1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 7 #include "xfs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_sb.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_btree.h" 16 #include "xfs_bmap.h" 17 #include "xfs_alloc.h" 18 #include "xfs_fsops.h" 19 #include "xfs_trans.h" 20 #include "xfs_buf_item.h" 21 #include "xfs_log.h" 22 #include "xfs_log_priv.h" 23 #include "xfs_dir2.h" 24 #include "xfs_extfree_item.h" 25 #include "xfs_mru_cache.h" 26 #include "xfs_inode_item.h" 27 #include "xfs_icache.h" 28 #include "xfs_trace.h" 29 #include "xfs_icreate_item.h" 30 #include "xfs_filestream.h" 31 #include "xfs_quota.h" 32 #include "xfs_sysfs.h" 33 #include "xfs_ondisk.h" 34 #include "xfs_rmap_item.h" 35 #include "xfs_refcount_item.h" 36 #include "xfs_bmap_item.h" 37 #include "xfs_reflink.h" 38 39 #include <linux/magic.h> 40 #include <linux/fs_context.h> 41 #include <linux/fs_parser.h> 42 43 static const struct super_operations xfs_super_operations; 44 45 static struct kset *xfs_kset; /* top-level xfs sysfs dir */ 46 #ifdef DEBUG 47 static struct xfs_kobj xfs_dbg_kobj; /* global debug sysfs attrs */ 48 #endif 49 50 /* 51 * Table driven mount option parser. 52 */ 53 enum { 54 Opt_logbufs, Opt_logbsize, Opt_logdev, Opt_rtdev, 55 Opt_wsync, Opt_noalign, Opt_swalloc, Opt_sunit, Opt_swidth, Opt_nouuid, 56 Opt_grpid, Opt_nogrpid, Opt_bsdgroups, Opt_sysvgroups, 57 Opt_allocsize, Opt_norecovery, Opt_inode64, Opt_inode32, Opt_ikeep, 58 Opt_noikeep, Opt_largeio, Opt_nolargeio, Opt_attr2, Opt_noattr2, 59 Opt_filestreams, Opt_quota, Opt_noquota, Opt_usrquota, Opt_grpquota, 60 Opt_prjquota, Opt_uquota, Opt_gquota, Opt_pquota, 61 Opt_uqnoenforce, Opt_gqnoenforce, Opt_pqnoenforce, Opt_qnoenforce, 62 Opt_discard, Opt_nodiscard, Opt_dax, 63 }; 64 65 static const struct fs_parameter_spec xfs_fs_parameters[] = { 66 fsparam_u32("logbufs", Opt_logbufs), 67 fsparam_string("logbsize", Opt_logbsize), 68 fsparam_string("logdev", Opt_logdev), 69 fsparam_string("rtdev", Opt_rtdev), 70 fsparam_flag("wsync", Opt_wsync), 71 fsparam_flag("noalign", Opt_noalign), 72 fsparam_flag("swalloc", Opt_swalloc), 73 fsparam_u32("sunit", Opt_sunit), 74 fsparam_u32("swidth", Opt_swidth), 75 fsparam_flag("nouuid", Opt_nouuid), 76 fsparam_flag("grpid", Opt_grpid), 77 fsparam_flag("nogrpid", Opt_nogrpid), 78 fsparam_flag("bsdgroups", Opt_bsdgroups), 79 fsparam_flag("sysvgroups", Opt_sysvgroups), 80 fsparam_string("allocsize", Opt_allocsize), 81 fsparam_flag("norecovery", Opt_norecovery), 82 fsparam_flag("inode64", Opt_inode64), 83 fsparam_flag("inode32", Opt_inode32), 84 fsparam_flag("ikeep", Opt_ikeep), 85 fsparam_flag("noikeep", Opt_noikeep), 86 fsparam_flag("largeio", Opt_largeio), 87 fsparam_flag("nolargeio", Opt_nolargeio), 88 fsparam_flag("attr2", Opt_attr2), 89 fsparam_flag("noattr2", Opt_noattr2), 90 fsparam_flag("filestreams", Opt_filestreams), 91 fsparam_flag("quota", Opt_quota), 92 fsparam_flag("noquota", Opt_noquota), 93 fsparam_flag("usrquota", Opt_usrquota), 94 fsparam_flag("grpquota", Opt_grpquota), 95 fsparam_flag("prjquota", Opt_prjquota), 96 fsparam_flag("uquota", Opt_uquota), 97 fsparam_flag("gquota", Opt_gquota), 98 fsparam_flag("pquota", Opt_pquota), 99 fsparam_flag("uqnoenforce", Opt_uqnoenforce), 100 fsparam_flag("gqnoenforce", Opt_gqnoenforce), 101 fsparam_flag("pqnoenforce", Opt_pqnoenforce), 102 fsparam_flag("qnoenforce", Opt_qnoenforce), 103 fsparam_flag("discard", Opt_discard), 104 fsparam_flag("nodiscard", Opt_nodiscard), 105 fsparam_flag("dax", Opt_dax), 106 {} 107 }; 108 109 struct proc_xfs_info { 110 uint64_t flag; 111 char *str; 112 }; 113 114 static int 115 xfs_fs_show_options( 116 struct seq_file *m, 117 struct dentry *root) 118 { 119 static struct proc_xfs_info xfs_info_set[] = { 120 /* the few simple ones we can get from the mount struct */ 121 { XFS_MOUNT_IKEEP, ",ikeep" }, 122 { XFS_MOUNT_WSYNC, ",wsync" }, 123 { XFS_MOUNT_NOALIGN, ",noalign" }, 124 { XFS_MOUNT_SWALLOC, ",swalloc" }, 125 { XFS_MOUNT_NOUUID, ",nouuid" }, 126 { XFS_MOUNT_NORECOVERY, ",norecovery" }, 127 { XFS_MOUNT_ATTR2, ",attr2" }, 128 { XFS_MOUNT_FILESTREAMS, ",filestreams" }, 129 { XFS_MOUNT_GRPID, ",grpid" }, 130 { XFS_MOUNT_DISCARD, ",discard" }, 131 { XFS_MOUNT_LARGEIO, ",largeio" }, 132 { XFS_MOUNT_DAX, ",dax" }, 133 { 0, NULL } 134 }; 135 struct xfs_mount *mp = XFS_M(root->d_sb); 136 struct proc_xfs_info *xfs_infop; 137 138 for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) { 139 if (mp->m_flags & xfs_infop->flag) 140 seq_puts(m, xfs_infop->str); 141 } 142 143 seq_printf(m, ",inode%d", 144 (mp->m_flags & XFS_MOUNT_SMALL_INUMS) ? 32 : 64); 145 146 if (mp->m_flags & XFS_MOUNT_ALLOCSIZE) 147 seq_printf(m, ",allocsize=%dk", 148 (1 << mp->m_allocsize_log) >> 10); 149 150 if (mp->m_logbufs > 0) 151 seq_printf(m, ",logbufs=%d", mp->m_logbufs); 152 if (mp->m_logbsize > 0) 153 seq_printf(m, ",logbsize=%dk", mp->m_logbsize >> 10); 154 155 if (mp->m_logname) 156 seq_show_option(m, "logdev", mp->m_logname); 157 if (mp->m_rtname) 158 seq_show_option(m, "rtdev", mp->m_rtname); 159 160 if (mp->m_dalign > 0) 161 seq_printf(m, ",sunit=%d", 162 (int)XFS_FSB_TO_BB(mp, mp->m_dalign)); 163 if (mp->m_swidth > 0) 164 seq_printf(m, ",swidth=%d", 165 (int)XFS_FSB_TO_BB(mp, mp->m_swidth)); 166 167 if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD)) 168 seq_puts(m, ",usrquota"); 169 else if (mp->m_qflags & XFS_UQUOTA_ACCT) 170 seq_puts(m, ",uqnoenforce"); 171 172 if (mp->m_qflags & XFS_PQUOTA_ACCT) { 173 if (mp->m_qflags & XFS_PQUOTA_ENFD) 174 seq_puts(m, ",prjquota"); 175 else 176 seq_puts(m, ",pqnoenforce"); 177 } 178 if (mp->m_qflags & XFS_GQUOTA_ACCT) { 179 if (mp->m_qflags & XFS_GQUOTA_ENFD) 180 seq_puts(m, ",grpquota"); 181 else 182 seq_puts(m, ",gqnoenforce"); 183 } 184 185 if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT)) 186 seq_puts(m, ",noquota"); 187 188 return 0; 189 } 190 191 /* 192 * Set parameters for inode allocation heuristics, taking into account 193 * filesystem size and inode32/inode64 mount options; i.e. specifically 194 * whether or not XFS_MOUNT_SMALL_INUMS is set. 195 * 196 * Inode allocation patterns are altered only if inode32 is requested 197 * (XFS_MOUNT_SMALL_INUMS), and the filesystem is sufficiently large. 198 * If altered, XFS_MOUNT_32BITINODES is set as well. 199 * 200 * An agcount independent of that in the mount structure is provided 201 * because in the growfs case, mp->m_sb.sb_agcount is not yet updated 202 * to the potentially higher ag count. 203 * 204 * Returns the maximum AG index which may contain inodes. 205 */ 206 xfs_agnumber_t 207 xfs_set_inode_alloc( 208 struct xfs_mount *mp, 209 xfs_agnumber_t agcount) 210 { 211 xfs_agnumber_t index; 212 xfs_agnumber_t maxagi = 0; 213 xfs_sb_t *sbp = &mp->m_sb; 214 xfs_agnumber_t max_metadata; 215 xfs_agino_t agino; 216 xfs_ino_t ino; 217 218 /* 219 * Calculate how much should be reserved for inodes to meet 220 * the max inode percentage. Used only for inode32. 221 */ 222 if (M_IGEO(mp)->maxicount) { 223 uint64_t icount; 224 225 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 226 do_div(icount, 100); 227 icount += sbp->sb_agblocks - 1; 228 do_div(icount, sbp->sb_agblocks); 229 max_metadata = icount; 230 } else { 231 max_metadata = agcount; 232 } 233 234 /* Get the last possible inode in the filesystem */ 235 agino = XFS_AGB_TO_AGINO(mp, sbp->sb_agblocks - 1); 236 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 237 238 /* 239 * If user asked for no more than 32-bit inodes, and the fs is 240 * sufficiently large, set XFS_MOUNT_32BITINODES if we must alter 241 * the allocator to accommodate the request. 242 */ 243 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) 244 mp->m_flags |= XFS_MOUNT_32BITINODES; 245 else 246 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 247 248 for (index = 0; index < agcount; index++) { 249 struct xfs_perag *pag; 250 251 ino = XFS_AGINO_TO_INO(mp, index, agino); 252 253 pag = xfs_perag_get(mp, index); 254 255 if (mp->m_flags & XFS_MOUNT_32BITINODES) { 256 if (ino > XFS_MAXINUMBER_32) { 257 pag->pagi_inodeok = 0; 258 pag->pagf_metadata = 0; 259 } else { 260 pag->pagi_inodeok = 1; 261 maxagi++; 262 if (index < max_metadata) 263 pag->pagf_metadata = 1; 264 else 265 pag->pagf_metadata = 0; 266 } 267 } else { 268 pag->pagi_inodeok = 1; 269 pag->pagf_metadata = 0; 270 } 271 272 xfs_perag_put(pag); 273 } 274 275 return (mp->m_flags & XFS_MOUNT_32BITINODES) ? maxagi : agcount; 276 } 277 278 STATIC int 279 xfs_blkdev_get( 280 xfs_mount_t *mp, 281 const char *name, 282 struct block_device **bdevp) 283 { 284 int error = 0; 285 286 *bdevp = blkdev_get_by_path(name, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 287 mp); 288 if (IS_ERR(*bdevp)) { 289 error = PTR_ERR(*bdevp); 290 xfs_warn(mp, "Invalid device [%s], error=%d", name, error); 291 } 292 293 return error; 294 } 295 296 STATIC void 297 xfs_blkdev_put( 298 struct block_device *bdev) 299 { 300 if (bdev) 301 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 302 } 303 304 void 305 xfs_blkdev_issue_flush( 306 xfs_buftarg_t *buftarg) 307 { 308 blkdev_issue_flush(buftarg->bt_bdev, GFP_NOFS, NULL); 309 } 310 311 STATIC void 312 xfs_close_devices( 313 struct xfs_mount *mp) 314 { 315 struct dax_device *dax_ddev = mp->m_ddev_targp->bt_daxdev; 316 317 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { 318 struct block_device *logdev = mp->m_logdev_targp->bt_bdev; 319 struct dax_device *dax_logdev = mp->m_logdev_targp->bt_daxdev; 320 321 xfs_free_buftarg(mp->m_logdev_targp); 322 xfs_blkdev_put(logdev); 323 fs_put_dax(dax_logdev); 324 } 325 if (mp->m_rtdev_targp) { 326 struct block_device *rtdev = mp->m_rtdev_targp->bt_bdev; 327 struct dax_device *dax_rtdev = mp->m_rtdev_targp->bt_daxdev; 328 329 xfs_free_buftarg(mp->m_rtdev_targp); 330 xfs_blkdev_put(rtdev); 331 fs_put_dax(dax_rtdev); 332 } 333 xfs_free_buftarg(mp->m_ddev_targp); 334 fs_put_dax(dax_ddev); 335 } 336 337 /* 338 * The file system configurations are: 339 * (1) device (partition) with data and internal log 340 * (2) logical volume with data and log subvolumes. 341 * (3) logical volume with data, log, and realtime subvolumes. 342 * 343 * We only have to handle opening the log and realtime volumes here if 344 * they are present. The data subvolume has already been opened by 345 * get_sb_bdev() and is stored in sb->s_bdev. 346 */ 347 STATIC int 348 xfs_open_devices( 349 struct xfs_mount *mp) 350 { 351 struct block_device *ddev = mp->m_super->s_bdev; 352 struct dax_device *dax_ddev = fs_dax_get_by_bdev(ddev); 353 struct dax_device *dax_logdev = NULL, *dax_rtdev = NULL; 354 struct block_device *logdev = NULL, *rtdev = NULL; 355 int error; 356 357 /* 358 * Open real time and log devices - order is important. 359 */ 360 if (mp->m_logname) { 361 error = xfs_blkdev_get(mp, mp->m_logname, &logdev); 362 if (error) 363 goto out; 364 dax_logdev = fs_dax_get_by_bdev(logdev); 365 } 366 367 if (mp->m_rtname) { 368 error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev); 369 if (error) 370 goto out_close_logdev; 371 372 if (rtdev == ddev || rtdev == logdev) { 373 xfs_warn(mp, 374 "Cannot mount filesystem with identical rtdev and ddev/logdev."); 375 error = -EINVAL; 376 goto out_close_rtdev; 377 } 378 dax_rtdev = fs_dax_get_by_bdev(rtdev); 379 } 380 381 /* 382 * Setup xfs_mount buffer target pointers 383 */ 384 error = -ENOMEM; 385 mp->m_ddev_targp = xfs_alloc_buftarg(mp, ddev, dax_ddev); 386 if (!mp->m_ddev_targp) 387 goto out_close_rtdev; 388 389 if (rtdev) { 390 mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev, dax_rtdev); 391 if (!mp->m_rtdev_targp) 392 goto out_free_ddev_targ; 393 } 394 395 if (logdev && logdev != ddev) { 396 mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev, dax_logdev); 397 if (!mp->m_logdev_targp) 398 goto out_free_rtdev_targ; 399 } else { 400 mp->m_logdev_targp = mp->m_ddev_targp; 401 } 402 403 return 0; 404 405 out_free_rtdev_targ: 406 if (mp->m_rtdev_targp) 407 xfs_free_buftarg(mp->m_rtdev_targp); 408 out_free_ddev_targ: 409 xfs_free_buftarg(mp->m_ddev_targp); 410 out_close_rtdev: 411 xfs_blkdev_put(rtdev); 412 fs_put_dax(dax_rtdev); 413 out_close_logdev: 414 if (logdev && logdev != ddev) { 415 xfs_blkdev_put(logdev); 416 fs_put_dax(dax_logdev); 417 } 418 out: 419 fs_put_dax(dax_ddev); 420 return error; 421 } 422 423 /* 424 * Setup xfs_mount buffer target pointers based on superblock 425 */ 426 STATIC int 427 xfs_setup_devices( 428 struct xfs_mount *mp) 429 { 430 int error; 431 432 error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_sectsize); 433 if (error) 434 return error; 435 436 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { 437 unsigned int log_sector_size = BBSIZE; 438 439 if (xfs_sb_version_hassector(&mp->m_sb)) 440 log_sector_size = mp->m_sb.sb_logsectsize; 441 error = xfs_setsize_buftarg(mp->m_logdev_targp, 442 log_sector_size); 443 if (error) 444 return error; 445 } 446 if (mp->m_rtdev_targp) { 447 error = xfs_setsize_buftarg(mp->m_rtdev_targp, 448 mp->m_sb.sb_sectsize); 449 if (error) 450 return error; 451 } 452 453 return 0; 454 } 455 456 STATIC int 457 xfs_init_mount_workqueues( 458 struct xfs_mount *mp) 459 { 460 mp->m_buf_workqueue = alloc_workqueue("xfs-buf/%s", 461 WQ_MEM_RECLAIM|WQ_FREEZABLE, 1, mp->m_super->s_id); 462 if (!mp->m_buf_workqueue) 463 goto out; 464 465 mp->m_unwritten_workqueue = alloc_workqueue("xfs-conv/%s", 466 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id); 467 if (!mp->m_unwritten_workqueue) 468 goto out_destroy_buf; 469 470 mp->m_cil_workqueue = alloc_workqueue("xfs-cil/%s", 471 WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND, 472 0, mp->m_super->s_id); 473 if (!mp->m_cil_workqueue) 474 goto out_destroy_unwritten; 475 476 mp->m_reclaim_workqueue = alloc_workqueue("xfs-reclaim/%s", 477 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id); 478 if (!mp->m_reclaim_workqueue) 479 goto out_destroy_cil; 480 481 mp->m_eofblocks_workqueue = alloc_workqueue("xfs-eofblocks/%s", 482 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id); 483 if (!mp->m_eofblocks_workqueue) 484 goto out_destroy_reclaim; 485 486 mp->m_sync_workqueue = alloc_workqueue("xfs-sync/%s", WQ_FREEZABLE, 0, 487 mp->m_super->s_id); 488 if (!mp->m_sync_workqueue) 489 goto out_destroy_eofb; 490 491 return 0; 492 493 out_destroy_eofb: 494 destroy_workqueue(mp->m_eofblocks_workqueue); 495 out_destroy_reclaim: 496 destroy_workqueue(mp->m_reclaim_workqueue); 497 out_destroy_cil: 498 destroy_workqueue(mp->m_cil_workqueue); 499 out_destroy_unwritten: 500 destroy_workqueue(mp->m_unwritten_workqueue); 501 out_destroy_buf: 502 destroy_workqueue(mp->m_buf_workqueue); 503 out: 504 return -ENOMEM; 505 } 506 507 STATIC void 508 xfs_destroy_mount_workqueues( 509 struct xfs_mount *mp) 510 { 511 destroy_workqueue(mp->m_sync_workqueue); 512 destroy_workqueue(mp->m_eofblocks_workqueue); 513 destroy_workqueue(mp->m_reclaim_workqueue); 514 destroy_workqueue(mp->m_cil_workqueue); 515 destroy_workqueue(mp->m_unwritten_workqueue); 516 destroy_workqueue(mp->m_buf_workqueue); 517 } 518 519 static void 520 xfs_flush_inodes_worker( 521 struct work_struct *work) 522 { 523 struct xfs_mount *mp = container_of(work, struct xfs_mount, 524 m_flush_inodes_work); 525 struct super_block *sb = mp->m_super; 526 527 if (down_read_trylock(&sb->s_umount)) { 528 sync_inodes_sb(sb); 529 up_read(&sb->s_umount); 530 } 531 } 532 533 /* 534 * Flush all dirty data to disk. Must not be called while holding an XFS_ILOCK 535 * or a page lock. We use sync_inodes_sb() here to ensure we block while waiting 536 * for IO to complete so that we effectively throttle multiple callers to the 537 * rate at which IO is completing. 538 */ 539 void 540 xfs_flush_inodes( 541 struct xfs_mount *mp) 542 { 543 /* 544 * If flush_work() returns true then that means we waited for a flush 545 * which was already in progress. Don't bother running another scan. 546 */ 547 if (flush_work(&mp->m_flush_inodes_work)) 548 return; 549 550 queue_work(mp->m_sync_workqueue, &mp->m_flush_inodes_work); 551 flush_work(&mp->m_flush_inodes_work); 552 } 553 554 /* Catch misguided souls that try to use this interface on XFS */ 555 STATIC struct inode * 556 xfs_fs_alloc_inode( 557 struct super_block *sb) 558 { 559 BUG(); 560 return NULL; 561 } 562 563 #ifdef DEBUG 564 static void 565 xfs_check_delalloc( 566 struct xfs_inode *ip, 567 int whichfork) 568 { 569 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 570 struct xfs_bmbt_irec got; 571 struct xfs_iext_cursor icur; 572 573 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got)) 574 return; 575 do { 576 if (isnullstartblock(got.br_startblock)) { 577 xfs_warn(ip->i_mount, 578 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]", 579 ip->i_ino, 580 whichfork == XFS_DATA_FORK ? "data" : "cow", 581 got.br_startoff, got.br_blockcount); 582 } 583 } while (xfs_iext_next_extent(ifp, &icur, &got)); 584 } 585 #else 586 #define xfs_check_delalloc(ip, whichfork) do { } while (0) 587 #endif 588 589 /* 590 * Now that the generic code is guaranteed not to be accessing 591 * the linux inode, we can inactivate and reclaim the inode. 592 */ 593 STATIC void 594 xfs_fs_destroy_inode( 595 struct inode *inode) 596 { 597 struct xfs_inode *ip = XFS_I(inode); 598 599 trace_xfs_destroy_inode(ip); 600 601 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 602 XFS_STATS_INC(ip->i_mount, vn_rele); 603 XFS_STATS_INC(ip->i_mount, vn_remove); 604 605 xfs_inactive(ip); 606 607 if (!XFS_FORCED_SHUTDOWN(ip->i_mount) && ip->i_delayed_blks) { 608 xfs_check_delalloc(ip, XFS_DATA_FORK); 609 xfs_check_delalloc(ip, XFS_COW_FORK); 610 ASSERT(0); 611 } 612 613 XFS_STATS_INC(ip->i_mount, vn_reclaim); 614 615 /* 616 * We should never get here with one of the reclaim flags already set. 617 */ 618 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIMABLE)); 619 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM)); 620 621 /* 622 * We always use background reclaim here because even if the 623 * inode is clean, it still may be under IO and hence we have 624 * to take the flush lock. The background reclaim path handles 625 * this more efficiently than we can here, so simply let background 626 * reclaim tear down all inodes. 627 */ 628 xfs_inode_set_reclaim_tag(ip); 629 } 630 631 static void 632 xfs_fs_dirty_inode( 633 struct inode *inode, 634 int flag) 635 { 636 struct xfs_inode *ip = XFS_I(inode); 637 struct xfs_mount *mp = ip->i_mount; 638 struct xfs_trans *tp; 639 640 if (!(inode->i_sb->s_flags & SB_LAZYTIME)) 641 return; 642 if (flag != I_DIRTY_SYNC || !(inode->i_state & I_DIRTY_TIME)) 643 return; 644 645 if (xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp)) 646 return; 647 xfs_ilock(ip, XFS_ILOCK_EXCL); 648 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 649 xfs_trans_log_inode(tp, ip, XFS_ILOG_TIMESTAMP); 650 xfs_trans_commit(tp); 651 } 652 653 /* 654 * Slab object creation initialisation for the XFS inode. 655 * This covers only the idempotent fields in the XFS inode; 656 * all other fields need to be initialised on allocation 657 * from the slab. This avoids the need to repeatedly initialise 658 * fields in the xfs inode that left in the initialise state 659 * when freeing the inode. 660 */ 661 STATIC void 662 xfs_fs_inode_init_once( 663 void *inode) 664 { 665 struct xfs_inode *ip = inode; 666 667 memset(ip, 0, sizeof(struct xfs_inode)); 668 669 /* vfs inode */ 670 inode_init_once(VFS_I(ip)); 671 672 /* xfs inode */ 673 atomic_set(&ip->i_pincount, 0); 674 spin_lock_init(&ip->i_flags_lock); 675 676 mrlock_init(&ip->i_mmaplock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER, 677 "xfsino", ip->i_ino); 678 mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER, 679 "xfsino", ip->i_ino); 680 } 681 682 /* 683 * We do an unlocked check for XFS_IDONTCACHE here because we are already 684 * serialised against cache hits here via the inode->i_lock and igrab() in 685 * xfs_iget_cache_hit(). Hence a lookup that might clear this flag will not be 686 * racing with us, and it avoids needing to grab a spinlock here for every inode 687 * we drop the final reference on. 688 */ 689 STATIC int 690 xfs_fs_drop_inode( 691 struct inode *inode) 692 { 693 struct xfs_inode *ip = XFS_I(inode); 694 695 /* 696 * If this unlinked inode is in the middle of recovery, don't 697 * drop the inode just yet; log recovery will take care of 698 * that. See the comment for this inode flag. 699 */ 700 if (ip->i_flags & XFS_IRECOVERY) { 701 ASSERT(ip->i_mount->m_log->l_flags & XLOG_RECOVERY_NEEDED); 702 return 0; 703 } 704 705 return generic_drop_inode(inode) || (ip->i_flags & XFS_IDONTCACHE); 706 } 707 708 static void 709 xfs_mount_free( 710 struct xfs_mount *mp) 711 { 712 kfree(mp->m_rtname); 713 kfree(mp->m_logname); 714 kmem_free(mp); 715 } 716 717 STATIC int 718 xfs_fs_sync_fs( 719 struct super_block *sb, 720 int wait) 721 { 722 struct xfs_mount *mp = XFS_M(sb); 723 724 /* 725 * Doing anything during the async pass would be counterproductive. 726 */ 727 if (!wait) 728 return 0; 729 730 xfs_log_force(mp, XFS_LOG_SYNC); 731 if (laptop_mode) { 732 /* 733 * The disk must be active because we're syncing. 734 * We schedule log work now (now that the disk is 735 * active) instead of later (when it might not be). 736 */ 737 flush_delayed_work(&mp->m_log->l_work); 738 } 739 740 return 0; 741 } 742 743 STATIC int 744 xfs_fs_statfs( 745 struct dentry *dentry, 746 struct kstatfs *statp) 747 { 748 struct xfs_mount *mp = XFS_M(dentry->d_sb); 749 xfs_sb_t *sbp = &mp->m_sb; 750 struct xfs_inode *ip = XFS_I(d_inode(dentry)); 751 uint64_t fakeinos, id; 752 uint64_t icount; 753 uint64_t ifree; 754 uint64_t fdblocks; 755 xfs_extlen_t lsize; 756 int64_t ffree; 757 758 statp->f_type = XFS_SUPER_MAGIC; 759 statp->f_namelen = MAXNAMELEN - 1; 760 761 id = huge_encode_dev(mp->m_ddev_targp->bt_dev); 762 statp->f_fsid.val[0] = (u32)id; 763 statp->f_fsid.val[1] = (u32)(id >> 32); 764 765 icount = percpu_counter_sum(&mp->m_icount); 766 ifree = percpu_counter_sum(&mp->m_ifree); 767 fdblocks = percpu_counter_sum(&mp->m_fdblocks); 768 769 spin_lock(&mp->m_sb_lock); 770 statp->f_bsize = sbp->sb_blocksize; 771 lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0; 772 statp->f_blocks = sbp->sb_dblocks - lsize; 773 spin_unlock(&mp->m_sb_lock); 774 775 statp->f_bfree = fdblocks - mp->m_alloc_set_aside; 776 statp->f_bavail = statp->f_bfree; 777 778 fakeinos = XFS_FSB_TO_INO(mp, statp->f_bfree); 779 statp->f_files = min(icount + fakeinos, (uint64_t)XFS_MAXINUMBER); 780 if (M_IGEO(mp)->maxicount) 781 statp->f_files = min_t(typeof(statp->f_files), 782 statp->f_files, 783 M_IGEO(mp)->maxicount); 784 785 /* If sb_icount overshot maxicount, report actual allocation */ 786 statp->f_files = max_t(typeof(statp->f_files), 787 statp->f_files, 788 sbp->sb_icount); 789 790 /* make sure statp->f_ffree does not underflow */ 791 ffree = statp->f_files - (icount - ifree); 792 statp->f_ffree = max_t(int64_t, ffree, 0); 793 794 795 if ((ip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 796 ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))) == 797 (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD)) 798 xfs_qm_statvfs(ip, statp); 799 800 if (XFS_IS_REALTIME_MOUNT(mp) && 801 (ip->i_d.di_flags & (XFS_DIFLAG_RTINHERIT | XFS_DIFLAG_REALTIME))) { 802 statp->f_blocks = sbp->sb_rblocks; 803 statp->f_bavail = statp->f_bfree = 804 sbp->sb_frextents * sbp->sb_rextsize; 805 } 806 807 return 0; 808 } 809 810 STATIC void 811 xfs_save_resvblks(struct xfs_mount *mp) 812 { 813 uint64_t resblks = 0; 814 815 mp->m_resblks_save = mp->m_resblks; 816 xfs_reserve_blocks(mp, &resblks, NULL); 817 } 818 819 STATIC void 820 xfs_restore_resvblks(struct xfs_mount *mp) 821 { 822 uint64_t resblks; 823 824 if (mp->m_resblks_save) { 825 resblks = mp->m_resblks_save; 826 mp->m_resblks_save = 0; 827 } else 828 resblks = xfs_default_resblks(mp); 829 830 xfs_reserve_blocks(mp, &resblks, NULL); 831 } 832 833 /* 834 * Trigger writeback of all the dirty metadata in the file system. 835 * 836 * This ensures that the metadata is written to their location on disk rather 837 * than just existing in transactions in the log. This means after a quiesce 838 * there is no log replay required to write the inodes to disk - this is the 839 * primary difference between a sync and a quiesce. 840 * 841 * Note: xfs_log_quiesce() stops background log work - the callers must ensure 842 * it is started again when appropriate. 843 */ 844 void 845 xfs_quiesce_attr( 846 struct xfs_mount *mp) 847 { 848 int error = 0; 849 850 /* wait for all modifications to complete */ 851 while (atomic_read(&mp->m_active_trans) > 0) 852 delay(100); 853 854 /* force the log to unpin objects from the now complete transactions */ 855 xfs_log_force(mp, XFS_LOG_SYNC); 856 857 /* reclaim inodes to do any IO before the freeze completes */ 858 xfs_reclaim_inodes(mp, 0); 859 xfs_reclaim_inodes(mp, SYNC_WAIT); 860 861 /* Push the superblock and write an unmount record */ 862 error = xfs_log_sbcount(mp); 863 if (error) 864 xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. " 865 "Frozen image may not be consistent."); 866 /* 867 * Just warn here till VFS can correctly support 868 * read-only remount without racing. 869 */ 870 WARN_ON(atomic_read(&mp->m_active_trans) != 0); 871 872 xfs_log_quiesce(mp); 873 } 874 875 /* 876 * Second stage of a freeze. The data is already frozen so we only 877 * need to take care of the metadata. Once that's done sync the superblock 878 * to the log to dirty it in case of a crash while frozen. This ensures that we 879 * will recover the unlinked inode lists on the next mount. 880 */ 881 STATIC int 882 xfs_fs_freeze( 883 struct super_block *sb) 884 { 885 struct xfs_mount *mp = XFS_M(sb); 886 887 xfs_stop_block_reaping(mp); 888 xfs_save_resvblks(mp); 889 xfs_quiesce_attr(mp); 890 return xfs_sync_sb(mp, true); 891 } 892 893 STATIC int 894 xfs_fs_unfreeze( 895 struct super_block *sb) 896 { 897 struct xfs_mount *mp = XFS_M(sb); 898 899 xfs_restore_resvblks(mp); 900 xfs_log_work_queue(mp); 901 xfs_start_block_reaping(mp); 902 return 0; 903 } 904 905 /* 906 * This function fills in xfs_mount_t fields based on mount args. 907 * Note: the superblock _has_ now been read in. 908 */ 909 STATIC int 910 xfs_finish_flags( 911 struct xfs_mount *mp) 912 { 913 int ronly = (mp->m_flags & XFS_MOUNT_RDONLY); 914 915 /* Fail a mount where the logbuf is smaller than the log stripe */ 916 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 917 if (mp->m_logbsize <= 0 && 918 mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) { 919 mp->m_logbsize = mp->m_sb.sb_logsunit; 920 } else if (mp->m_logbsize > 0 && 921 mp->m_logbsize < mp->m_sb.sb_logsunit) { 922 xfs_warn(mp, 923 "logbuf size must be greater than or equal to log stripe size"); 924 return -EINVAL; 925 } 926 } else { 927 /* Fail a mount if the logbuf is larger than 32K */ 928 if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) { 929 xfs_warn(mp, 930 "logbuf size for version 1 logs must be 16K or 32K"); 931 return -EINVAL; 932 } 933 } 934 935 /* 936 * V5 filesystems always use attr2 format for attributes. 937 */ 938 if (xfs_sb_version_hascrc(&mp->m_sb) && 939 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 940 xfs_warn(mp, "Cannot mount a V5 filesystem as noattr2. " 941 "attr2 is always enabled for V5 filesystems."); 942 return -EINVAL; 943 } 944 945 /* 946 * mkfs'ed attr2 will turn on attr2 mount unless explicitly 947 * told by noattr2 to turn it off 948 */ 949 if (xfs_sb_version_hasattr2(&mp->m_sb) && 950 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 951 mp->m_flags |= XFS_MOUNT_ATTR2; 952 953 /* 954 * prohibit r/w mounts of read-only filesystems 955 */ 956 if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) { 957 xfs_warn(mp, 958 "cannot mount a read-only filesystem as read-write"); 959 return -EROFS; 960 } 961 962 if ((mp->m_qflags & (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE)) && 963 (mp->m_qflags & (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE)) && 964 !xfs_sb_version_has_pquotino(&mp->m_sb)) { 965 xfs_warn(mp, 966 "Super block does not support project and group quota together"); 967 return -EINVAL; 968 } 969 970 return 0; 971 } 972 973 static int 974 xfs_init_percpu_counters( 975 struct xfs_mount *mp) 976 { 977 int error; 978 979 error = percpu_counter_init(&mp->m_icount, 0, GFP_KERNEL); 980 if (error) 981 return -ENOMEM; 982 983 error = percpu_counter_init(&mp->m_ifree, 0, GFP_KERNEL); 984 if (error) 985 goto free_icount; 986 987 error = percpu_counter_init(&mp->m_fdblocks, 0, GFP_KERNEL); 988 if (error) 989 goto free_ifree; 990 991 error = percpu_counter_init(&mp->m_delalloc_blks, 0, GFP_KERNEL); 992 if (error) 993 goto free_fdblocks; 994 995 return 0; 996 997 free_fdblocks: 998 percpu_counter_destroy(&mp->m_fdblocks); 999 free_ifree: 1000 percpu_counter_destroy(&mp->m_ifree); 1001 free_icount: 1002 percpu_counter_destroy(&mp->m_icount); 1003 return -ENOMEM; 1004 } 1005 1006 void 1007 xfs_reinit_percpu_counters( 1008 struct xfs_mount *mp) 1009 { 1010 percpu_counter_set(&mp->m_icount, mp->m_sb.sb_icount); 1011 percpu_counter_set(&mp->m_ifree, mp->m_sb.sb_ifree); 1012 percpu_counter_set(&mp->m_fdblocks, mp->m_sb.sb_fdblocks); 1013 } 1014 1015 static void 1016 xfs_destroy_percpu_counters( 1017 struct xfs_mount *mp) 1018 { 1019 percpu_counter_destroy(&mp->m_icount); 1020 percpu_counter_destroy(&mp->m_ifree); 1021 percpu_counter_destroy(&mp->m_fdblocks); 1022 ASSERT(XFS_FORCED_SHUTDOWN(mp) || 1023 percpu_counter_sum(&mp->m_delalloc_blks) == 0); 1024 percpu_counter_destroy(&mp->m_delalloc_blks); 1025 } 1026 1027 static void 1028 xfs_fs_put_super( 1029 struct super_block *sb) 1030 { 1031 struct xfs_mount *mp = XFS_M(sb); 1032 1033 /* if ->fill_super failed, we have no mount to tear down */ 1034 if (!sb->s_fs_info) 1035 return; 1036 1037 xfs_notice(mp, "Unmounting Filesystem"); 1038 xfs_filestream_unmount(mp); 1039 xfs_unmountfs(mp); 1040 1041 xfs_freesb(mp); 1042 free_percpu(mp->m_stats.xs_stats); 1043 xfs_destroy_percpu_counters(mp); 1044 xfs_destroy_mount_workqueues(mp); 1045 xfs_close_devices(mp); 1046 1047 sb->s_fs_info = NULL; 1048 xfs_mount_free(mp); 1049 } 1050 1051 static long 1052 xfs_fs_nr_cached_objects( 1053 struct super_block *sb, 1054 struct shrink_control *sc) 1055 { 1056 /* Paranoia: catch incorrect calls during mount setup or teardown */ 1057 if (WARN_ON_ONCE(!sb->s_fs_info)) 1058 return 0; 1059 return xfs_reclaim_inodes_count(XFS_M(sb)); 1060 } 1061 1062 static long 1063 xfs_fs_free_cached_objects( 1064 struct super_block *sb, 1065 struct shrink_control *sc) 1066 { 1067 return xfs_reclaim_inodes_nr(XFS_M(sb), sc->nr_to_scan); 1068 } 1069 1070 static const struct super_operations xfs_super_operations = { 1071 .alloc_inode = xfs_fs_alloc_inode, 1072 .destroy_inode = xfs_fs_destroy_inode, 1073 .dirty_inode = xfs_fs_dirty_inode, 1074 .drop_inode = xfs_fs_drop_inode, 1075 .put_super = xfs_fs_put_super, 1076 .sync_fs = xfs_fs_sync_fs, 1077 .freeze_fs = xfs_fs_freeze, 1078 .unfreeze_fs = xfs_fs_unfreeze, 1079 .statfs = xfs_fs_statfs, 1080 .show_options = xfs_fs_show_options, 1081 .nr_cached_objects = xfs_fs_nr_cached_objects, 1082 .free_cached_objects = xfs_fs_free_cached_objects, 1083 }; 1084 1085 static int 1086 suffix_kstrtoint( 1087 const char *s, 1088 unsigned int base, 1089 int *res) 1090 { 1091 int last, shift_left_factor = 0, _res; 1092 char *value; 1093 int ret = 0; 1094 1095 value = kstrdup(s, GFP_KERNEL); 1096 if (!value) 1097 return -ENOMEM; 1098 1099 last = strlen(value) - 1; 1100 if (value[last] == 'K' || value[last] == 'k') { 1101 shift_left_factor = 10; 1102 value[last] = '\0'; 1103 } 1104 if (value[last] == 'M' || value[last] == 'm') { 1105 shift_left_factor = 20; 1106 value[last] = '\0'; 1107 } 1108 if (value[last] == 'G' || value[last] == 'g') { 1109 shift_left_factor = 30; 1110 value[last] = '\0'; 1111 } 1112 1113 if (kstrtoint(value, base, &_res)) 1114 ret = -EINVAL; 1115 kfree(value); 1116 *res = _res << shift_left_factor; 1117 return ret; 1118 } 1119 1120 /* 1121 * Set mount state from a mount option. 1122 * 1123 * NOTE: mp->m_super is NULL here! 1124 */ 1125 static int 1126 xfs_fc_parse_param( 1127 struct fs_context *fc, 1128 struct fs_parameter *param) 1129 { 1130 struct xfs_mount *mp = fc->s_fs_info; 1131 struct fs_parse_result result; 1132 int size = 0; 1133 int opt; 1134 1135 opt = fs_parse(fc, xfs_fs_parameters, param, &result); 1136 if (opt < 0) 1137 return opt; 1138 1139 switch (opt) { 1140 case Opt_logbufs: 1141 mp->m_logbufs = result.uint_32; 1142 return 0; 1143 case Opt_logbsize: 1144 if (suffix_kstrtoint(param->string, 10, &mp->m_logbsize)) 1145 return -EINVAL; 1146 return 0; 1147 case Opt_logdev: 1148 kfree(mp->m_logname); 1149 mp->m_logname = kstrdup(param->string, GFP_KERNEL); 1150 if (!mp->m_logname) 1151 return -ENOMEM; 1152 return 0; 1153 case Opt_rtdev: 1154 kfree(mp->m_rtname); 1155 mp->m_rtname = kstrdup(param->string, GFP_KERNEL); 1156 if (!mp->m_rtname) 1157 return -ENOMEM; 1158 return 0; 1159 case Opt_allocsize: 1160 if (suffix_kstrtoint(param->string, 10, &size)) 1161 return -EINVAL; 1162 mp->m_allocsize_log = ffs(size) - 1; 1163 mp->m_flags |= XFS_MOUNT_ALLOCSIZE; 1164 return 0; 1165 case Opt_grpid: 1166 case Opt_bsdgroups: 1167 mp->m_flags |= XFS_MOUNT_GRPID; 1168 return 0; 1169 case Opt_nogrpid: 1170 case Opt_sysvgroups: 1171 mp->m_flags &= ~XFS_MOUNT_GRPID; 1172 return 0; 1173 case Opt_wsync: 1174 mp->m_flags |= XFS_MOUNT_WSYNC; 1175 return 0; 1176 case Opt_norecovery: 1177 mp->m_flags |= XFS_MOUNT_NORECOVERY; 1178 return 0; 1179 case Opt_noalign: 1180 mp->m_flags |= XFS_MOUNT_NOALIGN; 1181 return 0; 1182 case Opt_swalloc: 1183 mp->m_flags |= XFS_MOUNT_SWALLOC; 1184 return 0; 1185 case Opt_sunit: 1186 mp->m_dalign = result.uint_32; 1187 return 0; 1188 case Opt_swidth: 1189 mp->m_swidth = result.uint_32; 1190 return 0; 1191 case Opt_inode32: 1192 mp->m_flags |= XFS_MOUNT_SMALL_INUMS; 1193 return 0; 1194 case Opt_inode64: 1195 mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS; 1196 return 0; 1197 case Opt_nouuid: 1198 mp->m_flags |= XFS_MOUNT_NOUUID; 1199 return 0; 1200 case Opt_ikeep: 1201 mp->m_flags |= XFS_MOUNT_IKEEP; 1202 return 0; 1203 case Opt_noikeep: 1204 mp->m_flags &= ~XFS_MOUNT_IKEEP; 1205 return 0; 1206 case Opt_largeio: 1207 mp->m_flags |= XFS_MOUNT_LARGEIO; 1208 return 0; 1209 case Opt_nolargeio: 1210 mp->m_flags &= ~XFS_MOUNT_LARGEIO; 1211 return 0; 1212 case Opt_attr2: 1213 mp->m_flags |= XFS_MOUNT_ATTR2; 1214 return 0; 1215 case Opt_noattr2: 1216 mp->m_flags &= ~XFS_MOUNT_ATTR2; 1217 mp->m_flags |= XFS_MOUNT_NOATTR2; 1218 return 0; 1219 case Opt_filestreams: 1220 mp->m_flags |= XFS_MOUNT_FILESTREAMS; 1221 return 0; 1222 case Opt_noquota: 1223 mp->m_qflags &= ~XFS_ALL_QUOTA_ACCT; 1224 mp->m_qflags &= ~XFS_ALL_QUOTA_ENFD; 1225 mp->m_qflags &= ~XFS_ALL_QUOTA_ACTIVE; 1226 return 0; 1227 case Opt_quota: 1228 case Opt_uquota: 1229 case Opt_usrquota: 1230 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE | 1231 XFS_UQUOTA_ENFD); 1232 return 0; 1233 case Opt_qnoenforce: 1234 case Opt_uqnoenforce: 1235 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE); 1236 mp->m_qflags &= ~XFS_UQUOTA_ENFD; 1237 return 0; 1238 case Opt_pquota: 1239 case Opt_prjquota: 1240 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE | 1241 XFS_PQUOTA_ENFD); 1242 return 0; 1243 case Opt_pqnoenforce: 1244 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE); 1245 mp->m_qflags &= ~XFS_PQUOTA_ENFD; 1246 return 0; 1247 case Opt_gquota: 1248 case Opt_grpquota: 1249 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE | 1250 XFS_GQUOTA_ENFD); 1251 return 0; 1252 case Opt_gqnoenforce: 1253 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE); 1254 mp->m_qflags &= ~XFS_GQUOTA_ENFD; 1255 return 0; 1256 case Opt_discard: 1257 mp->m_flags |= XFS_MOUNT_DISCARD; 1258 return 0; 1259 case Opt_nodiscard: 1260 mp->m_flags &= ~XFS_MOUNT_DISCARD; 1261 return 0; 1262 #ifdef CONFIG_FS_DAX 1263 case Opt_dax: 1264 mp->m_flags |= XFS_MOUNT_DAX; 1265 return 0; 1266 #endif 1267 default: 1268 xfs_warn(mp, "unknown mount option [%s].", param->key); 1269 return -EINVAL; 1270 } 1271 1272 return 0; 1273 } 1274 1275 static int 1276 xfs_fc_validate_params( 1277 struct xfs_mount *mp) 1278 { 1279 /* 1280 * no recovery flag requires a read-only mount 1281 */ 1282 if ((mp->m_flags & XFS_MOUNT_NORECOVERY) && 1283 !(mp->m_flags & XFS_MOUNT_RDONLY)) { 1284 xfs_warn(mp, "no-recovery mounts must be read-only."); 1285 return -EINVAL; 1286 } 1287 1288 if ((mp->m_flags & XFS_MOUNT_NOALIGN) && 1289 (mp->m_dalign || mp->m_swidth)) { 1290 xfs_warn(mp, 1291 "sunit and swidth options incompatible with the noalign option"); 1292 return -EINVAL; 1293 } 1294 1295 if (!IS_ENABLED(CONFIG_XFS_QUOTA) && mp->m_qflags != 0) { 1296 xfs_warn(mp, "quota support not available in this kernel."); 1297 return -EINVAL; 1298 } 1299 1300 if ((mp->m_dalign && !mp->m_swidth) || 1301 (!mp->m_dalign && mp->m_swidth)) { 1302 xfs_warn(mp, "sunit and swidth must be specified together"); 1303 return -EINVAL; 1304 } 1305 1306 if (mp->m_dalign && (mp->m_swidth % mp->m_dalign != 0)) { 1307 xfs_warn(mp, 1308 "stripe width (%d) must be a multiple of the stripe unit (%d)", 1309 mp->m_swidth, mp->m_dalign); 1310 return -EINVAL; 1311 } 1312 1313 if (mp->m_logbufs != -1 && 1314 mp->m_logbufs != 0 && 1315 (mp->m_logbufs < XLOG_MIN_ICLOGS || 1316 mp->m_logbufs > XLOG_MAX_ICLOGS)) { 1317 xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]", 1318 mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS); 1319 return -EINVAL; 1320 } 1321 1322 if (mp->m_logbsize != -1 && 1323 mp->m_logbsize != 0 && 1324 (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE || 1325 mp->m_logbsize > XLOG_MAX_RECORD_BSIZE || 1326 !is_power_of_2(mp->m_logbsize))) { 1327 xfs_warn(mp, 1328 "invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]", 1329 mp->m_logbsize); 1330 return -EINVAL; 1331 } 1332 1333 if ((mp->m_flags & XFS_MOUNT_ALLOCSIZE) && 1334 (mp->m_allocsize_log > XFS_MAX_IO_LOG || 1335 mp->m_allocsize_log < XFS_MIN_IO_LOG)) { 1336 xfs_warn(mp, "invalid log iosize: %d [not %d-%d]", 1337 mp->m_allocsize_log, XFS_MIN_IO_LOG, XFS_MAX_IO_LOG); 1338 return -EINVAL; 1339 } 1340 1341 return 0; 1342 } 1343 1344 static int 1345 xfs_fc_fill_super( 1346 struct super_block *sb, 1347 struct fs_context *fc) 1348 { 1349 struct xfs_mount *mp = sb->s_fs_info; 1350 struct inode *root; 1351 int flags = 0, error; 1352 1353 mp->m_super = sb; 1354 1355 error = xfs_fc_validate_params(mp); 1356 if (error) 1357 goto out_free_names; 1358 1359 sb_min_blocksize(sb, BBSIZE); 1360 sb->s_xattr = xfs_xattr_handlers; 1361 sb->s_export_op = &xfs_export_operations; 1362 #ifdef CONFIG_XFS_QUOTA 1363 sb->s_qcop = &xfs_quotactl_operations; 1364 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 1365 #endif 1366 sb->s_op = &xfs_super_operations; 1367 1368 /* 1369 * Delay mount work if the debug hook is set. This is debug 1370 * instrumention to coordinate simulation of xfs mount failures with 1371 * VFS superblock operations 1372 */ 1373 if (xfs_globals.mount_delay) { 1374 xfs_notice(mp, "Delaying mount for %d seconds.", 1375 xfs_globals.mount_delay); 1376 msleep(xfs_globals.mount_delay * 1000); 1377 } 1378 1379 if (fc->sb_flags & SB_SILENT) 1380 flags |= XFS_MFSI_QUIET; 1381 1382 error = xfs_open_devices(mp); 1383 if (error) 1384 goto out_free_names; 1385 1386 error = xfs_init_mount_workqueues(mp); 1387 if (error) 1388 goto out_close_devices; 1389 1390 error = xfs_init_percpu_counters(mp); 1391 if (error) 1392 goto out_destroy_workqueues; 1393 1394 /* Allocate stats memory before we do operations that might use it */ 1395 mp->m_stats.xs_stats = alloc_percpu(struct xfsstats); 1396 if (!mp->m_stats.xs_stats) { 1397 error = -ENOMEM; 1398 goto out_destroy_counters; 1399 } 1400 1401 error = xfs_readsb(mp, flags); 1402 if (error) 1403 goto out_free_stats; 1404 1405 error = xfs_finish_flags(mp); 1406 if (error) 1407 goto out_free_sb; 1408 1409 error = xfs_setup_devices(mp); 1410 if (error) 1411 goto out_free_sb; 1412 1413 /* 1414 * XFS block mappings use 54 bits to store the logical block offset. 1415 * This should suffice to handle the maximum file size that the VFS 1416 * supports (currently 2^63 bytes on 64-bit and ULONG_MAX << PAGE_SHIFT 1417 * bytes on 32-bit), but as XFS and VFS have gotten the s_maxbytes 1418 * calculation wrong on 32-bit kernels in the past, we'll add a WARN_ON 1419 * to check this assertion. 1420 * 1421 * Avoid integer overflow by comparing the maximum bmbt offset to the 1422 * maximum pagecache offset in units of fs blocks. 1423 */ 1424 if (XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE) > XFS_MAX_FILEOFF) { 1425 xfs_warn(mp, 1426 "MAX_LFS_FILESIZE block offset (%llu) exceeds extent map maximum (%llu)!", 1427 XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE), 1428 XFS_MAX_FILEOFF); 1429 error = -EINVAL; 1430 goto out_free_sb; 1431 } 1432 1433 error = xfs_filestream_mount(mp); 1434 if (error) 1435 goto out_free_sb; 1436 1437 /* 1438 * we must configure the block size in the superblock before we run the 1439 * full mount process as the mount process can lookup and cache inodes. 1440 */ 1441 sb->s_magic = XFS_SUPER_MAGIC; 1442 sb->s_blocksize = mp->m_sb.sb_blocksize; 1443 sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1; 1444 sb->s_maxbytes = MAX_LFS_FILESIZE; 1445 sb->s_max_links = XFS_MAXLINK; 1446 sb->s_time_gran = 1; 1447 sb->s_time_min = S32_MIN; 1448 sb->s_time_max = S32_MAX; 1449 sb->s_iflags |= SB_I_CGROUPWB; 1450 1451 set_posix_acl_flag(sb); 1452 1453 /* version 5 superblocks support inode version counters. */ 1454 if (XFS_SB_VERSION_NUM(&mp->m_sb) == XFS_SB_VERSION_5) 1455 sb->s_flags |= SB_I_VERSION; 1456 1457 if (mp->m_flags & XFS_MOUNT_DAX) { 1458 bool rtdev_is_dax = false, datadev_is_dax; 1459 1460 xfs_warn(mp, 1461 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1462 1463 datadev_is_dax = bdev_dax_supported(mp->m_ddev_targp->bt_bdev, 1464 sb->s_blocksize); 1465 if (mp->m_rtdev_targp) 1466 rtdev_is_dax = bdev_dax_supported( 1467 mp->m_rtdev_targp->bt_bdev, sb->s_blocksize); 1468 if (!rtdev_is_dax && !datadev_is_dax) { 1469 xfs_alert(mp, 1470 "DAX unsupported by block device. Turning off DAX."); 1471 mp->m_flags &= ~XFS_MOUNT_DAX; 1472 } 1473 if (xfs_sb_version_hasreflink(&mp->m_sb)) { 1474 xfs_alert(mp, 1475 "DAX and reflink cannot be used together!"); 1476 error = -EINVAL; 1477 goto out_filestream_unmount; 1478 } 1479 } 1480 1481 if (mp->m_flags & XFS_MOUNT_DISCARD) { 1482 struct request_queue *q = bdev_get_queue(sb->s_bdev); 1483 1484 if (!blk_queue_discard(q)) { 1485 xfs_warn(mp, "mounting with \"discard\" option, but " 1486 "the device does not support discard"); 1487 mp->m_flags &= ~XFS_MOUNT_DISCARD; 1488 } 1489 } 1490 1491 if (xfs_sb_version_hasreflink(&mp->m_sb)) { 1492 if (mp->m_sb.sb_rblocks) { 1493 xfs_alert(mp, 1494 "reflink not compatible with realtime device!"); 1495 error = -EINVAL; 1496 goto out_filestream_unmount; 1497 } 1498 1499 if (xfs_globals.always_cow) { 1500 xfs_info(mp, "using DEBUG-only always_cow mode."); 1501 mp->m_always_cow = true; 1502 } 1503 } 1504 1505 if (xfs_sb_version_hasrmapbt(&mp->m_sb) && mp->m_sb.sb_rblocks) { 1506 xfs_alert(mp, 1507 "reverse mapping btree not compatible with realtime device!"); 1508 error = -EINVAL; 1509 goto out_filestream_unmount; 1510 } 1511 1512 error = xfs_mountfs(mp); 1513 if (error) 1514 goto out_filestream_unmount; 1515 1516 root = igrab(VFS_I(mp->m_rootip)); 1517 if (!root) { 1518 error = -ENOENT; 1519 goto out_unmount; 1520 } 1521 sb->s_root = d_make_root(root); 1522 if (!sb->s_root) { 1523 error = -ENOMEM; 1524 goto out_unmount; 1525 } 1526 1527 return 0; 1528 1529 out_filestream_unmount: 1530 xfs_filestream_unmount(mp); 1531 out_free_sb: 1532 xfs_freesb(mp); 1533 out_free_stats: 1534 free_percpu(mp->m_stats.xs_stats); 1535 out_destroy_counters: 1536 xfs_destroy_percpu_counters(mp); 1537 out_destroy_workqueues: 1538 xfs_destroy_mount_workqueues(mp); 1539 out_close_devices: 1540 xfs_close_devices(mp); 1541 out_free_names: 1542 sb->s_fs_info = NULL; 1543 xfs_mount_free(mp); 1544 return error; 1545 1546 out_unmount: 1547 xfs_filestream_unmount(mp); 1548 xfs_unmountfs(mp); 1549 goto out_free_sb; 1550 } 1551 1552 static int 1553 xfs_fc_get_tree( 1554 struct fs_context *fc) 1555 { 1556 return get_tree_bdev(fc, xfs_fc_fill_super); 1557 } 1558 1559 static int 1560 xfs_remount_rw( 1561 struct xfs_mount *mp) 1562 { 1563 struct xfs_sb *sbp = &mp->m_sb; 1564 int error; 1565 1566 if (mp->m_flags & XFS_MOUNT_NORECOVERY) { 1567 xfs_warn(mp, 1568 "ro->rw transition prohibited on norecovery mount"); 1569 return -EINVAL; 1570 } 1571 1572 if (XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5 && 1573 xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { 1574 xfs_warn(mp, 1575 "ro->rw transition prohibited on unknown (0x%x) ro-compat filesystem", 1576 (sbp->sb_features_ro_compat & 1577 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); 1578 return -EINVAL; 1579 } 1580 1581 mp->m_flags &= ~XFS_MOUNT_RDONLY; 1582 1583 /* 1584 * If this is the first remount to writeable state we might have some 1585 * superblock changes to update. 1586 */ 1587 if (mp->m_update_sb) { 1588 error = xfs_sync_sb(mp, false); 1589 if (error) { 1590 xfs_warn(mp, "failed to write sb changes"); 1591 return error; 1592 } 1593 mp->m_update_sb = false; 1594 } 1595 1596 /* 1597 * Fill out the reserve pool if it is empty. Use the stashed value if 1598 * it is non-zero, otherwise go with the default. 1599 */ 1600 xfs_restore_resvblks(mp); 1601 xfs_log_work_queue(mp); 1602 1603 /* Recover any CoW blocks that never got remapped. */ 1604 error = xfs_reflink_recover_cow(mp); 1605 if (error) { 1606 xfs_err(mp, 1607 "Error %d recovering leftover CoW allocations.", error); 1608 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1609 return error; 1610 } 1611 xfs_start_block_reaping(mp); 1612 1613 /* Create the per-AG metadata reservation pool .*/ 1614 error = xfs_fs_reserve_ag_blocks(mp); 1615 if (error && error != -ENOSPC) 1616 return error; 1617 1618 return 0; 1619 } 1620 1621 static int 1622 xfs_remount_ro( 1623 struct xfs_mount *mp) 1624 { 1625 int error; 1626 1627 /* 1628 * Cancel background eofb scanning so it cannot race with the final 1629 * log force+buftarg wait and deadlock the remount. 1630 */ 1631 xfs_stop_block_reaping(mp); 1632 1633 /* Get rid of any leftover CoW reservations... */ 1634 error = xfs_icache_free_cowblocks(mp, NULL); 1635 if (error) { 1636 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1637 return error; 1638 } 1639 1640 /* Free the per-AG metadata reservation pool. */ 1641 error = xfs_fs_unreserve_ag_blocks(mp); 1642 if (error) { 1643 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1644 return error; 1645 } 1646 1647 /* 1648 * Before we sync the metadata, we need to free up the reserve block 1649 * pool so that the used block count in the superblock on disk is 1650 * correct at the end of the remount. Stash the current* reserve pool 1651 * size so that if we get remounted rw, we can return it to the same 1652 * size. 1653 */ 1654 xfs_save_resvblks(mp); 1655 1656 xfs_quiesce_attr(mp); 1657 mp->m_flags |= XFS_MOUNT_RDONLY; 1658 1659 return 0; 1660 } 1661 1662 /* 1663 * Logically we would return an error here to prevent users from believing 1664 * they might have changed mount options using remount which can't be changed. 1665 * 1666 * But unfortunately mount(8) adds all options from mtab and fstab to the mount 1667 * arguments in some cases so we can't blindly reject options, but have to 1668 * check for each specified option if it actually differs from the currently 1669 * set option and only reject it if that's the case. 1670 * 1671 * Until that is implemented we return success for every remount request, and 1672 * silently ignore all options that we can't actually change. 1673 */ 1674 static int 1675 xfs_fc_reconfigure( 1676 struct fs_context *fc) 1677 { 1678 struct xfs_mount *mp = XFS_M(fc->root->d_sb); 1679 struct xfs_mount *new_mp = fc->s_fs_info; 1680 xfs_sb_t *sbp = &mp->m_sb; 1681 int flags = fc->sb_flags; 1682 int error; 1683 1684 error = xfs_fc_validate_params(new_mp); 1685 if (error) 1686 return error; 1687 1688 sync_filesystem(mp->m_super); 1689 1690 /* inode32 -> inode64 */ 1691 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && 1692 !(new_mp->m_flags & XFS_MOUNT_SMALL_INUMS)) { 1693 mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS; 1694 mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount); 1695 } 1696 1697 /* inode64 -> inode32 */ 1698 if (!(mp->m_flags & XFS_MOUNT_SMALL_INUMS) && 1699 (new_mp->m_flags & XFS_MOUNT_SMALL_INUMS)) { 1700 mp->m_flags |= XFS_MOUNT_SMALL_INUMS; 1701 mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount); 1702 } 1703 1704 /* ro -> rw */ 1705 if ((mp->m_flags & XFS_MOUNT_RDONLY) && !(flags & SB_RDONLY)) { 1706 error = xfs_remount_rw(mp); 1707 if (error) 1708 return error; 1709 } 1710 1711 /* rw -> ro */ 1712 if (!(mp->m_flags & XFS_MOUNT_RDONLY) && (flags & SB_RDONLY)) { 1713 error = xfs_remount_ro(mp); 1714 if (error) 1715 return error; 1716 } 1717 1718 return 0; 1719 } 1720 1721 static void xfs_fc_free( 1722 struct fs_context *fc) 1723 { 1724 struct xfs_mount *mp = fc->s_fs_info; 1725 1726 /* 1727 * mp is stored in the fs_context when it is initialized. 1728 * mp is transferred to the superblock on a successful mount, 1729 * but if an error occurs before the transfer we have to free 1730 * it here. 1731 */ 1732 if (mp) 1733 xfs_mount_free(mp); 1734 } 1735 1736 static const struct fs_context_operations xfs_context_ops = { 1737 .parse_param = xfs_fc_parse_param, 1738 .get_tree = xfs_fc_get_tree, 1739 .reconfigure = xfs_fc_reconfigure, 1740 .free = xfs_fc_free, 1741 }; 1742 1743 static int xfs_init_fs_context( 1744 struct fs_context *fc) 1745 { 1746 struct xfs_mount *mp; 1747 1748 mp = kmem_alloc(sizeof(struct xfs_mount), KM_ZERO); 1749 if (!mp) 1750 return -ENOMEM; 1751 1752 spin_lock_init(&mp->m_sb_lock); 1753 spin_lock_init(&mp->m_agirotor_lock); 1754 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 1755 spin_lock_init(&mp->m_perag_lock); 1756 mutex_init(&mp->m_growlock); 1757 atomic_set(&mp->m_active_trans, 0); 1758 INIT_WORK(&mp->m_flush_inodes_work, xfs_flush_inodes_worker); 1759 INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker); 1760 INIT_DELAYED_WORK(&mp->m_eofblocks_work, xfs_eofblocks_worker); 1761 INIT_DELAYED_WORK(&mp->m_cowblocks_work, xfs_cowblocks_worker); 1762 mp->m_kobj.kobject.kset = xfs_kset; 1763 /* 1764 * We don't create the finobt per-ag space reservation until after log 1765 * recovery, so we must set this to true so that an ifree transaction 1766 * started during log recovery will not depend on space reservations 1767 * for finobt expansion. 1768 */ 1769 mp->m_finobt_nores = true; 1770 1771 /* 1772 * These can be overridden by the mount option parsing. 1773 */ 1774 mp->m_logbufs = -1; 1775 mp->m_logbsize = -1; 1776 mp->m_allocsize_log = 16; /* 64k */ 1777 1778 /* 1779 * Copy binary VFS mount flags we are interested in. 1780 */ 1781 if (fc->sb_flags & SB_RDONLY) 1782 mp->m_flags |= XFS_MOUNT_RDONLY; 1783 if (fc->sb_flags & SB_DIRSYNC) 1784 mp->m_flags |= XFS_MOUNT_DIRSYNC; 1785 if (fc->sb_flags & SB_SYNCHRONOUS) 1786 mp->m_flags |= XFS_MOUNT_WSYNC; 1787 1788 fc->s_fs_info = mp; 1789 fc->ops = &xfs_context_ops; 1790 1791 return 0; 1792 } 1793 1794 static struct file_system_type xfs_fs_type = { 1795 .owner = THIS_MODULE, 1796 .name = "xfs", 1797 .init_fs_context = xfs_init_fs_context, 1798 .parameters = xfs_fs_parameters, 1799 .kill_sb = kill_block_super, 1800 .fs_flags = FS_REQUIRES_DEV, 1801 }; 1802 MODULE_ALIAS_FS("xfs"); 1803 1804 STATIC int __init 1805 xfs_init_zones(void) 1806 { 1807 xfs_log_ticket_zone = kmem_cache_create("xfs_log_ticket", 1808 sizeof(struct xlog_ticket), 1809 0, 0, NULL); 1810 if (!xfs_log_ticket_zone) 1811 goto out; 1812 1813 xfs_bmap_free_item_zone = kmem_cache_create("xfs_bmap_free_item", 1814 sizeof(struct xfs_extent_free_item), 1815 0, 0, NULL); 1816 if (!xfs_bmap_free_item_zone) 1817 goto out_destroy_log_ticket_zone; 1818 1819 xfs_btree_cur_zone = kmem_cache_create("xfs_btree_cur", 1820 sizeof(struct xfs_btree_cur), 1821 0, 0, NULL); 1822 if (!xfs_btree_cur_zone) 1823 goto out_destroy_bmap_free_item_zone; 1824 1825 xfs_da_state_zone = kmem_cache_create("xfs_da_state", 1826 sizeof(struct xfs_da_state), 1827 0, 0, NULL); 1828 if (!xfs_da_state_zone) 1829 goto out_destroy_btree_cur_zone; 1830 1831 xfs_ifork_zone = kmem_cache_create("xfs_ifork", 1832 sizeof(struct xfs_ifork), 1833 0, 0, NULL); 1834 if (!xfs_ifork_zone) 1835 goto out_destroy_da_state_zone; 1836 1837 xfs_trans_zone = kmem_cache_create("xf_trans", 1838 sizeof(struct xfs_trans), 1839 0, 0, NULL); 1840 if (!xfs_trans_zone) 1841 goto out_destroy_ifork_zone; 1842 1843 1844 /* 1845 * The size of the zone allocated buf log item is the maximum 1846 * size possible under XFS. This wastes a little bit of memory, 1847 * but it is much faster. 1848 */ 1849 xfs_buf_item_zone = kmem_cache_create("xfs_buf_item", 1850 sizeof(struct xfs_buf_log_item), 1851 0, 0, NULL); 1852 if (!xfs_buf_item_zone) 1853 goto out_destroy_trans_zone; 1854 1855 xfs_efd_zone = kmem_cache_create("xfs_efd_item", 1856 (sizeof(struct xfs_efd_log_item) + 1857 (XFS_EFD_MAX_FAST_EXTENTS - 1) * 1858 sizeof(struct xfs_extent)), 1859 0, 0, NULL); 1860 if (!xfs_efd_zone) 1861 goto out_destroy_buf_item_zone; 1862 1863 xfs_efi_zone = kmem_cache_create("xfs_efi_item", 1864 (sizeof(struct xfs_efi_log_item) + 1865 (XFS_EFI_MAX_FAST_EXTENTS - 1) * 1866 sizeof(struct xfs_extent)), 1867 0, 0, NULL); 1868 if (!xfs_efi_zone) 1869 goto out_destroy_efd_zone; 1870 1871 xfs_inode_zone = kmem_cache_create("xfs_inode", 1872 sizeof(struct xfs_inode), 0, 1873 (SLAB_HWCACHE_ALIGN | 1874 SLAB_RECLAIM_ACCOUNT | 1875 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 1876 xfs_fs_inode_init_once); 1877 if (!xfs_inode_zone) 1878 goto out_destroy_efi_zone; 1879 1880 xfs_ili_zone = kmem_cache_create("xfs_ili", 1881 sizeof(struct xfs_inode_log_item), 0, 1882 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 1883 NULL); 1884 if (!xfs_ili_zone) 1885 goto out_destroy_inode_zone; 1886 1887 xfs_icreate_zone = kmem_cache_create("xfs_icr", 1888 sizeof(struct xfs_icreate_item), 1889 0, 0, NULL); 1890 if (!xfs_icreate_zone) 1891 goto out_destroy_ili_zone; 1892 1893 xfs_rud_zone = kmem_cache_create("xfs_rud_item", 1894 sizeof(struct xfs_rud_log_item), 1895 0, 0, NULL); 1896 if (!xfs_rud_zone) 1897 goto out_destroy_icreate_zone; 1898 1899 xfs_rui_zone = kmem_cache_create("xfs_rui_item", 1900 xfs_rui_log_item_sizeof(XFS_RUI_MAX_FAST_EXTENTS), 1901 0, 0, NULL); 1902 if (!xfs_rui_zone) 1903 goto out_destroy_rud_zone; 1904 1905 xfs_cud_zone = kmem_cache_create("xfs_cud_item", 1906 sizeof(struct xfs_cud_log_item), 1907 0, 0, NULL); 1908 if (!xfs_cud_zone) 1909 goto out_destroy_rui_zone; 1910 1911 xfs_cui_zone = kmem_cache_create("xfs_cui_item", 1912 xfs_cui_log_item_sizeof(XFS_CUI_MAX_FAST_EXTENTS), 1913 0, 0, NULL); 1914 if (!xfs_cui_zone) 1915 goto out_destroy_cud_zone; 1916 1917 xfs_bud_zone = kmem_cache_create("xfs_bud_item", 1918 sizeof(struct xfs_bud_log_item), 1919 0, 0, NULL); 1920 if (!xfs_bud_zone) 1921 goto out_destroy_cui_zone; 1922 1923 xfs_bui_zone = kmem_cache_create("xfs_bui_item", 1924 xfs_bui_log_item_sizeof(XFS_BUI_MAX_FAST_EXTENTS), 1925 0, 0, NULL); 1926 if (!xfs_bui_zone) 1927 goto out_destroy_bud_zone; 1928 1929 return 0; 1930 1931 out_destroy_bud_zone: 1932 kmem_cache_destroy(xfs_bud_zone); 1933 out_destroy_cui_zone: 1934 kmem_cache_destroy(xfs_cui_zone); 1935 out_destroy_cud_zone: 1936 kmem_cache_destroy(xfs_cud_zone); 1937 out_destroy_rui_zone: 1938 kmem_cache_destroy(xfs_rui_zone); 1939 out_destroy_rud_zone: 1940 kmem_cache_destroy(xfs_rud_zone); 1941 out_destroy_icreate_zone: 1942 kmem_cache_destroy(xfs_icreate_zone); 1943 out_destroy_ili_zone: 1944 kmem_cache_destroy(xfs_ili_zone); 1945 out_destroy_inode_zone: 1946 kmem_cache_destroy(xfs_inode_zone); 1947 out_destroy_efi_zone: 1948 kmem_cache_destroy(xfs_efi_zone); 1949 out_destroy_efd_zone: 1950 kmem_cache_destroy(xfs_efd_zone); 1951 out_destroy_buf_item_zone: 1952 kmem_cache_destroy(xfs_buf_item_zone); 1953 out_destroy_trans_zone: 1954 kmem_cache_destroy(xfs_trans_zone); 1955 out_destroy_ifork_zone: 1956 kmem_cache_destroy(xfs_ifork_zone); 1957 out_destroy_da_state_zone: 1958 kmem_cache_destroy(xfs_da_state_zone); 1959 out_destroy_btree_cur_zone: 1960 kmem_cache_destroy(xfs_btree_cur_zone); 1961 out_destroy_bmap_free_item_zone: 1962 kmem_cache_destroy(xfs_bmap_free_item_zone); 1963 out_destroy_log_ticket_zone: 1964 kmem_cache_destroy(xfs_log_ticket_zone); 1965 out: 1966 return -ENOMEM; 1967 } 1968 1969 STATIC void 1970 xfs_destroy_zones(void) 1971 { 1972 /* 1973 * Make sure all delayed rcu free are flushed before we 1974 * destroy caches. 1975 */ 1976 rcu_barrier(); 1977 kmem_cache_destroy(xfs_bui_zone); 1978 kmem_cache_destroy(xfs_bud_zone); 1979 kmem_cache_destroy(xfs_cui_zone); 1980 kmem_cache_destroy(xfs_cud_zone); 1981 kmem_cache_destroy(xfs_rui_zone); 1982 kmem_cache_destroy(xfs_rud_zone); 1983 kmem_cache_destroy(xfs_icreate_zone); 1984 kmem_cache_destroy(xfs_ili_zone); 1985 kmem_cache_destroy(xfs_inode_zone); 1986 kmem_cache_destroy(xfs_efi_zone); 1987 kmem_cache_destroy(xfs_efd_zone); 1988 kmem_cache_destroy(xfs_buf_item_zone); 1989 kmem_cache_destroy(xfs_trans_zone); 1990 kmem_cache_destroy(xfs_ifork_zone); 1991 kmem_cache_destroy(xfs_da_state_zone); 1992 kmem_cache_destroy(xfs_btree_cur_zone); 1993 kmem_cache_destroy(xfs_bmap_free_item_zone); 1994 kmem_cache_destroy(xfs_log_ticket_zone); 1995 } 1996 1997 STATIC int __init 1998 xfs_init_workqueues(void) 1999 { 2000 /* 2001 * The allocation workqueue can be used in memory reclaim situations 2002 * (writepage path), and parallelism is only limited by the number of 2003 * AGs in all the filesystems mounted. Hence use the default large 2004 * max_active value for this workqueue. 2005 */ 2006 xfs_alloc_wq = alloc_workqueue("xfsalloc", 2007 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0); 2008 if (!xfs_alloc_wq) 2009 return -ENOMEM; 2010 2011 xfs_discard_wq = alloc_workqueue("xfsdiscard", WQ_UNBOUND, 0); 2012 if (!xfs_discard_wq) 2013 goto out_free_alloc_wq; 2014 2015 return 0; 2016 out_free_alloc_wq: 2017 destroy_workqueue(xfs_alloc_wq); 2018 return -ENOMEM; 2019 } 2020 2021 STATIC void 2022 xfs_destroy_workqueues(void) 2023 { 2024 destroy_workqueue(xfs_discard_wq); 2025 destroy_workqueue(xfs_alloc_wq); 2026 } 2027 2028 STATIC int __init 2029 init_xfs_fs(void) 2030 { 2031 int error; 2032 2033 xfs_check_ondisk_structs(); 2034 2035 printk(KERN_INFO XFS_VERSION_STRING " with " 2036 XFS_BUILD_OPTIONS " enabled\n"); 2037 2038 xfs_dir_startup(); 2039 2040 error = xfs_init_zones(); 2041 if (error) 2042 goto out; 2043 2044 error = xfs_init_workqueues(); 2045 if (error) 2046 goto out_destroy_zones; 2047 2048 error = xfs_mru_cache_init(); 2049 if (error) 2050 goto out_destroy_wq; 2051 2052 error = xfs_buf_init(); 2053 if (error) 2054 goto out_mru_cache_uninit; 2055 2056 error = xfs_init_procfs(); 2057 if (error) 2058 goto out_buf_terminate; 2059 2060 error = xfs_sysctl_register(); 2061 if (error) 2062 goto out_cleanup_procfs; 2063 2064 xfs_kset = kset_create_and_add("xfs", NULL, fs_kobj); 2065 if (!xfs_kset) { 2066 error = -ENOMEM; 2067 goto out_sysctl_unregister; 2068 } 2069 2070 xfsstats.xs_kobj.kobject.kset = xfs_kset; 2071 2072 xfsstats.xs_stats = alloc_percpu(struct xfsstats); 2073 if (!xfsstats.xs_stats) { 2074 error = -ENOMEM; 2075 goto out_kset_unregister; 2076 } 2077 2078 error = xfs_sysfs_init(&xfsstats.xs_kobj, &xfs_stats_ktype, NULL, 2079 "stats"); 2080 if (error) 2081 goto out_free_stats; 2082 2083 #ifdef DEBUG 2084 xfs_dbg_kobj.kobject.kset = xfs_kset; 2085 error = xfs_sysfs_init(&xfs_dbg_kobj, &xfs_dbg_ktype, NULL, "debug"); 2086 if (error) 2087 goto out_remove_stats_kobj; 2088 #endif 2089 2090 error = xfs_qm_init(); 2091 if (error) 2092 goto out_remove_dbg_kobj; 2093 2094 error = register_filesystem(&xfs_fs_type); 2095 if (error) 2096 goto out_qm_exit; 2097 return 0; 2098 2099 out_qm_exit: 2100 xfs_qm_exit(); 2101 out_remove_dbg_kobj: 2102 #ifdef DEBUG 2103 xfs_sysfs_del(&xfs_dbg_kobj); 2104 out_remove_stats_kobj: 2105 #endif 2106 xfs_sysfs_del(&xfsstats.xs_kobj); 2107 out_free_stats: 2108 free_percpu(xfsstats.xs_stats); 2109 out_kset_unregister: 2110 kset_unregister(xfs_kset); 2111 out_sysctl_unregister: 2112 xfs_sysctl_unregister(); 2113 out_cleanup_procfs: 2114 xfs_cleanup_procfs(); 2115 out_buf_terminate: 2116 xfs_buf_terminate(); 2117 out_mru_cache_uninit: 2118 xfs_mru_cache_uninit(); 2119 out_destroy_wq: 2120 xfs_destroy_workqueues(); 2121 out_destroy_zones: 2122 xfs_destroy_zones(); 2123 out: 2124 return error; 2125 } 2126 2127 STATIC void __exit 2128 exit_xfs_fs(void) 2129 { 2130 xfs_qm_exit(); 2131 unregister_filesystem(&xfs_fs_type); 2132 #ifdef DEBUG 2133 xfs_sysfs_del(&xfs_dbg_kobj); 2134 #endif 2135 xfs_sysfs_del(&xfsstats.xs_kobj); 2136 free_percpu(xfsstats.xs_stats); 2137 kset_unregister(xfs_kset); 2138 xfs_sysctl_unregister(); 2139 xfs_cleanup_procfs(); 2140 xfs_buf_terminate(); 2141 xfs_mru_cache_uninit(); 2142 xfs_destroy_workqueues(); 2143 xfs_destroy_zones(); 2144 xfs_uuid_table_free(); 2145 } 2146 2147 module_init(init_xfs_fs); 2148 module_exit(exit_xfs_fs); 2149 2150 MODULE_AUTHOR("Silicon Graphics, Inc."); 2151 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled"); 2152 MODULE_LICENSE("GPL"); 2153