all of the items associated with the 1813 * transaction and free the transaction structure. 1814 * Also make sure to return any reserved blocks to 1815 * the free pool. 1816 */ 1817 if (!(tp->t_flags & XFS_TRANS_DIRTY)) 1818 goto out_unreserve; 1819 1820 if (XFS_FORCED_SHUTDOWN(mp)) { 1821 error = XFS_ERROR(EIO); 1822 goto out_unreserve; 1823 } 1824 1825 ASSERT(tp->t_ticket != NULL); 1826 1827 /* 1828 * If we need to update the superblock, then do it now. 1829 */ 1830 if (tp->t_flags & XFS_TRANS_SB_DIRTY) 1831 xfs_trans_apply_sb_deltas(tp); 1832 xfs_trans_apply_dquot_deltas(tp); 1833 1834 if (mp->m_flags & XFS_MOUNT_DELAYLOG) 1835 error = xfs_trans_commit_cil(mp, tp, &commit_lsn, flags); 1836 else 1837 error = xfs_trans_commit_iclog(mp, tp, &commit_lsn, flags); 1838 1839 if (error == ENOMEM) { 1840 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 1841 error = XFS_ERROR(EIO); 1842 goto out_unreserve; 1843 } 1844 1845 /* 1846 * If the transaction needs to be synchronous, then force the 1847 * log out now and wait for it. 1848 */ 1849 if (sync) { 1850 if (!error) { 1851 error = _xfs_log_force_lsn(mp, commit_lsn, 1852 XFS_LOG_SYNC, log_flushed); 1853 } 1854 XFS_STATS_INC(xs_trans_sync); 1855 } else { 1856 XFS_STATS_INC(xs_trans_async); 1857 } 1858 1859 return error; 1860 1861 out_unreserve: 1862 xfs_trans_unreserve_and_mod_sb(tp); 1863 1864 /* 1865 * It is indeed possible for the transaction to be not dirty but 1866 * the dqinfo portion to be. All that means is that we have some 1867 * (non-persistent) quota reservations that need to be unreserved. 1868 */ 1869 xfs_trans_unreserve_and_mod_dquots(tp); 1870 if (tp->t_ticket) { 1871 commit_lsn = xfs_log_done(mp, tp->t_ticket, NULL, log_flags); 1872 if (commit_lsn == -1 && !error) 1873 error = XFS_ERROR(EIO); 1874 } 1875 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 1876 xfs_trans_free_items(tp, NULLCOMMITLSN, error ? XFS_TRANS_ABORT : 0); 1877 xfs_trans_free(tp); 1878 1879 XFS_STATS_INC(xs_trans_empty); 1880 return error; 1881 } 1882 1883 /* 1884 * Unlock all of the transaction's items and free the transaction. 1885 * The transaction must not have modified any of its items, because 1886 * there is no way to restore them to their previous state. 1887 * 1888 * If the transaction has made a log reservation, make sure to release 1889 * it as well. 1890 */ 1891 void 1892 xfs_trans_cancel( 1893 xfs_trans_t *tp, 1894 int flags) 1895 { 1896 int log_flags; 1897 xfs_mount_t *mp = tp->t_mountp; 1898 1899 /* 1900 * See if the caller is being too lazy to figure out if 1901 * the transaction really needs an abort. 1902 */ 1903 if ((flags & XFS_TRANS_ABORT) && !(tp->t_flags & XFS_TRANS_DIRTY)) 1904 flags &= ~XFS_TRANS_ABORT; 1905 /* 1906 * See if the caller is relying on us to shut down the 1907 * filesystem. This happens in paths where we detect 1908 * corruption and decide to give up. 1909 */ 1910 if ((tp->t_flags & XFS_TRANS_DIRTY) && !XFS_FORCED_SHUTDOWN(mp)) { 1911 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp); 1912 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1913 } 1914 #ifdef DEBUG 1915 if (!(flags & XFS_TRANS_ABORT) && !XFS_FORCED_SHUTDOWN(mp)) { 1916 struct xfs_log_item_desc *lidp; 1917 1918 list_for_each_entry(lidp, &tp->t_items, lid_trans) 1919 ASSERT(!(lidp->lid_item->li_type == XFS_LI_EFD)); 1920 } 1921 #endif 1922 xfs_trans_unreserve_and_mod_sb(tp); 1923 xfs_trans_unreserve_and_mod_dquots(tp); 1924 1925 if (tp->t_ticket) { 1926 if (flags & XFS_TRANS_RELEASE_LOG_RES) { 1927 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1928 log_flags = XFS_LOG_REL_PERM_RESERV; 1929 } else { 1930 log_flags = 0; 1931 } 1932 xfs_log_done(mp, tp->t_ticket, NULL, log_flags); 1933 } 1934 1935 /* mark this thread as no longer being in a transaction */ 1936 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 1937 1938 xfs_trans_free_items(tp, NULLCOMMITLSN, flags); 1939 xfs_trans_free(tp); 1940 } 1941 1942 /* 1943 * Roll from one trans in the sequence of PERMANENT transactions to 1944 * the next: permanent transactions are only flushed out when 1945 * committed with XFS_TRANS_RELEASE_LOG_RES, but we still want as soon 1946 * as possible to let chunks of it go to the log. So we commit the 1947 * chunk we've been working on and get a new transaction to continue. 1948 */ 1949 int 1950 xfs_trans_roll( 1951 struct xfs_trans **tpp, 1952 struct xfs_inode *dp) 1953 { 1954 struct xfs_trans *trans; 1955 unsigned int logres, count; 1956 int error; 1957 1958 /* 1959 * Ensure that the inode is always logged. 1960 */ 1961 trans = *tpp; 1962 xfs_trans_log_inode(trans, dp, XFS_ILOG_CORE); 1963 1964 /* 1965 * Copy the critical parameters from one trans to the next. 1966 */ 1967 logres = trans->t_log_res; 1968 count = trans->t_log_count; 1969 *tpp = xfs_trans_dup(trans); 1970 1971 /* 1972 * Commit the current transaction. 1973 * If this commit failed, then it'd just unlock those items that 1974 * are not marked ihold. That also means that a filesystem shutdown 1975 * is in progress. The caller takes the responsibility to cancel 1976 * the duplicate transaction that gets returned. 1977 */ 1978 error = xfs_trans_commit(trans, 0); 1979 if (error) 1980 return (error); 1981 1982 trans = *tpp; 1983 1984 /* 1985 * transaction commit worked ok so we can drop the extra ticket 1986 * reference that we gained in xfs_trans_dup() 1987 */ 1988 xfs_log_ticket_put(trans->t_ticket); 1989 1990 1991 /* 1992 * Reserve space in the log for th next transaction. 1993 * This also pushes items in the "AIL", the list of logged items, 1994 * out to disk if they are taking up space at the tail of the log 1995 * that we want to use. This requires that either nothing be locked 1996 * across this call, or that anything that is locked be logged in 1997 * the prior and the next transactions. 1998 */ 1999 error = xfs_trans_reserve(trans, 0, logres, 0, 2000 XFS_TRANS_PERM_LOG_RES, count); 2001 /* 2002 * Ensure that the inode is in the new transaction and locked. 2003 */ 2004 if (error) 2005 return error; 2006 2007 xfs_trans_ijoin(trans, dp); 2008 return 0; 2009 } 2010