xref: /openbmc/linux/fs/xfs/xfs_trans.c (revision 2d091155)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4  * Copyright (C) 2010 Red Hat, Inc.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_extent_busy.h"
15 #include "xfs_quota.h"
16 #include "xfs_trans.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_log.h"
19 #include "xfs_log_priv.h"
20 #include "xfs_trace.h"
21 #include "xfs_error.h"
22 #include "xfs_defer.h"
23 #include "xfs_inode.h"
24 #include "xfs_dquot_item.h"
25 #include "xfs_dquot.h"
26 #include "xfs_icache.h"
27 
28 struct kmem_cache	*xfs_trans_cache;
29 
30 #if defined(CONFIG_TRACEPOINTS)
31 static void
32 xfs_trans_trace_reservations(
33 	struct xfs_mount	*mp)
34 {
35 	struct xfs_trans_res	resv;
36 	struct xfs_trans_res	*res;
37 	struct xfs_trans_res	*end_res;
38 	int			i;
39 
40 	res = (struct xfs_trans_res *)M_RES(mp);
41 	end_res = (struct xfs_trans_res *)(M_RES(mp) + 1);
42 	for (i = 0; res < end_res; i++, res++)
43 		trace_xfs_trans_resv_calc(mp, i, res);
44 	xfs_log_get_max_trans_res(mp, &resv);
45 	trace_xfs_trans_resv_calc(mp, -1, &resv);
46 }
47 #else
48 # define xfs_trans_trace_reservations(mp)
49 #endif
50 
51 /*
52  * Initialize the precomputed transaction reservation values
53  * in the mount structure.
54  */
55 void
56 xfs_trans_init(
57 	struct xfs_mount	*mp)
58 {
59 	xfs_trans_resv_calc(mp, M_RES(mp));
60 	xfs_trans_trace_reservations(mp);
61 }
62 
63 /*
64  * Free the transaction structure.  If there is more clean up
65  * to do when the structure is freed, add it here.
66  */
67 STATIC void
68 xfs_trans_free(
69 	struct xfs_trans	*tp)
70 {
71 	xfs_extent_busy_sort(&tp->t_busy);
72 	xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false);
73 
74 	trace_xfs_trans_free(tp, _RET_IP_);
75 	xfs_trans_clear_context(tp);
76 	if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT))
77 		sb_end_intwrite(tp->t_mountp->m_super);
78 	xfs_trans_free_dqinfo(tp);
79 	kmem_cache_free(xfs_trans_cache, tp);
80 }
81 
82 /*
83  * This is called to create a new transaction which will share the
84  * permanent log reservation of the given transaction.  The remaining
85  * unused block and rt extent reservations are also inherited.  This
86  * implies that the original transaction is no longer allowed to allocate
87  * blocks.  Locks and log items, however, are no inherited.  They must
88  * be added to the new transaction explicitly.
89  */
90 STATIC struct xfs_trans *
91 xfs_trans_dup(
92 	struct xfs_trans	*tp)
93 {
94 	struct xfs_trans	*ntp;
95 
96 	trace_xfs_trans_dup(tp, _RET_IP_);
97 
98 	ntp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
99 
100 	/*
101 	 * Initialize the new transaction structure.
102 	 */
103 	ntp->t_magic = XFS_TRANS_HEADER_MAGIC;
104 	ntp->t_mountp = tp->t_mountp;
105 	INIT_LIST_HEAD(&ntp->t_items);
106 	INIT_LIST_HEAD(&ntp->t_busy);
107 	INIT_LIST_HEAD(&ntp->t_dfops);
108 	ntp->t_firstblock = NULLFSBLOCK;
109 
110 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
111 	ASSERT(tp->t_ticket != NULL);
112 
113 	ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
114 		       (tp->t_flags & XFS_TRANS_RESERVE) |
115 		       (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) |
116 		       (tp->t_flags & XFS_TRANS_RES_FDBLKS);
117 	/* We gave our writer reference to the new transaction */
118 	tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
119 	ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
120 
121 	ASSERT(tp->t_blk_res >= tp->t_blk_res_used);
122 	ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
123 	tp->t_blk_res = tp->t_blk_res_used;
124 
125 	ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
126 	tp->t_rtx_res = tp->t_rtx_res_used;
127 
128 	xfs_trans_switch_context(tp, ntp);
129 
130 	/* move deferred ops over to the new tp */
131 	xfs_defer_move(ntp, tp);
132 
133 	xfs_trans_dup_dqinfo(tp, ntp);
134 	return ntp;
135 }
136 
137 /*
138  * This is called to reserve free disk blocks and log space for the
139  * given transaction.  This must be done before allocating any resources
140  * within the transaction.
141  *
142  * This will return ENOSPC if there are not enough blocks available.
143  * It will sleep waiting for available log space.
144  * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
145  * is used by long running transactions.  If any one of the reservations
146  * fails then they will all be backed out.
147  *
148  * This does not do quota reservations. That typically is done by the
149  * caller afterwards.
150  */
151 static int
152 xfs_trans_reserve(
153 	struct xfs_trans	*tp,
154 	struct xfs_trans_res	*resp,
155 	uint			blocks,
156 	uint			rtextents)
157 {
158 	struct xfs_mount	*mp = tp->t_mountp;
159 	int			error = 0;
160 	bool			rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
161 
162 	/*
163 	 * Attempt to reserve the needed disk blocks by decrementing
164 	 * the number needed from the number available.  This will
165 	 * fail if the count would go below zero.
166 	 */
167 	if (blocks > 0) {
168 		error = xfs_mod_fdblocks(mp, -((int64_t)blocks), rsvd);
169 		if (error != 0)
170 			return -ENOSPC;
171 		tp->t_blk_res += blocks;
172 	}
173 
174 	/*
175 	 * Reserve the log space needed for this transaction.
176 	 */
177 	if (resp->tr_logres > 0) {
178 		bool	permanent = false;
179 
180 		ASSERT(tp->t_log_res == 0 ||
181 		       tp->t_log_res == resp->tr_logres);
182 		ASSERT(tp->t_log_count == 0 ||
183 		       tp->t_log_count == resp->tr_logcount);
184 
185 		if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) {
186 			tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
187 			permanent = true;
188 		} else {
189 			ASSERT(tp->t_ticket == NULL);
190 			ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
191 		}
192 
193 		if (tp->t_ticket != NULL) {
194 			ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES);
195 			error = xfs_log_regrant(mp, tp->t_ticket);
196 		} else {
197 			error = xfs_log_reserve(mp,
198 						resp->tr_logres,
199 						resp->tr_logcount,
200 						&tp->t_ticket, XFS_TRANSACTION,
201 						permanent);
202 		}
203 
204 		if (error)
205 			goto undo_blocks;
206 
207 		tp->t_log_res = resp->tr_logres;
208 		tp->t_log_count = resp->tr_logcount;
209 	}
210 
211 	/*
212 	 * Attempt to reserve the needed realtime extents by decrementing
213 	 * the number needed from the number available.  This will
214 	 * fail if the count would go below zero.
215 	 */
216 	if (rtextents > 0) {
217 		error = xfs_mod_frextents(mp, -((int64_t)rtextents));
218 		if (error) {
219 			error = -ENOSPC;
220 			goto undo_log;
221 		}
222 		tp->t_rtx_res += rtextents;
223 	}
224 
225 	return 0;
226 
227 	/*
228 	 * Error cases jump to one of these labels to undo any
229 	 * reservations which have already been performed.
230 	 */
231 undo_log:
232 	if (resp->tr_logres > 0) {
233 		xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
234 		tp->t_ticket = NULL;
235 		tp->t_log_res = 0;
236 		tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
237 	}
238 
239 undo_blocks:
240 	if (blocks > 0) {
241 		xfs_mod_fdblocks(mp, (int64_t)blocks, rsvd);
242 		tp->t_blk_res = 0;
243 	}
244 	return error;
245 }
246 
247 int
248 xfs_trans_alloc(
249 	struct xfs_mount	*mp,
250 	struct xfs_trans_res	*resp,
251 	uint			blocks,
252 	uint			rtextents,
253 	uint			flags,
254 	struct xfs_trans	**tpp)
255 {
256 	struct xfs_trans	*tp;
257 	bool			want_retry = true;
258 	int			error;
259 
260 	/*
261 	 * Allocate the handle before we do our freeze accounting and setting up
262 	 * GFP_NOFS allocation context so that we avoid lockdep false positives
263 	 * by doing GFP_KERNEL allocations inside sb_start_intwrite().
264 	 */
265 retry:
266 	tp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
267 	if (!(flags & XFS_TRANS_NO_WRITECOUNT))
268 		sb_start_intwrite(mp->m_super);
269 	xfs_trans_set_context(tp);
270 
271 	/*
272 	 * Zero-reservation ("empty") transactions can't modify anything, so
273 	 * they're allowed to run while we're frozen.
274 	 */
275 	WARN_ON(resp->tr_logres > 0 &&
276 		mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
277 	ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) ||
278 	       xfs_has_lazysbcount(mp));
279 
280 	tp->t_magic = XFS_TRANS_HEADER_MAGIC;
281 	tp->t_flags = flags;
282 	tp->t_mountp = mp;
283 	INIT_LIST_HEAD(&tp->t_items);
284 	INIT_LIST_HEAD(&tp->t_busy);
285 	INIT_LIST_HEAD(&tp->t_dfops);
286 	tp->t_firstblock = NULLFSBLOCK;
287 
288 	error = xfs_trans_reserve(tp, resp, blocks, rtextents);
289 	if (error == -ENOSPC && want_retry) {
290 		xfs_trans_cancel(tp);
291 
292 		/*
293 		 * We weren't able to reserve enough space for the transaction.
294 		 * Flush the other speculative space allocations to free space.
295 		 * Do not perform a synchronous scan because callers can hold
296 		 * other locks.
297 		 */
298 		xfs_blockgc_flush_all(mp);
299 		want_retry = false;
300 		goto retry;
301 	}
302 	if (error) {
303 		xfs_trans_cancel(tp);
304 		return error;
305 	}
306 
307 	trace_xfs_trans_alloc(tp, _RET_IP_);
308 
309 	*tpp = tp;
310 	return 0;
311 }
312 
313 /*
314  * Create an empty transaction with no reservation.  This is a defensive
315  * mechanism for routines that query metadata without actually modifying them --
316  * if the metadata being queried is somehow cross-linked (think a btree block
317  * pointer that points higher in the tree), we risk deadlock.  However, blocks
318  * grabbed as part of a transaction can be re-grabbed.  The verifiers will
319  * notice the corrupt block and the operation will fail back to userspace
320  * without deadlocking.
321  *
322  * Note the zero-length reservation; this transaction MUST be cancelled without
323  * any dirty data.
324  *
325  * Callers should obtain freeze protection to avoid a conflict with fs freezing
326  * where we can be grabbing buffers at the same time that freeze is trying to
327  * drain the buffer LRU list.
328  */
329 int
330 xfs_trans_alloc_empty(
331 	struct xfs_mount		*mp,
332 	struct xfs_trans		**tpp)
333 {
334 	struct xfs_trans_res		resv = {0};
335 
336 	return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp);
337 }
338 
339 /*
340  * Record the indicated change to the given field for application
341  * to the file system's superblock when the transaction commits.
342  * For now, just store the change in the transaction structure.
343  *
344  * Mark the transaction structure to indicate that the superblock
345  * needs to be updated before committing.
346  *
347  * Because we may not be keeping track of allocated/free inodes and
348  * used filesystem blocks in the superblock, we do not mark the
349  * superblock dirty in this transaction if we modify these fields.
350  * We still need to update the transaction deltas so that they get
351  * applied to the incore superblock, but we don't want them to
352  * cause the superblock to get locked and logged if these are the
353  * only fields in the superblock that the transaction modifies.
354  */
355 void
356 xfs_trans_mod_sb(
357 	xfs_trans_t	*tp,
358 	uint		field,
359 	int64_t		delta)
360 {
361 	uint32_t	flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
362 	xfs_mount_t	*mp = tp->t_mountp;
363 
364 	switch (field) {
365 	case XFS_TRANS_SB_ICOUNT:
366 		tp->t_icount_delta += delta;
367 		if (xfs_has_lazysbcount(mp))
368 			flags &= ~XFS_TRANS_SB_DIRTY;
369 		break;
370 	case XFS_TRANS_SB_IFREE:
371 		tp->t_ifree_delta += delta;
372 		if (xfs_has_lazysbcount(mp))
373 			flags &= ~XFS_TRANS_SB_DIRTY;
374 		break;
375 	case XFS_TRANS_SB_FDBLOCKS:
376 		/*
377 		 * Track the number of blocks allocated in the transaction.
378 		 * Make sure it does not exceed the number reserved. If so,
379 		 * shutdown as this can lead to accounting inconsistency.
380 		 */
381 		if (delta < 0) {
382 			tp->t_blk_res_used += (uint)-delta;
383 			if (tp->t_blk_res_used > tp->t_blk_res)
384 				xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
385 		} else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) {
386 			int64_t	blkres_delta;
387 
388 			/*
389 			 * Return freed blocks directly to the reservation
390 			 * instead of the global pool, being careful not to
391 			 * overflow the trans counter. This is used to preserve
392 			 * reservation across chains of transaction rolls that
393 			 * repeatedly free and allocate blocks.
394 			 */
395 			blkres_delta = min_t(int64_t, delta,
396 					     UINT_MAX - tp->t_blk_res);
397 			tp->t_blk_res += blkres_delta;
398 			delta -= blkres_delta;
399 		}
400 		tp->t_fdblocks_delta += delta;
401 		if (xfs_has_lazysbcount(mp))
402 			flags &= ~XFS_TRANS_SB_DIRTY;
403 		break;
404 	case XFS_TRANS_SB_RES_FDBLOCKS:
405 		/*
406 		 * The allocation has already been applied to the
407 		 * in-core superblock's counter.  This should only
408 		 * be applied to the on-disk superblock.
409 		 */
410 		tp->t_res_fdblocks_delta += delta;
411 		if (xfs_has_lazysbcount(mp))
412 			flags &= ~XFS_TRANS_SB_DIRTY;
413 		break;
414 	case XFS_TRANS_SB_FREXTENTS:
415 		/*
416 		 * Track the number of blocks allocated in the
417 		 * transaction.  Make sure it does not exceed the
418 		 * number reserved.
419 		 */
420 		if (delta < 0) {
421 			tp->t_rtx_res_used += (uint)-delta;
422 			ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
423 		}
424 		tp->t_frextents_delta += delta;
425 		break;
426 	case XFS_TRANS_SB_RES_FREXTENTS:
427 		/*
428 		 * The allocation has already been applied to the
429 		 * in-core superblock's counter.  This should only
430 		 * be applied to the on-disk superblock.
431 		 */
432 		ASSERT(delta < 0);
433 		tp->t_res_frextents_delta += delta;
434 		break;
435 	case XFS_TRANS_SB_DBLOCKS:
436 		tp->t_dblocks_delta += delta;
437 		break;
438 	case XFS_TRANS_SB_AGCOUNT:
439 		ASSERT(delta > 0);
440 		tp->t_agcount_delta += delta;
441 		break;
442 	case XFS_TRANS_SB_IMAXPCT:
443 		tp->t_imaxpct_delta += delta;
444 		break;
445 	case XFS_TRANS_SB_REXTSIZE:
446 		tp->t_rextsize_delta += delta;
447 		break;
448 	case XFS_TRANS_SB_RBMBLOCKS:
449 		tp->t_rbmblocks_delta += delta;
450 		break;
451 	case XFS_TRANS_SB_RBLOCKS:
452 		tp->t_rblocks_delta += delta;
453 		break;
454 	case XFS_TRANS_SB_REXTENTS:
455 		tp->t_rextents_delta += delta;
456 		break;
457 	case XFS_TRANS_SB_REXTSLOG:
458 		tp->t_rextslog_delta += delta;
459 		break;
460 	default:
461 		ASSERT(0);
462 		return;
463 	}
464 
465 	tp->t_flags |= flags;
466 }
467 
468 /*
469  * xfs_trans_apply_sb_deltas() is called from the commit code
470  * to bring the superblock buffer into the current transaction
471  * and modify it as requested by earlier calls to xfs_trans_mod_sb().
472  *
473  * For now we just look at each field allowed to change and change
474  * it if necessary.
475  */
476 STATIC void
477 xfs_trans_apply_sb_deltas(
478 	xfs_trans_t	*tp)
479 {
480 	struct xfs_dsb	*sbp;
481 	struct xfs_buf	*bp;
482 	int		whole = 0;
483 
484 	bp = xfs_trans_getsb(tp);
485 	sbp = bp->b_addr;
486 
487 	/*
488 	 * Only update the superblock counters if we are logging them
489 	 */
490 	if (!xfs_has_lazysbcount((tp->t_mountp))) {
491 		if (tp->t_icount_delta)
492 			be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
493 		if (tp->t_ifree_delta)
494 			be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
495 		if (tp->t_fdblocks_delta)
496 			be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
497 		if (tp->t_res_fdblocks_delta)
498 			be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
499 	}
500 
501 	if (tp->t_frextents_delta)
502 		be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta);
503 	if (tp->t_res_frextents_delta)
504 		be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta);
505 
506 	if (tp->t_dblocks_delta) {
507 		be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
508 		whole = 1;
509 	}
510 	if (tp->t_agcount_delta) {
511 		be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
512 		whole = 1;
513 	}
514 	if (tp->t_imaxpct_delta) {
515 		sbp->sb_imax_pct += tp->t_imaxpct_delta;
516 		whole = 1;
517 	}
518 	if (tp->t_rextsize_delta) {
519 		be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
520 		whole = 1;
521 	}
522 	if (tp->t_rbmblocks_delta) {
523 		be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
524 		whole = 1;
525 	}
526 	if (tp->t_rblocks_delta) {
527 		be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
528 		whole = 1;
529 	}
530 	if (tp->t_rextents_delta) {
531 		be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
532 		whole = 1;
533 	}
534 	if (tp->t_rextslog_delta) {
535 		sbp->sb_rextslog += tp->t_rextslog_delta;
536 		whole = 1;
537 	}
538 
539 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
540 	if (whole)
541 		/*
542 		 * Log the whole thing, the fields are noncontiguous.
543 		 */
544 		xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1);
545 	else
546 		/*
547 		 * Since all the modifiable fields are contiguous, we
548 		 * can get away with this.
549 		 */
550 		xfs_trans_log_buf(tp, bp, offsetof(struct xfs_dsb, sb_icount),
551 				  offsetof(struct xfs_dsb, sb_frextents) +
552 				  sizeof(sbp->sb_frextents) - 1);
553 }
554 
555 /*
556  * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
557  * apply superblock counter changes to the in-core superblock.  The
558  * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
559  * applied to the in-core superblock.  The idea is that that has already been
560  * done.
561  *
562  * If we are not logging superblock counters, then the inode allocated/free and
563  * used block counts are not updated in the on disk superblock. In this case,
564  * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
565  * still need to update the incore superblock with the changes.
566  *
567  * Deltas for the inode count are +/-64, hence we use a large batch size of 128
568  * so we don't need to take the counter lock on every update.
569  */
570 #define XFS_ICOUNT_BATCH	128
571 
572 void
573 xfs_trans_unreserve_and_mod_sb(
574 	struct xfs_trans	*tp)
575 {
576 	struct xfs_mount	*mp = tp->t_mountp;
577 	bool			rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
578 	int64_t			blkdelta = 0;
579 	int64_t			rtxdelta = 0;
580 	int64_t			idelta = 0;
581 	int64_t			ifreedelta = 0;
582 	int			error;
583 
584 	/* calculate deltas */
585 	if (tp->t_blk_res > 0)
586 		blkdelta = tp->t_blk_res;
587 	if ((tp->t_fdblocks_delta != 0) &&
588 	    (xfs_has_lazysbcount(mp) ||
589 	     (tp->t_flags & XFS_TRANS_SB_DIRTY)))
590 	        blkdelta += tp->t_fdblocks_delta;
591 
592 	if (tp->t_rtx_res > 0)
593 		rtxdelta = tp->t_rtx_res;
594 	if ((tp->t_frextents_delta != 0) &&
595 	    (tp->t_flags & XFS_TRANS_SB_DIRTY))
596 		rtxdelta += tp->t_frextents_delta;
597 
598 	if (xfs_has_lazysbcount(mp) ||
599 	     (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
600 		idelta = tp->t_icount_delta;
601 		ifreedelta = tp->t_ifree_delta;
602 	}
603 
604 	/* apply the per-cpu counters */
605 	if (blkdelta) {
606 		error = xfs_mod_fdblocks(mp, blkdelta, rsvd);
607 		ASSERT(!error);
608 	}
609 
610 	if (idelta)
611 		percpu_counter_add_batch(&mp->m_icount, idelta,
612 					 XFS_ICOUNT_BATCH);
613 
614 	if (ifreedelta)
615 		percpu_counter_add(&mp->m_ifree, ifreedelta);
616 
617 	if (rtxdelta == 0 && !(tp->t_flags & XFS_TRANS_SB_DIRTY))
618 		return;
619 
620 	/* apply remaining deltas */
621 	spin_lock(&mp->m_sb_lock);
622 	mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta;
623 	mp->m_sb.sb_icount += idelta;
624 	mp->m_sb.sb_ifree += ifreedelta;
625 	mp->m_sb.sb_frextents += rtxdelta;
626 	mp->m_sb.sb_dblocks += tp->t_dblocks_delta;
627 	mp->m_sb.sb_agcount += tp->t_agcount_delta;
628 	mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta;
629 	mp->m_sb.sb_rextsize += tp->t_rextsize_delta;
630 	mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta;
631 	mp->m_sb.sb_rblocks += tp->t_rblocks_delta;
632 	mp->m_sb.sb_rextents += tp->t_rextents_delta;
633 	mp->m_sb.sb_rextslog += tp->t_rextslog_delta;
634 	spin_unlock(&mp->m_sb_lock);
635 
636 	/*
637 	 * Debug checks outside of the spinlock so they don't lock up the
638 	 * machine if they fail.
639 	 */
640 	ASSERT(mp->m_sb.sb_imax_pct >= 0);
641 	ASSERT(mp->m_sb.sb_rextslog >= 0);
642 	return;
643 }
644 
645 /* Add the given log item to the transaction's list of log items. */
646 void
647 xfs_trans_add_item(
648 	struct xfs_trans	*tp,
649 	struct xfs_log_item	*lip)
650 {
651 	ASSERT(lip->li_log == tp->t_mountp->m_log);
652 	ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
653 	ASSERT(list_empty(&lip->li_trans));
654 	ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
655 
656 	list_add_tail(&lip->li_trans, &tp->t_items);
657 	trace_xfs_trans_add_item(tp, _RET_IP_);
658 }
659 
660 /*
661  * Unlink the log item from the transaction. the log item is no longer
662  * considered dirty in this transaction, as the linked transaction has
663  * finished, either by abort or commit completion.
664  */
665 void
666 xfs_trans_del_item(
667 	struct xfs_log_item	*lip)
668 {
669 	clear_bit(XFS_LI_DIRTY, &lip->li_flags);
670 	list_del_init(&lip->li_trans);
671 }
672 
673 /* Detach and unlock all of the items in a transaction */
674 static void
675 xfs_trans_free_items(
676 	struct xfs_trans	*tp,
677 	bool			abort)
678 {
679 	struct xfs_log_item	*lip, *next;
680 
681 	trace_xfs_trans_free_items(tp, _RET_IP_);
682 
683 	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
684 		xfs_trans_del_item(lip);
685 		if (abort)
686 			set_bit(XFS_LI_ABORTED, &lip->li_flags);
687 		if (lip->li_ops->iop_release)
688 			lip->li_ops->iop_release(lip);
689 	}
690 }
691 
692 static inline void
693 xfs_log_item_batch_insert(
694 	struct xfs_ail		*ailp,
695 	struct xfs_ail_cursor	*cur,
696 	struct xfs_log_item	**log_items,
697 	int			nr_items,
698 	xfs_lsn_t		commit_lsn)
699 {
700 	int	i;
701 
702 	spin_lock(&ailp->ail_lock);
703 	/* xfs_trans_ail_update_bulk drops ailp->ail_lock */
704 	xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
705 
706 	for (i = 0; i < nr_items; i++) {
707 		struct xfs_log_item *lip = log_items[i];
708 
709 		if (lip->li_ops->iop_unpin)
710 			lip->li_ops->iop_unpin(lip, 0);
711 	}
712 }
713 
714 /*
715  * Bulk operation version of xfs_trans_committed that takes a log vector of
716  * items to insert into the AIL. This uses bulk AIL insertion techniques to
717  * minimise lock traffic.
718  *
719  * If we are called with the aborted flag set, it is because a log write during
720  * a CIL checkpoint commit has failed. In this case, all the items in the
721  * checkpoint have already gone through iop_committed and iop_committing, which
722  * means that checkpoint commit abort handling is treated exactly the same
723  * as an iclog write error even though we haven't started any IO yet. Hence in
724  * this case all we need to do is iop_committed processing, followed by an
725  * iop_unpin(aborted) call.
726  *
727  * The AIL cursor is used to optimise the insert process. If commit_lsn is not
728  * at the end of the AIL, the insert cursor avoids the need to walk
729  * the AIL to find the insertion point on every xfs_log_item_batch_insert()
730  * call. This saves a lot of needless list walking and is a net win, even
731  * though it slightly increases that amount of AIL lock traffic to set it up
732  * and tear it down.
733  */
734 void
735 xfs_trans_committed_bulk(
736 	struct xfs_ail		*ailp,
737 	struct xfs_log_vec	*log_vector,
738 	xfs_lsn_t		commit_lsn,
739 	bool			aborted)
740 {
741 #define LOG_ITEM_BATCH_SIZE	32
742 	struct xfs_log_item	*log_items[LOG_ITEM_BATCH_SIZE];
743 	struct xfs_log_vec	*lv;
744 	struct xfs_ail_cursor	cur;
745 	int			i = 0;
746 
747 	spin_lock(&ailp->ail_lock);
748 	xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
749 	spin_unlock(&ailp->ail_lock);
750 
751 	/* unpin all the log items */
752 	for (lv = log_vector; lv; lv = lv->lv_next ) {
753 		struct xfs_log_item	*lip = lv->lv_item;
754 		xfs_lsn_t		item_lsn;
755 
756 		if (aborted)
757 			set_bit(XFS_LI_ABORTED, &lip->li_flags);
758 
759 		if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) {
760 			lip->li_ops->iop_release(lip);
761 			continue;
762 		}
763 
764 		if (lip->li_ops->iop_committed)
765 			item_lsn = lip->li_ops->iop_committed(lip, commit_lsn);
766 		else
767 			item_lsn = commit_lsn;
768 
769 		/* item_lsn of -1 means the item needs no further processing */
770 		if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
771 			continue;
772 
773 		/*
774 		 * if we are aborting the operation, no point in inserting the
775 		 * object into the AIL as we are in a shutdown situation.
776 		 */
777 		if (aborted) {
778 			ASSERT(xlog_is_shutdown(ailp->ail_log));
779 			if (lip->li_ops->iop_unpin)
780 				lip->li_ops->iop_unpin(lip, 1);
781 			continue;
782 		}
783 
784 		if (item_lsn != commit_lsn) {
785 
786 			/*
787 			 * Not a bulk update option due to unusual item_lsn.
788 			 * Push into AIL immediately, rechecking the lsn once
789 			 * we have the ail lock. Then unpin the item. This does
790 			 * not affect the AIL cursor the bulk insert path is
791 			 * using.
792 			 */
793 			spin_lock(&ailp->ail_lock);
794 			if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
795 				xfs_trans_ail_update(ailp, lip, item_lsn);
796 			else
797 				spin_unlock(&ailp->ail_lock);
798 			if (lip->li_ops->iop_unpin)
799 				lip->li_ops->iop_unpin(lip, 0);
800 			continue;
801 		}
802 
803 		/* Item is a candidate for bulk AIL insert.  */
804 		log_items[i++] = lv->lv_item;
805 		if (i >= LOG_ITEM_BATCH_SIZE) {
806 			xfs_log_item_batch_insert(ailp, &cur, log_items,
807 					LOG_ITEM_BATCH_SIZE, commit_lsn);
808 			i = 0;
809 		}
810 	}
811 
812 	/* make sure we insert the remainder! */
813 	if (i)
814 		xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
815 
816 	spin_lock(&ailp->ail_lock);
817 	xfs_trans_ail_cursor_done(&cur);
818 	spin_unlock(&ailp->ail_lock);
819 }
820 
821 /*
822  * Commit the given transaction to the log.
823  *
824  * XFS disk error handling mechanism is not based on a typical
825  * transaction abort mechanism. Logically after the filesystem
826  * gets marked 'SHUTDOWN', we can't let any new transactions
827  * be durable - ie. committed to disk - because some metadata might
828  * be inconsistent. In such cases, this returns an error, and the
829  * caller may assume that all locked objects joined to the transaction
830  * have already been unlocked as if the commit had succeeded.
831  * Do not reference the transaction structure after this call.
832  */
833 static int
834 __xfs_trans_commit(
835 	struct xfs_trans	*tp,
836 	bool			regrant)
837 {
838 	struct xfs_mount	*mp = tp->t_mountp;
839 	struct xlog		*log = mp->m_log;
840 	xfs_csn_t		commit_seq = 0;
841 	int			error = 0;
842 	int			sync = tp->t_flags & XFS_TRANS_SYNC;
843 
844 	trace_xfs_trans_commit(tp, _RET_IP_);
845 
846 	/*
847 	 * Finish deferred items on final commit. Only permanent transactions
848 	 * should ever have deferred ops.
849 	 */
850 	WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
851 		     !(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
852 	if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) {
853 		error = xfs_defer_finish_noroll(&tp);
854 		if (error)
855 			goto out_unreserve;
856 	}
857 
858 	/*
859 	 * If there is nothing to be logged by the transaction,
860 	 * then unlock all of the items associated with the
861 	 * transaction and free the transaction structure.
862 	 * Also make sure to return any reserved blocks to
863 	 * the free pool.
864 	 */
865 	if (!(tp->t_flags & XFS_TRANS_DIRTY))
866 		goto out_unreserve;
867 
868 	/*
869 	 * We must check against log shutdown here because we cannot abort log
870 	 * items and leave them dirty, inconsistent and unpinned in memory while
871 	 * the log is active. This leaves them open to being written back to
872 	 * disk, and that will lead to on-disk corruption.
873 	 */
874 	if (xlog_is_shutdown(log)) {
875 		error = -EIO;
876 		goto out_unreserve;
877 	}
878 
879 	ASSERT(tp->t_ticket != NULL);
880 
881 	/*
882 	 * If we need to update the superblock, then do it now.
883 	 */
884 	if (tp->t_flags & XFS_TRANS_SB_DIRTY)
885 		xfs_trans_apply_sb_deltas(tp);
886 	xfs_trans_apply_dquot_deltas(tp);
887 
888 	xlog_cil_commit(log, tp, &commit_seq, regrant);
889 
890 	xfs_trans_free(tp);
891 
892 	/*
893 	 * If the transaction needs to be synchronous, then force the
894 	 * log out now and wait for it.
895 	 */
896 	if (sync) {
897 		error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL);
898 		XFS_STATS_INC(mp, xs_trans_sync);
899 	} else {
900 		XFS_STATS_INC(mp, xs_trans_async);
901 	}
902 
903 	return error;
904 
905 out_unreserve:
906 	xfs_trans_unreserve_and_mod_sb(tp);
907 
908 	/*
909 	 * It is indeed possible for the transaction to be not dirty but
910 	 * the dqinfo portion to be.  All that means is that we have some
911 	 * (non-persistent) quota reservations that need to be unreserved.
912 	 */
913 	xfs_trans_unreserve_and_mod_dquots(tp);
914 	if (tp->t_ticket) {
915 		if (regrant && !xlog_is_shutdown(log))
916 			xfs_log_ticket_regrant(log, tp->t_ticket);
917 		else
918 			xfs_log_ticket_ungrant(log, tp->t_ticket);
919 		tp->t_ticket = NULL;
920 	}
921 	xfs_trans_free_items(tp, !!error);
922 	xfs_trans_free(tp);
923 
924 	XFS_STATS_INC(mp, xs_trans_empty);
925 	return error;
926 }
927 
928 int
929 xfs_trans_commit(
930 	struct xfs_trans	*tp)
931 {
932 	return __xfs_trans_commit(tp, false);
933 }
934 
935 /*
936  * Unlock all of the transaction's items and free the transaction.  If the
937  * transaction is dirty, we must shut down the filesystem because there is no
938  * way to restore them to their previous state.
939  *
940  * If the transaction has made a log reservation, make sure to release it as
941  * well.
942  *
943  * This is a high level function (equivalent to xfs_trans_commit()) and so can
944  * be called after the transaction has effectively been aborted due to the mount
945  * being shut down. However, if the mount has not been shut down and the
946  * transaction is dirty we will shut the mount down and, in doing so, that
947  * guarantees that the log is shut down, too. Hence we don't need to be as
948  * careful with shutdown state and dirty items here as we need to be in
949  * xfs_trans_commit().
950  */
951 void
952 xfs_trans_cancel(
953 	struct xfs_trans	*tp)
954 {
955 	struct xfs_mount	*mp = tp->t_mountp;
956 	struct xlog		*log = mp->m_log;
957 	bool			dirty = (tp->t_flags & XFS_TRANS_DIRTY);
958 
959 	trace_xfs_trans_cancel(tp, _RET_IP_);
960 
961 	/*
962 	 * It's never valid to cancel a transaction with deferred ops attached,
963 	 * because the transaction is effectively dirty.  Complain about this
964 	 * loudly before freeing the in-memory defer items.
965 	 */
966 	if (!list_empty(&tp->t_dfops)) {
967 		ASSERT(xfs_is_shutdown(mp) || list_empty(&tp->t_dfops));
968 		ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
969 		dirty = true;
970 		xfs_defer_cancel(tp);
971 	}
972 
973 	/*
974 	 * See if the caller is relying on us to shut down the filesystem. We
975 	 * only want an error report if there isn't already a shutdown in
976 	 * progress, so we only need to check against the mount shutdown state
977 	 * here.
978 	 */
979 	if (dirty && !xfs_is_shutdown(mp)) {
980 		XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
981 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
982 	}
983 #ifdef DEBUG
984 	/* Log items need to be consistent until the log is shut down. */
985 	if (!dirty && !xlog_is_shutdown(log)) {
986 		struct xfs_log_item *lip;
987 
988 		list_for_each_entry(lip, &tp->t_items, li_trans)
989 			ASSERT(!xlog_item_is_intent_done(lip));
990 	}
991 #endif
992 	xfs_trans_unreserve_and_mod_sb(tp);
993 	xfs_trans_unreserve_and_mod_dquots(tp);
994 
995 	if (tp->t_ticket) {
996 		xfs_log_ticket_ungrant(log, tp->t_ticket);
997 		tp->t_ticket = NULL;
998 	}
999 
1000 	xfs_trans_free_items(tp, dirty);
1001 	xfs_trans_free(tp);
1002 }
1003 
1004 /*
1005  * Roll from one trans in the sequence of PERMANENT transactions to
1006  * the next: permanent transactions are only flushed out when
1007  * committed with xfs_trans_commit(), but we still want as soon
1008  * as possible to let chunks of it go to the log. So we commit the
1009  * chunk we've been working on and get a new transaction to continue.
1010  */
1011 int
1012 xfs_trans_roll(
1013 	struct xfs_trans	**tpp)
1014 {
1015 	struct xfs_trans	*trans = *tpp;
1016 	struct xfs_trans_res	tres;
1017 	int			error;
1018 
1019 	trace_xfs_trans_roll(trans, _RET_IP_);
1020 
1021 	/*
1022 	 * Copy the critical parameters from one trans to the next.
1023 	 */
1024 	tres.tr_logres = trans->t_log_res;
1025 	tres.tr_logcount = trans->t_log_count;
1026 
1027 	*tpp = xfs_trans_dup(trans);
1028 
1029 	/*
1030 	 * Commit the current transaction.
1031 	 * If this commit failed, then it'd just unlock those items that
1032 	 * are not marked ihold. That also means that a filesystem shutdown
1033 	 * is in progress. The caller takes the responsibility to cancel
1034 	 * the duplicate transaction that gets returned.
1035 	 */
1036 	error = __xfs_trans_commit(trans, true);
1037 	if (error)
1038 		return error;
1039 
1040 	/*
1041 	 * Reserve space in the log for the next transaction.
1042 	 * This also pushes items in the "AIL", the list of logged items,
1043 	 * out to disk if they are taking up space at the tail of the log
1044 	 * that we want to use.  This requires that either nothing be locked
1045 	 * across this call, or that anything that is locked be logged in
1046 	 * the prior and the next transactions.
1047 	 */
1048 	tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1049 	return xfs_trans_reserve(*tpp, &tres, 0, 0);
1050 }
1051 
1052 /*
1053  * Allocate an transaction, lock and join the inode to it, and reserve quota.
1054  *
1055  * The caller must ensure that the on-disk dquots attached to this inode have
1056  * already been allocated and initialized.  The caller is responsible for
1057  * releasing ILOCK_EXCL if a new transaction is returned.
1058  */
1059 int
1060 xfs_trans_alloc_inode(
1061 	struct xfs_inode	*ip,
1062 	struct xfs_trans_res	*resv,
1063 	unsigned int		dblocks,
1064 	unsigned int		rblocks,
1065 	bool			force,
1066 	struct xfs_trans	**tpp)
1067 {
1068 	struct xfs_trans	*tp;
1069 	struct xfs_mount	*mp = ip->i_mount;
1070 	bool			retried = false;
1071 	int			error;
1072 
1073 retry:
1074 	error = xfs_trans_alloc(mp, resv, dblocks,
1075 			rblocks / mp->m_sb.sb_rextsize,
1076 			force ? XFS_TRANS_RESERVE : 0, &tp);
1077 	if (error)
1078 		return error;
1079 
1080 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1081 	xfs_trans_ijoin(tp, ip, 0);
1082 
1083 	error = xfs_qm_dqattach_locked(ip, false);
1084 	if (error) {
1085 		/* Caller should have allocated the dquots! */
1086 		ASSERT(error != -ENOENT);
1087 		goto out_cancel;
1088 	}
1089 
1090 	error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force);
1091 	if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1092 		xfs_trans_cancel(tp);
1093 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1094 		xfs_blockgc_free_quota(ip, 0);
1095 		retried = true;
1096 		goto retry;
1097 	}
1098 	if (error)
1099 		goto out_cancel;
1100 
1101 	*tpp = tp;
1102 	return 0;
1103 
1104 out_cancel:
1105 	xfs_trans_cancel(tp);
1106 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1107 	return error;
1108 }
1109 
1110 /*
1111  * Allocate an transaction in preparation for inode creation by reserving quota
1112  * against the given dquots.  Callers are not required to hold any inode locks.
1113  */
1114 int
1115 xfs_trans_alloc_icreate(
1116 	struct xfs_mount	*mp,
1117 	struct xfs_trans_res	*resv,
1118 	struct xfs_dquot	*udqp,
1119 	struct xfs_dquot	*gdqp,
1120 	struct xfs_dquot	*pdqp,
1121 	unsigned int		dblocks,
1122 	struct xfs_trans	**tpp)
1123 {
1124 	struct xfs_trans	*tp;
1125 	bool			retried = false;
1126 	int			error;
1127 
1128 retry:
1129 	error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp);
1130 	if (error)
1131 		return error;
1132 
1133 	error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks);
1134 	if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1135 		xfs_trans_cancel(tp);
1136 		xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1137 		retried = true;
1138 		goto retry;
1139 	}
1140 	if (error) {
1141 		xfs_trans_cancel(tp);
1142 		return error;
1143 	}
1144 
1145 	*tpp = tp;
1146 	return 0;
1147 }
1148 
1149 /*
1150  * Allocate an transaction, lock and join the inode to it, and reserve quota
1151  * in preparation for inode attribute changes that include uid, gid, or prid
1152  * changes.
1153  *
1154  * The caller must ensure that the on-disk dquots attached to this inode have
1155  * already been allocated and initialized.  The ILOCK will be dropped when the
1156  * transaction is committed or cancelled.
1157  */
1158 int
1159 xfs_trans_alloc_ichange(
1160 	struct xfs_inode	*ip,
1161 	struct xfs_dquot	*new_udqp,
1162 	struct xfs_dquot	*new_gdqp,
1163 	struct xfs_dquot	*new_pdqp,
1164 	bool			force,
1165 	struct xfs_trans	**tpp)
1166 {
1167 	struct xfs_trans	*tp;
1168 	struct xfs_mount	*mp = ip->i_mount;
1169 	struct xfs_dquot	*udqp;
1170 	struct xfs_dquot	*gdqp;
1171 	struct xfs_dquot	*pdqp;
1172 	bool			retried = false;
1173 	int			error;
1174 
1175 retry:
1176 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1177 	if (error)
1178 		return error;
1179 
1180 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1181 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1182 
1183 	error = xfs_qm_dqattach_locked(ip, false);
1184 	if (error) {
1185 		/* Caller should have allocated the dquots! */
1186 		ASSERT(error != -ENOENT);
1187 		goto out_cancel;
1188 	}
1189 
1190 	/*
1191 	 * For each quota type, skip quota reservations if the inode's dquots
1192 	 * now match the ones that came from the caller, or the caller didn't
1193 	 * pass one in.  The inode's dquots can change if we drop the ILOCK to
1194 	 * perform a blockgc scan, so we must preserve the caller's arguments.
1195 	 */
1196 	udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL;
1197 	gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL;
1198 	pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL;
1199 	if (udqp || gdqp || pdqp) {
1200 		unsigned int	qflags = XFS_QMOPT_RES_REGBLKS;
1201 
1202 		if (force)
1203 			qflags |= XFS_QMOPT_FORCE_RES;
1204 
1205 		/*
1206 		 * Reserve enough quota to handle blocks on disk and reserved
1207 		 * for a delayed allocation.  We'll actually transfer the
1208 		 * delalloc reservation between dquots at chown time, even
1209 		 * though that part is only semi-transactional.
1210 		 */
1211 		error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1212 				pdqp, ip->i_nblocks + ip->i_delayed_blks,
1213 				1, qflags);
1214 		if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1215 			xfs_trans_cancel(tp);
1216 			xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1217 			retried = true;
1218 			goto retry;
1219 		}
1220 		if (error)
1221 			goto out_cancel;
1222 	}
1223 
1224 	*tpp = tp;
1225 	return 0;
1226 
1227 out_cancel:
1228 	xfs_trans_cancel(tp);
1229 	return error;
1230 }
1231 
1232 /*
1233  * Allocate an transaction, lock and join the directory and child inodes to it,
1234  * and reserve quota for a directory update.  If there isn't sufficient space,
1235  * @dblocks will be set to zero for a reservationless directory update and
1236  * @nospace_error will be set to a negative errno describing the space
1237  * constraint we hit.
1238  *
1239  * The caller must ensure that the on-disk dquots attached to this inode have
1240  * already been allocated and initialized.  The ILOCKs will be dropped when the
1241  * transaction is committed or cancelled.
1242  */
1243 int
1244 xfs_trans_alloc_dir(
1245 	struct xfs_inode	*dp,
1246 	struct xfs_trans_res	*resv,
1247 	struct xfs_inode	*ip,
1248 	unsigned int		*dblocks,
1249 	struct xfs_trans	**tpp,
1250 	int			*nospace_error)
1251 {
1252 	struct xfs_trans	*tp;
1253 	struct xfs_mount	*mp = ip->i_mount;
1254 	unsigned int		resblks;
1255 	bool			retried = false;
1256 	int			error;
1257 
1258 retry:
1259 	*nospace_error = 0;
1260 	resblks = *dblocks;
1261 	error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1262 	if (error == -ENOSPC) {
1263 		*nospace_error = error;
1264 		resblks = 0;
1265 		error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1266 	}
1267 	if (error)
1268 		return error;
1269 
1270 	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
1271 
1272 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1273 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1274 
1275 	error = xfs_qm_dqattach_locked(dp, false);
1276 	if (error) {
1277 		/* Caller should have allocated the dquots! */
1278 		ASSERT(error != -ENOENT);
1279 		goto out_cancel;
1280 	}
1281 
1282 	error = xfs_qm_dqattach_locked(ip, false);
1283 	if (error) {
1284 		/* Caller should have allocated the dquots! */
1285 		ASSERT(error != -ENOENT);
1286 		goto out_cancel;
1287 	}
1288 
1289 	if (resblks == 0)
1290 		goto done;
1291 
1292 	error = xfs_trans_reserve_quota_nblks(tp, dp, resblks, 0, false);
1293 	if (error == -EDQUOT || error == -ENOSPC) {
1294 		if (!retried) {
1295 			xfs_trans_cancel(tp);
1296 			xfs_blockgc_free_quota(dp, 0);
1297 			retried = true;
1298 			goto retry;
1299 		}
1300 
1301 		*nospace_error = error;
1302 		resblks = 0;
1303 		error = 0;
1304 	}
1305 	if (error)
1306 		goto out_cancel;
1307 
1308 done:
1309 	*tpp = tp;
1310 	*dblocks = resblks;
1311 	return 0;
1312 
1313 out_cancel:
1314 	xfs_trans_cancel(tp);
1315 	return error;
1316 }
1317