1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 7 #include "xfs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_sb.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_btree.h" 16 #include "xfs_bmap.h" 17 #include "xfs_alloc.h" 18 #include "xfs_fsops.h" 19 #include "xfs_trans.h" 20 #include "xfs_buf_item.h" 21 #include "xfs_log.h" 22 #include "xfs_log_priv.h" 23 #include "xfs_dir2.h" 24 #include "xfs_extfree_item.h" 25 #include "xfs_mru_cache.h" 26 #include "xfs_inode_item.h" 27 #include "xfs_icache.h" 28 #include "xfs_trace.h" 29 #include "xfs_icreate_item.h" 30 #include "xfs_filestream.h" 31 #include "xfs_quota.h" 32 #include "xfs_sysfs.h" 33 #include "xfs_ondisk.h" 34 #include "xfs_rmap_item.h" 35 #include "xfs_refcount_item.h" 36 #include "xfs_bmap_item.h" 37 #include "xfs_reflink.h" 38 39 #include <linux/magic.h> 40 #include <linux/fs_context.h> 41 #include <linux/fs_parser.h> 42 43 static const struct super_operations xfs_super_operations; 44 45 static struct kset *xfs_kset; /* top-level xfs sysfs dir */ 46 #ifdef DEBUG 47 static struct xfs_kobj xfs_dbg_kobj; /* global debug sysfs attrs */ 48 #endif 49 50 enum xfs_dax_mode { 51 XFS_DAX_INODE = 0, 52 XFS_DAX_ALWAYS = 1, 53 XFS_DAX_NEVER = 2, 54 }; 55 56 static void 57 xfs_mount_set_dax_mode( 58 struct xfs_mount *mp, 59 enum xfs_dax_mode mode) 60 { 61 switch (mode) { 62 case XFS_DAX_INODE: 63 mp->m_flags &= ~(XFS_MOUNT_DAX_ALWAYS | XFS_MOUNT_DAX_NEVER); 64 break; 65 case XFS_DAX_ALWAYS: 66 mp->m_flags |= XFS_MOUNT_DAX_ALWAYS; 67 mp->m_flags &= ~XFS_MOUNT_DAX_NEVER; 68 break; 69 case XFS_DAX_NEVER: 70 mp->m_flags |= XFS_MOUNT_DAX_NEVER; 71 mp->m_flags &= ~XFS_MOUNT_DAX_ALWAYS; 72 break; 73 } 74 } 75 76 static const struct constant_table dax_param_enums[] = { 77 {"inode", XFS_DAX_INODE }, 78 {"always", XFS_DAX_ALWAYS }, 79 {"never", XFS_DAX_NEVER }, 80 {} 81 }; 82 83 /* 84 * Table driven mount option parser. 85 */ 86 enum { 87 Opt_logbufs, Opt_logbsize, Opt_logdev, Opt_rtdev, 88 Opt_wsync, Opt_noalign, Opt_swalloc, Opt_sunit, Opt_swidth, Opt_nouuid, 89 Opt_grpid, Opt_nogrpid, Opt_bsdgroups, Opt_sysvgroups, 90 Opt_allocsize, Opt_norecovery, Opt_inode64, Opt_inode32, Opt_ikeep, 91 Opt_noikeep, Opt_largeio, Opt_nolargeio, Opt_attr2, Opt_noattr2, 92 Opt_filestreams, Opt_quota, Opt_noquota, Opt_usrquota, Opt_grpquota, 93 Opt_prjquota, Opt_uquota, Opt_gquota, Opt_pquota, 94 Opt_uqnoenforce, Opt_gqnoenforce, Opt_pqnoenforce, Opt_qnoenforce, 95 Opt_discard, Opt_nodiscard, Opt_dax, Opt_dax_enum, 96 }; 97 98 static const struct fs_parameter_spec xfs_fs_parameters[] = { 99 fsparam_u32("logbufs", Opt_logbufs), 100 fsparam_string("logbsize", Opt_logbsize), 101 fsparam_string("logdev", Opt_logdev), 102 fsparam_string("rtdev", Opt_rtdev), 103 fsparam_flag("wsync", Opt_wsync), 104 fsparam_flag("noalign", Opt_noalign), 105 fsparam_flag("swalloc", Opt_swalloc), 106 fsparam_u32("sunit", Opt_sunit), 107 fsparam_u32("swidth", Opt_swidth), 108 fsparam_flag("nouuid", Opt_nouuid), 109 fsparam_flag("grpid", Opt_grpid), 110 fsparam_flag("nogrpid", Opt_nogrpid), 111 fsparam_flag("bsdgroups", Opt_bsdgroups), 112 fsparam_flag("sysvgroups", Opt_sysvgroups), 113 fsparam_string("allocsize", Opt_allocsize), 114 fsparam_flag("norecovery", Opt_norecovery), 115 fsparam_flag("inode64", Opt_inode64), 116 fsparam_flag("inode32", Opt_inode32), 117 fsparam_flag("ikeep", Opt_ikeep), 118 fsparam_flag("noikeep", Opt_noikeep), 119 fsparam_flag("largeio", Opt_largeio), 120 fsparam_flag("nolargeio", Opt_nolargeio), 121 fsparam_flag("attr2", Opt_attr2), 122 fsparam_flag("noattr2", Opt_noattr2), 123 fsparam_flag("filestreams", Opt_filestreams), 124 fsparam_flag("quota", Opt_quota), 125 fsparam_flag("noquota", Opt_noquota), 126 fsparam_flag("usrquota", Opt_usrquota), 127 fsparam_flag("grpquota", Opt_grpquota), 128 fsparam_flag("prjquota", Opt_prjquota), 129 fsparam_flag("uquota", Opt_uquota), 130 fsparam_flag("gquota", Opt_gquota), 131 fsparam_flag("pquota", Opt_pquota), 132 fsparam_flag("uqnoenforce", Opt_uqnoenforce), 133 fsparam_flag("gqnoenforce", Opt_gqnoenforce), 134 fsparam_flag("pqnoenforce", Opt_pqnoenforce), 135 fsparam_flag("qnoenforce", Opt_qnoenforce), 136 fsparam_flag("discard", Opt_discard), 137 fsparam_flag("nodiscard", Opt_nodiscard), 138 fsparam_flag("dax", Opt_dax), 139 fsparam_enum("dax", Opt_dax_enum, dax_param_enums), 140 {} 141 }; 142 143 struct proc_xfs_info { 144 uint64_t flag; 145 char *str; 146 }; 147 148 static int 149 xfs_fs_show_options( 150 struct seq_file *m, 151 struct dentry *root) 152 { 153 static struct proc_xfs_info xfs_info_set[] = { 154 /* the few simple ones we can get from the mount struct */ 155 { XFS_MOUNT_IKEEP, ",ikeep" }, 156 { XFS_MOUNT_WSYNC, ",wsync" }, 157 { XFS_MOUNT_NOALIGN, ",noalign" }, 158 { XFS_MOUNT_SWALLOC, ",swalloc" }, 159 { XFS_MOUNT_NOUUID, ",nouuid" }, 160 { XFS_MOUNT_NORECOVERY, ",norecovery" }, 161 { XFS_MOUNT_ATTR2, ",attr2" }, 162 { XFS_MOUNT_FILESTREAMS, ",filestreams" }, 163 { XFS_MOUNT_GRPID, ",grpid" }, 164 { XFS_MOUNT_DISCARD, ",discard" }, 165 { XFS_MOUNT_LARGEIO, ",largeio" }, 166 { XFS_MOUNT_DAX_ALWAYS, ",dax=always" }, 167 { XFS_MOUNT_DAX_NEVER, ",dax=never" }, 168 { 0, NULL } 169 }; 170 struct xfs_mount *mp = XFS_M(root->d_sb); 171 struct proc_xfs_info *xfs_infop; 172 173 for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) { 174 if (mp->m_flags & xfs_infop->flag) 175 seq_puts(m, xfs_infop->str); 176 } 177 178 seq_printf(m, ",inode%d", 179 (mp->m_flags & XFS_MOUNT_SMALL_INUMS) ? 32 : 64); 180 181 if (mp->m_flags & XFS_MOUNT_ALLOCSIZE) 182 seq_printf(m, ",allocsize=%dk", 183 (1 << mp->m_allocsize_log) >> 10); 184 185 if (mp->m_logbufs > 0) 186 seq_printf(m, ",logbufs=%d", mp->m_logbufs); 187 if (mp->m_logbsize > 0) 188 seq_printf(m, ",logbsize=%dk", mp->m_logbsize >> 10); 189 190 if (mp->m_logname) 191 seq_show_option(m, "logdev", mp->m_logname); 192 if (mp->m_rtname) 193 seq_show_option(m, "rtdev", mp->m_rtname); 194 195 if (mp->m_dalign > 0) 196 seq_printf(m, ",sunit=%d", 197 (int)XFS_FSB_TO_BB(mp, mp->m_dalign)); 198 if (mp->m_swidth > 0) 199 seq_printf(m, ",swidth=%d", 200 (int)XFS_FSB_TO_BB(mp, mp->m_swidth)); 201 202 if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD)) 203 seq_puts(m, ",usrquota"); 204 else if (mp->m_qflags & XFS_UQUOTA_ACCT) 205 seq_puts(m, ",uqnoenforce"); 206 207 if (mp->m_qflags & XFS_PQUOTA_ACCT) { 208 if (mp->m_qflags & XFS_PQUOTA_ENFD) 209 seq_puts(m, ",prjquota"); 210 else 211 seq_puts(m, ",pqnoenforce"); 212 } 213 if (mp->m_qflags & XFS_GQUOTA_ACCT) { 214 if (mp->m_qflags & XFS_GQUOTA_ENFD) 215 seq_puts(m, ",grpquota"); 216 else 217 seq_puts(m, ",gqnoenforce"); 218 } 219 220 if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT)) 221 seq_puts(m, ",noquota"); 222 223 return 0; 224 } 225 226 /* 227 * Set parameters for inode allocation heuristics, taking into account 228 * filesystem size and inode32/inode64 mount options; i.e. specifically 229 * whether or not XFS_MOUNT_SMALL_INUMS is set. 230 * 231 * Inode allocation patterns are altered only if inode32 is requested 232 * (XFS_MOUNT_SMALL_INUMS), and the filesystem is sufficiently large. 233 * If altered, XFS_MOUNT_32BITINODES is set as well. 234 * 235 * An agcount independent of that in the mount structure is provided 236 * because in the growfs case, mp->m_sb.sb_agcount is not yet updated 237 * to the potentially higher ag count. 238 * 239 * Returns the maximum AG index which may contain inodes. 240 */ 241 xfs_agnumber_t 242 xfs_set_inode_alloc( 243 struct xfs_mount *mp, 244 xfs_agnumber_t agcount) 245 { 246 xfs_agnumber_t index; 247 xfs_agnumber_t maxagi = 0; 248 xfs_sb_t *sbp = &mp->m_sb; 249 xfs_agnumber_t max_metadata; 250 xfs_agino_t agino; 251 xfs_ino_t ino; 252 253 /* 254 * Calculate how much should be reserved for inodes to meet 255 * the max inode percentage. Used only for inode32. 256 */ 257 if (M_IGEO(mp)->maxicount) { 258 uint64_t icount; 259 260 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 261 do_div(icount, 100); 262 icount += sbp->sb_agblocks - 1; 263 do_div(icount, sbp->sb_agblocks); 264 max_metadata = icount; 265 } else { 266 max_metadata = agcount; 267 } 268 269 /* Get the last possible inode in the filesystem */ 270 agino = XFS_AGB_TO_AGINO(mp, sbp->sb_agblocks - 1); 271 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 272 273 /* 274 * If user asked for no more than 32-bit inodes, and the fs is 275 * sufficiently large, set XFS_MOUNT_32BITINODES if we must alter 276 * the allocator to accommodate the request. 277 */ 278 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) 279 mp->m_flags |= XFS_MOUNT_32BITINODES; 280 else 281 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 282 283 for (index = 0; index < agcount; index++) { 284 struct xfs_perag *pag; 285 286 ino = XFS_AGINO_TO_INO(mp, index, agino); 287 288 pag = xfs_perag_get(mp, index); 289 290 if (mp->m_flags & XFS_MOUNT_32BITINODES) { 291 if (ino > XFS_MAXINUMBER_32) { 292 pag->pagi_inodeok = 0; 293 pag->pagf_metadata = 0; 294 } else { 295 pag->pagi_inodeok = 1; 296 maxagi++; 297 if (index < max_metadata) 298 pag->pagf_metadata = 1; 299 else 300 pag->pagf_metadata = 0; 301 } 302 } else { 303 pag->pagi_inodeok = 1; 304 pag->pagf_metadata = 0; 305 } 306 307 xfs_perag_put(pag); 308 } 309 310 return (mp->m_flags & XFS_MOUNT_32BITINODES) ? maxagi : agcount; 311 } 312 313 STATIC int 314 xfs_blkdev_get( 315 xfs_mount_t *mp, 316 const char *name, 317 struct block_device **bdevp) 318 { 319 int error = 0; 320 321 *bdevp = blkdev_get_by_path(name, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 322 mp); 323 if (IS_ERR(*bdevp)) { 324 error = PTR_ERR(*bdevp); 325 xfs_warn(mp, "Invalid device [%s], error=%d", name, error); 326 } 327 328 return error; 329 } 330 331 STATIC void 332 xfs_blkdev_put( 333 struct block_device *bdev) 334 { 335 if (bdev) 336 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 337 } 338 339 void 340 xfs_blkdev_issue_flush( 341 xfs_buftarg_t *buftarg) 342 { 343 blkdev_issue_flush(buftarg->bt_bdev, GFP_NOFS); 344 } 345 346 STATIC void 347 xfs_close_devices( 348 struct xfs_mount *mp) 349 { 350 struct dax_device *dax_ddev = mp->m_ddev_targp->bt_daxdev; 351 352 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { 353 struct block_device *logdev = mp->m_logdev_targp->bt_bdev; 354 struct dax_device *dax_logdev = mp->m_logdev_targp->bt_daxdev; 355 356 xfs_free_buftarg(mp->m_logdev_targp); 357 xfs_blkdev_put(logdev); 358 fs_put_dax(dax_logdev); 359 } 360 if (mp->m_rtdev_targp) { 361 struct block_device *rtdev = mp->m_rtdev_targp->bt_bdev; 362 struct dax_device *dax_rtdev = mp->m_rtdev_targp->bt_daxdev; 363 364 xfs_free_buftarg(mp->m_rtdev_targp); 365 xfs_blkdev_put(rtdev); 366 fs_put_dax(dax_rtdev); 367 } 368 xfs_free_buftarg(mp->m_ddev_targp); 369 fs_put_dax(dax_ddev); 370 } 371 372 /* 373 * The file system configurations are: 374 * (1) device (partition) with data and internal log 375 * (2) logical volume with data and log subvolumes. 376 * (3) logical volume with data, log, and realtime subvolumes. 377 * 378 * We only have to handle opening the log and realtime volumes here if 379 * they are present. The data subvolume has already been opened by 380 * get_sb_bdev() and is stored in sb->s_bdev. 381 */ 382 STATIC int 383 xfs_open_devices( 384 struct xfs_mount *mp) 385 { 386 struct block_device *ddev = mp->m_super->s_bdev; 387 struct dax_device *dax_ddev = fs_dax_get_by_bdev(ddev); 388 struct dax_device *dax_logdev = NULL, *dax_rtdev = NULL; 389 struct block_device *logdev = NULL, *rtdev = NULL; 390 int error; 391 392 /* 393 * Open real time and log devices - order is important. 394 */ 395 if (mp->m_logname) { 396 error = xfs_blkdev_get(mp, mp->m_logname, &logdev); 397 if (error) 398 goto out; 399 dax_logdev = fs_dax_get_by_bdev(logdev); 400 } 401 402 if (mp->m_rtname) { 403 error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev); 404 if (error) 405 goto out_close_logdev; 406 407 if (rtdev == ddev || rtdev == logdev) { 408 xfs_warn(mp, 409 "Cannot mount filesystem with identical rtdev and ddev/logdev."); 410 error = -EINVAL; 411 goto out_close_rtdev; 412 } 413 dax_rtdev = fs_dax_get_by_bdev(rtdev); 414 } 415 416 /* 417 * Setup xfs_mount buffer target pointers 418 */ 419 error = -ENOMEM; 420 mp->m_ddev_targp = xfs_alloc_buftarg(mp, ddev, dax_ddev); 421 if (!mp->m_ddev_targp) 422 goto out_close_rtdev; 423 424 if (rtdev) { 425 mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev, dax_rtdev); 426 if (!mp->m_rtdev_targp) 427 goto out_free_ddev_targ; 428 } 429 430 if (logdev && logdev != ddev) { 431 mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev, dax_logdev); 432 if (!mp->m_logdev_targp) 433 goto out_free_rtdev_targ; 434 } else { 435 mp->m_logdev_targp = mp->m_ddev_targp; 436 } 437 438 return 0; 439 440 out_free_rtdev_targ: 441 if (mp->m_rtdev_targp) 442 xfs_free_buftarg(mp->m_rtdev_targp); 443 out_free_ddev_targ: 444 xfs_free_buftarg(mp->m_ddev_targp); 445 out_close_rtdev: 446 xfs_blkdev_put(rtdev); 447 fs_put_dax(dax_rtdev); 448 out_close_logdev: 449 if (logdev && logdev != ddev) { 450 xfs_blkdev_put(logdev); 451 fs_put_dax(dax_logdev); 452 } 453 out: 454 fs_put_dax(dax_ddev); 455 return error; 456 } 457 458 /* 459 * Setup xfs_mount buffer target pointers based on superblock 460 */ 461 STATIC int 462 xfs_setup_devices( 463 struct xfs_mount *mp) 464 { 465 int error; 466 467 error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_sectsize); 468 if (error) 469 return error; 470 471 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { 472 unsigned int log_sector_size = BBSIZE; 473 474 if (xfs_sb_version_hassector(&mp->m_sb)) 475 log_sector_size = mp->m_sb.sb_logsectsize; 476 error = xfs_setsize_buftarg(mp->m_logdev_targp, 477 log_sector_size); 478 if (error) 479 return error; 480 } 481 if (mp->m_rtdev_targp) { 482 error = xfs_setsize_buftarg(mp->m_rtdev_targp, 483 mp->m_sb.sb_sectsize); 484 if (error) 485 return error; 486 } 487 488 return 0; 489 } 490 491 STATIC int 492 xfs_init_mount_workqueues( 493 struct xfs_mount *mp) 494 { 495 mp->m_buf_workqueue = alloc_workqueue("xfs-buf/%s", 496 WQ_MEM_RECLAIM|WQ_FREEZABLE, 1, mp->m_super->s_id); 497 if (!mp->m_buf_workqueue) 498 goto out; 499 500 mp->m_unwritten_workqueue = alloc_workqueue("xfs-conv/%s", 501 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id); 502 if (!mp->m_unwritten_workqueue) 503 goto out_destroy_buf; 504 505 mp->m_cil_workqueue = alloc_workqueue("xfs-cil/%s", 506 WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND, 507 0, mp->m_super->s_id); 508 if (!mp->m_cil_workqueue) 509 goto out_destroy_unwritten; 510 511 mp->m_reclaim_workqueue = alloc_workqueue("xfs-reclaim/%s", 512 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id); 513 if (!mp->m_reclaim_workqueue) 514 goto out_destroy_cil; 515 516 mp->m_eofblocks_workqueue = alloc_workqueue("xfs-eofblocks/%s", 517 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id); 518 if (!mp->m_eofblocks_workqueue) 519 goto out_destroy_reclaim; 520 521 mp->m_sync_workqueue = alloc_workqueue("xfs-sync/%s", WQ_FREEZABLE, 0, 522 mp->m_super->s_id); 523 if (!mp->m_sync_workqueue) 524 goto out_destroy_eofb; 525 526 return 0; 527 528 out_destroy_eofb: 529 destroy_workqueue(mp->m_eofblocks_workqueue); 530 out_destroy_reclaim: 531 destroy_workqueue(mp->m_reclaim_workqueue); 532 out_destroy_cil: 533 destroy_workqueue(mp->m_cil_workqueue); 534 out_destroy_unwritten: 535 destroy_workqueue(mp->m_unwritten_workqueue); 536 out_destroy_buf: 537 destroy_workqueue(mp->m_buf_workqueue); 538 out: 539 return -ENOMEM; 540 } 541 542 STATIC void 543 xfs_destroy_mount_workqueues( 544 struct xfs_mount *mp) 545 { 546 destroy_workqueue(mp->m_sync_workqueue); 547 destroy_workqueue(mp->m_eofblocks_workqueue); 548 destroy_workqueue(mp->m_reclaim_workqueue); 549 destroy_workqueue(mp->m_cil_workqueue); 550 destroy_workqueue(mp->m_unwritten_workqueue); 551 destroy_workqueue(mp->m_buf_workqueue); 552 } 553 554 static void 555 xfs_flush_inodes_worker( 556 struct work_struct *work) 557 { 558 struct xfs_mount *mp = container_of(work, struct xfs_mount, 559 m_flush_inodes_work); 560 struct super_block *sb = mp->m_super; 561 562 if (down_read_trylock(&sb->s_umount)) { 563 sync_inodes_sb(sb); 564 up_read(&sb->s_umount); 565 } 566 } 567 568 /* 569 * Flush all dirty data to disk. Must not be called while holding an XFS_ILOCK 570 * or a page lock. We use sync_inodes_sb() here to ensure we block while waiting 571 * for IO to complete so that we effectively throttle multiple callers to the 572 * rate at which IO is completing. 573 */ 574 void 575 xfs_flush_inodes( 576 struct xfs_mount *mp) 577 { 578 /* 579 * If flush_work() returns true then that means we waited for a flush 580 * which was already in progress. Don't bother running another scan. 581 */ 582 if (flush_work(&mp->m_flush_inodes_work)) 583 return; 584 585 queue_work(mp->m_sync_workqueue, &mp->m_flush_inodes_work); 586 flush_work(&mp->m_flush_inodes_work); 587 } 588 589 /* Catch misguided souls that try to use this interface on XFS */ 590 STATIC struct inode * 591 xfs_fs_alloc_inode( 592 struct super_block *sb) 593 { 594 BUG(); 595 return NULL; 596 } 597 598 #ifdef DEBUG 599 static void 600 xfs_check_delalloc( 601 struct xfs_inode *ip, 602 int whichfork) 603 { 604 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 605 struct xfs_bmbt_irec got; 606 struct xfs_iext_cursor icur; 607 608 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got)) 609 return; 610 do { 611 if (isnullstartblock(got.br_startblock)) { 612 xfs_warn(ip->i_mount, 613 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]", 614 ip->i_ino, 615 whichfork == XFS_DATA_FORK ? "data" : "cow", 616 got.br_startoff, got.br_blockcount); 617 } 618 } while (xfs_iext_next_extent(ifp, &icur, &got)); 619 } 620 #else 621 #define xfs_check_delalloc(ip, whichfork) do { } while (0) 622 #endif 623 624 /* 625 * Now that the generic code is guaranteed not to be accessing 626 * the linux inode, we can inactivate and reclaim the inode. 627 */ 628 STATIC void 629 xfs_fs_destroy_inode( 630 struct inode *inode) 631 { 632 struct xfs_inode *ip = XFS_I(inode); 633 634 trace_xfs_destroy_inode(ip); 635 636 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 637 XFS_STATS_INC(ip->i_mount, vn_rele); 638 XFS_STATS_INC(ip->i_mount, vn_remove); 639 640 xfs_inactive(ip); 641 642 if (!XFS_FORCED_SHUTDOWN(ip->i_mount) && ip->i_delayed_blks) { 643 xfs_check_delalloc(ip, XFS_DATA_FORK); 644 xfs_check_delalloc(ip, XFS_COW_FORK); 645 ASSERT(0); 646 } 647 648 XFS_STATS_INC(ip->i_mount, vn_reclaim); 649 650 /* 651 * We should never get here with one of the reclaim flags already set. 652 */ 653 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIMABLE)); 654 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM)); 655 656 /* 657 * We always use background reclaim here because even if the 658 * inode is clean, it still may be under IO and hence we have 659 * to take the flush lock. The background reclaim path handles 660 * this more efficiently than we can here, so simply let background 661 * reclaim tear down all inodes. 662 */ 663 xfs_inode_set_reclaim_tag(ip); 664 } 665 666 static void 667 xfs_fs_dirty_inode( 668 struct inode *inode, 669 int flag) 670 { 671 struct xfs_inode *ip = XFS_I(inode); 672 struct xfs_mount *mp = ip->i_mount; 673 struct xfs_trans *tp; 674 675 if (!(inode->i_sb->s_flags & SB_LAZYTIME)) 676 return; 677 if (flag != I_DIRTY_SYNC || !(inode->i_state & I_DIRTY_TIME)) 678 return; 679 680 if (xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp)) 681 return; 682 xfs_ilock(ip, XFS_ILOCK_EXCL); 683 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 684 xfs_trans_log_inode(tp, ip, XFS_ILOG_TIMESTAMP); 685 xfs_trans_commit(tp); 686 } 687 688 /* 689 * Slab object creation initialisation for the XFS inode. 690 * This covers only the idempotent fields in the XFS inode; 691 * all other fields need to be initialised on allocation 692 * from the slab. This avoids the need to repeatedly initialise 693 * fields in the xfs inode that left in the initialise state 694 * when freeing the inode. 695 */ 696 STATIC void 697 xfs_fs_inode_init_once( 698 void *inode) 699 { 700 struct xfs_inode *ip = inode; 701 702 memset(ip, 0, sizeof(struct xfs_inode)); 703 704 /* vfs inode */ 705 inode_init_once(VFS_I(ip)); 706 707 /* xfs inode */ 708 atomic_set(&ip->i_pincount, 0); 709 spin_lock_init(&ip->i_flags_lock); 710 711 mrlock_init(&ip->i_mmaplock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER, 712 "xfsino", ip->i_ino); 713 mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER, 714 "xfsino", ip->i_ino); 715 } 716 717 /* 718 * We do an unlocked check for XFS_IDONTCACHE here because we are already 719 * serialised against cache hits here via the inode->i_lock and igrab() in 720 * xfs_iget_cache_hit(). Hence a lookup that might clear this flag will not be 721 * racing with us, and it avoids needing to grab a spinlock here for every inode 722 * we drop the final reference on. 723 */ 724 STATIC int 725 xfs_fs_drop_inode( 726 struct inode *inode) 727 { 728 struct xfs_inode *ip = XFS_I(inode); 729 730 /* 731 * If this unlinked inode is in the middle of recovery, don't 732 * drop the inode just yet; log recovery will take care of 733 * that. See the comment for this inode flag. 734 */ 735 if (ip->i_flags & XFS_IRECOVERY) { 736 ASSERT(ip->i_mount->m_log->l_flags & XLOG_RECOVERY_NEEDED); 737 return 0; 738 } 739 740 return generic_drop_inode(inode); 741 } 742 743 static void 744 xfs_mount_free( 745 struct xfs_mount *mp) 746 { 747 kfree(mp->m_rtname); 748 kfree(mp->m_logname); 749 kmem_free(mp); 750 } 751 752 STATIC int 753 xfs_fs_sync_fs( 754 struct super_block *sb, 755 int wait) 756 { 757 struct xfs_mount *mp = XFS_M(sb); 758 759 /* 760 * Doing anything during the async pass would be counterproductive. 761 */ 762 if (!wait) 763 return 0; 764 765 xfs_log_force(mp, XFS_LOG_SYNC); 766 if (laptop_mode) { 767 /* 768 * The disk must be active because we're syncing. 769 * We schedule log work now (now that the disk is 770 * active) instead of later (when it might not be). 771 */ 772 flush_delayed_work(&mp->m_log->l_work); 773 } 774 775 return 0; 776 } 777 778 STATIC int 779 xfs_fs_statfs( 780 struct dentry *dentry, 781 struct kstatfs *statp) 782 { 783 struct xfs_mount *mp = XFS_M(dentry->d_sb); 784 xfs_sb_t *sbp = &mp->m_sb; 785 struct xfs_inode *ip = XFS_I(d_inode(dentry)); 786 uint64_t fakeinos, id; 787 uint64_t icount; 788 uint64_t ifree; 789 uint64_t fdblocks; 790 xfs_extlen_t lsize; 791 int64_t ffree; 792 793 statp->f_type = XFS_SUPER_MAGIC; 794 statp->f_namelen = MAXNAMELEN - 1; 795 796 id = huge_encode_dev(mp->m_ddev_targp->bt_dev); 797 statp->f_fsid.val[0] = (u32)id; 798 statp->f_fsid.val[1] = (u32)(id >> 32); 799 800 icount = percpu_counter_sum(&mp->m_icount); 801 ifree = percpu_counter_sum(&mp->m_ifree); 802 fdblocks = percpu_counter_sum(&mp->m_fdblocks); 803 804 spin_lock(&mp->m_sb_lock); 805 statp->f_bsize = sbp->sb_blocksize; 806 lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0; 807 statp->f_blocks = sbp->sb_dblocks - lsize; 808 spin_unlock(&mp->m_sb_lock); 809 810 /* make sure statp->f_bfree does not underflow */ 811 statp->f_bfree = max_t(int64_t, fdblocks - mp->m_alloc_set_aside, 0); 812 statp->f_bavail = statp->f_bfree; 813 814 fakeinos = XFS_FSB_TO_INO(mp, statp->f_bfree); 815 statp->f_files = min(icount + fakeinos, (uint64_t)XFS_MAXINUMBER); 816 if (M_IGEO(mp)->maxicount) 817 statp->f_files = min_t(typeof(statp->f_files), 818 statp->f_files, 819 M_IGEO(mp)->maxicount); 820 821 /* If sb_icount overshot maxicount, report actual allocation */ 822 statp->f_files = max_t(typeof(statp->f_files), 823 statp->f_files, 824 sbp->sb_icount); 825 826 /* make sure statp->f_ffree does not underflow */ 827 ffree = statp->f_files - (icount - ifree); 828 statp->f_ffree = max_t(int64_t, ffree, 0); 829 830 831 if ((ip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 832 ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))) == 833 (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD)) 834 xfs_qm_statvfs(ip, statp); 835 836 if (XFS_IS_REALTIME_MOUNT(mp) && 837 (ip->i_d.di_flags & (XFS_DIFLAG_RTINHERIT | XFS_DIFLAG_REALTIME))) { 838 statp->f_blocks = sbp->sb_rblocks; 839 statp->f_bavail = statp->f_bfree = 840 sbp->sb_frextents * sbp->sb_rextsize; 841 } 842 843 return 0; 844 } 845 846 STATIC void 847 xfs_save_resvblks(struct xfs_mount *mp) 848 { 849 uint64_t resblks = 0; 850 851 mp->m_resblks_save = mp->m_resblks; 852 xfs_reserve_blocks(mp, &resblks, NULL); 853 } 854 855 STATIC void 856 xfs_restore_resvblks(struct xfs_mount *mp) 857 { 858 uint64_t resblks; 859 860 if (mp->m_resblks_save) { 861 resblks = mp->m_resblks_save; 862 mp->m_resblks_save = 0; 863 } else 864 resblks = xfs_default_resblks(mp); 865 866 xfs_reserve_blocks(mp, &resblks, NULL); 867 } 868 869 /* 870 * Trigger writeback of all the dirty metadata in the file system. 871 * 872 * This ensures that the metadata is written to their location on disk rather 873 * than just existing in transactions in the log. This means after a quiesce 874 * there is no log replay required to write the inodes to disk - this is the 875 * primary difference between a sync and a quiesce. 876 * 877 * We cancel log work early here to ensure all transactions the log worker may 878 * run have finished before we clean up and log the superblock and write an 879 * unmount record. The unfreeze process is responsible for restarting the log 880 * worker correctly. 881 */ 882 void 883 xfs_quiesce_attr( 884 struct xfs_mount *mp) 885 { 886 int error = 0; 887 888 cancel_delayed_work_sync(&mp->m_log->l_work); 889 890 /* force the log to unpin objects from the now complete transactions */ 891 xfs_log_force(mp, XFS_LOG_SYNC); 892 893 894 /* Push the superblock and write an unmount record */ 895 error = xfs_log_sbcount(mp); 896 if (error) 897 xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. " 898 "Frozen image may not be consistent."); 899 xfs_log_quiesce(mp); 900 } 901 902 /* 903 * Second stage of a freeze. The data is already frozen so we only 904 * need to take care of the metadata. Once that's done sync the superblock 905 * to the log to dirty it in case of a crash while frozen. This ensures that we 906 * will recover the unlinked inode lists on the next mount. 907 */ 908 STATIC int 909 xfs_fs_freeze( 910 struct super_block *sb) 911 { 912 struct xfs_mount *mp = XFS_M(sb); 913 unsigned int flags; 914 int ret; 915 916 /* 917 * The filesystem is now frozen far enough that memory reclaim 918 * cannot safely operate on the filesystem. Hence we need to 919 * set a GFP_NOFS context here to avoid recursion deadlocks. 920 */ 921 flags = memalloc_nofs_save(); 922 xfs_stop_block_reaping(mp); 923 xfs_save_resvblks(mp); 924 xfs_quiesce_attr(mp); 925 ret = xfs_sync_sb(mp, true); 926 memalloc_nofs_restore(flags); 927 return ret; 928 } 929 930 STATIC int 931 xfs_fs_unfreeze( 932 struct super_block *sb) 933 { 934 struct xfs_mount *mp = XFS_M(sb); 935 936 xfs_restore_resvblks(mp); 937 xfs_log_work_queue(mp); 938 xfs_start_block_reaping(mp); 939 return 0; 940 } 941 942 /* 943 * This function fills in xfs_mount_t fields based on mount args. 944 * Note: the superblock _has_ now been read in. 945 */ 946 STATIC int 947 xfs_finish_flags( 948 struct xfs_mount *mp) 949 { 950 int ronly = (mp->m_flags & XFS_MOUNT_RDONLY); 951 952 /* Fail a mount where the logbuf is smaller than the log stripe */ 953 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 954 if (mp->m_logbsize <= 0 && 955 mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) { 956 mp->m_logbsize = mp->m_sb.sb_logsunit; 957 } else if (mp->m_logbsize > 0 && 958 mp->m_logbsize < mp->m_sb.sb_logsunit) { 959 xfs_warn(mp, 960 "logbuf size must be greater than or equal to log stripe size"); 961 return -EINVAL; 962 } 963 } else { 964 /* Fail a mount if the logbuf is larger than 32K */ 965 if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) { 966 xfs_warn(mp, 967 "logbuf size for version 1 logs must be 16K or 32K"); 968 return -EINVAL; 969 } 970 } 971 972 /* 973 * V5 filesystems always use attr2 format for attributes. 974 */ 975 if (xfs_sb_version_hascrc(&mp->m_sb) && 976 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 977 xfs_warn(mp, "Cannot mount a V5 filesystem as noattr2. " 978 "attr2 is always enabled for V5 filesystems."); 979 return -EINVAL; 980 } 981 982 /* 983 * mkfs'ed attr2 will turn on attr2 mount unless explicitly 984 * told by noattr2 to turn it off 985 */ 986 if (xfs_sb_version_hasattr2(&mp->m_sb) && 987 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 988 mp->m_flags |= XFS_MOUNT_ATTR2; 989 990 /* 991 * prohibit r/w mounts of read-only filesystems 992 */ 993 if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) { 994 xfs_warn(mp, 995 "cannot mount a read-only filesystem as read-write"); 996 return -EROFS; 997 } 998 999 if ((mp->m_qflags & (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE)) && 1000 (mp->m_qflags & (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE)) && 1001 !xfs_sb_version_has_pquotino(&mp->m_sb)) { 1002 xfs_warn(mp, 1003 "Super block does not support project and group quota together"); 1004 return -EINVAL; 1005 } 1006 1007 return 0; 1008 } 1009 1010 static int 1011 xfs_init_percpu_counters( 1012 struct xfs_mount *mp) 1013 { 1014 int error; 1015 1016 error = percpu_counter_init(&mp->m_icount, 0, GFP_KERNEL); 1017 if (error) 1018 return -ENOMEM; 1019 1020 error = percpu_counter_init(&mp->m_ifree, 0, GFP_KERNEL); 1021 if (error) 1022 goto free_icount; 1023 1024 error = percpu_counter_init(&mp->m_fdblocks, 0, GFP_KERNEL); 1025 if (error) 1026 goto free_ifree; 1027 1028 error = percpu_counter_init(&mp->m_delalloc_blks, 0, GFP_KERNEL); 1029 if (error) 1030 goto free_fdblocks; 1031 1032 return 0; 1033 1034 free_fdblocks: 1035 percpu_counter_destroy(&mp->m_fdblocks); 1036 free_ifree: 1037 percpu_counter_destroy(&mp->m_ifree); 1038 free_icount: 1039 percpu_counter_destroy(&mp->m_icount); 1040 return -ENOMEM; 1041 } 1042 1043 void 1044 xfs_reinit_percpu_counters( 1045 struct xfs_mount *mp) 1046 { 1047 percpu_counter_set(&mp->m_icount, mp->m_sb.sb_icount); 1048 percpu_counter_set(&mp->m_ifree, mp->m_sb.sb_ifree); 1049 percpu_counter_set(&mp->m_fdblocks, mp->m_sb.sb_fdblocks); 1050 } 1051 1052 static void 1053 xfs_destroy_percpu_counters( 1054 struct xfs_mount *mp) 1055 { 1056 percpu_counter_destroy(&mp->m_icount); 1057 percpu_counter_destroy(&mp->m_ifree); 1058 percpu_counter_destroy(&mp->m_fdblocks); 1059 ASSERT(XFS_FORCED_SHUTDOWN(mp) || 1060 percpu_counter_sum(&mp->m_delalloc_blks) == 0); 1061 percpu_counter_destroy(&mp->m_delalloc_blks); 1062 } 1063 1064 static void 1065 xfs_fs_put_super( 1066 struct super_block *sb) 1067 { 1068 struct xfs_mount *mp = XFS_M(sb); 1069 1070 /* if ->fill_super failed, we have no mount to tear down */ 1071 if (!sb->s_fs_info) 1072 return; 1073 1074 xfs_notice(mp, "Unmounting Filesystem"); 1075 xfs_filestream_unmount(mp); 1076 xfs_unmountfs(mp); 1077 1078 xfs_freesb(mp); 1079 free_percpu(mp->m_stats.xs_stats); 1080 xfs_destroy_percpu_counters(mp); 1081 xfs_destroy_mount_workqueues(mp); 1082 xfs_close_devices(mp); 1083 1084 sb->s_fs_info = NULL; 1085 xfs_mount_free(mp); 1086 } 1087 1088 static long 1089 xfs_fs_nr_cached_objects( 1090 struct super_block *sb, 1091 struct shrink_control *sc) 1092 { 1093 /* Paranoia: catch incorrect calls during mount setup or teardown */ 1094 if (WARN_ON_ONCE(!sb->s_fs_info)) 1095 return 0; 1096 return xfs_reclaim_inodes_count(XFS_M(sb)); 1097 } 1098 1099 static long 1100 xfs_fs_free_cached_objects( 1101 struct super_block *sb, 1102 struct shrink_control *sc) 1103 { 1104 return xfs_reclaim_inodes_nr(XFS_M(sb), sc->nr_to_scan); 1105 } 1106 1107 static const struct super_operations xfs_super_operations = { 1108 .alloc_inode = xfs_fs_alloc_inode, 1109 .destroy_inode = xfs_fs_destroy_inode, 1110 .dirty_inode = xfs_fs_dirty_inode, 1111 .drop_inode = xfs_fs_drop_inode, 1112 .put_super = xfs_fs_put_super, 1113 .sync_fs = xfs_fs_sync_fs, 1114 .freeze_fs = xfs_fs_freeze, 1115 .unfreeze_fs = xfs_fs_unfreeze, 1116 .statfs = xfs_fs_statfs, 1117 .show_options = xfs_fs_show_options, 1118 .nr_cached_objects = xfs_fs_nr_cached_objects, 1119 .free_cached_objects = xfs_fs_free_cached_objects, 1120 }; 1121 1122 static int 1123 suffix_kstrtoint( 1124 const char *s, 1125 unsigned int base, 1126 int *res) 1127 { 1128 int last, shift_left_factor = 0, _res; 1129 char *value; 1130 int ret = 0; 1131 1132 value = kstrdup(s, GFP_KERNEL); 1133 if (!value) 1134 return -ENOMEM; 1135 1136 last = strlen(value) - 1; 1137 if (value[last] == 'K' || value[last] == 'k') { 1138 shift_left_factor = 10; 1139 value[last] = '\0'; 1140 } 1141 if (value[last] == 'M' || value[last] == 'm') { 1142 shift_left_factor = 20; 1143 value[last] = '\0'; 1144 } 1145 if (value[last] == 'G' || value[last] == 'g') { 1146 shift_left_factor = 30; 1147 value[last] = '\0'; 1148 } 1149 1150 if (kstrtoint(value, base, &_res)) 1151 ret = -EINVAL; 1152 kfree(value); 1153 *res = _res << shift_left_factor; 1154 return ret; 1155 } 1156 1157 /* 1158 * Set mount state from a mount option. 1159 * 1160 * NOTE: mp->m_super is NULL here! 1161 */ 1162 static int 1163 xfs_fc_parse_param( 1164 struct fs_context *fc, 1165 struct fs_parameter *param) 1166 { 1167 struct xfs_mount *mp = fc->s_fs_info; 1168 struct fs_parse_result result; 1169 int size = 0; 1170 int opt; 1171 1172 opt = fs_parse(fc, xfs_fs_parameters, param, &result); 1173 if (opt < 0) 1174 return opt; 1175 1176 switch (opt) { 1177 case Opt_logbufs: 1178 mp->m_logbufs = result.uint_32; 1179 return 0; 1180 case Opt_logbsize: 1181 if (suffix_kstrtoint(param->string, 10, &mp->m_logbsize)) 1182 return -EINVAL; 1183 return 0; 1184 case Opt_logdev: 1185 kfree(mp->m_logname); 1186 mp->m_logname = kstrdup(param->string, GFP_KERNEL); 1187 if (!mp->m_logname) 1188 return -ENOMEM; 1189 return 0; 1190 case Opt_rtdev: 1191 kfree(mp->m_rtname); 1192 mp->m_rtname = kstrdup(param->string, GFP_KERNEL); 1193 if (!mp->m_rtname) 1194 return -ENOMEM; 1195 return 0; 1196 case Opt_allocsize: 1197 if (suffix_kstrtoint(param->string, 10, &size)) 1198 return -EINVAL; 1199 mp->m_allocsize_log = ffs(size) - 1; 1200 mp->m_flags |= XFS_MOUNT_ALLOCSIZE; 1201 return 0; 1202 case Opt_grpid: 1203 case Opt_bsdgroups: 1204 mp->m_flags |= XFS_MOUNT_GRPID; 1205 return 0; 1206 case Opt_nogrpid: 1207 case Opt_sysvgroups: 1208 mp->m_flags &= ~XFS_MOUNT_GRPID; 1209 return 0; 1210 case Opt_wsync: 1211 mp->m_flags |= XFS_MOUNT_WSYNC; 1212 return 0; 1213 case Opt_norecovery: 1214 mp->m_flags |= XFS_MOUNT_NORECOVERY; 1215 return 0; 1216 case Opt_noalign: 1217 mp->m_flags |= XFS_MOUNT_NOALIGN; 1218 return 0; 1219 case Opt_swalloc: 1220 mp->m_flags |= XFS_MOUNT_SWALLOC; 1221 return 0; 1222 case Opt_sunit: 1223 mp->m_dalign = result.uint_32; 1224 return 0; 1225 case Opt_swidth: 1226 mp->m_swidth = result.uint_32; 1227 return 0; 1228 case Opt_inode32: 1229 mp->m_flags |= XFS_MOUNT_SMALL_INUMS; 1230 return 0; 1231 case Opt_inode64: 1232 mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS; 1233 return 0; 1234 case Opt_nouuid: 1235 mp->m_flags |= XFS_MOUNT_NOUUID; 1236 return 0; 1237 case Opt_ikeep: 1238 mp->m_flags |= XFS_MOUNT_IKEEP; 1239 return 0; 1240 case Opt_noikeep: 1241 mp->m_flags &= ~XFS_MOUNT_IKEEP; 1242 return 0; 1243 case Opt_largeio: 1244 mp->m_flags |= XFS_MOUNT_LARGEIO; 1245 return 0; 1246 case Opt_nolargeio: 1247 mp->m_flags &= ~XFS_MOUNT_LARGEIO; 1248 return 0; 1249 case Opt_attr2: 1250 mp->m_flags |= XFS_MOUNT_ATTR2; 1251 return 0; 1252 case Opt_noattr2: 1253 mp->m_flags &= ~XFS_MOUNT_ATTR2; 1254 mp->m_flags |= XFS_MOUNT_NOATTR2; 1255 return 0; 1256 case Opt_filestreams: 1257 mp->m_flags |= XFS_MOUNT_FILESTREAMS; 1258 return 0; 1259 case Opt_noquota: 1260 mp->m_qflags &= ~XFS_ALL_QUOTA_ACCT; 1261 mp->m_qflags &= ~XFS_ALL_QUOTA_ENFD; 1262 mp->m_qflags &= ~XFS_ALL_QUOTA_ACTIVE; 1263 return 0; 1264 case Opt_quota: 1265 case Opt_uquota: 1266 case Opt_usrquota: 1267 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE | 1268 XFS_UQUOTA_ENFD); 1269 return 0; 1270 case Opt_qnoenforce: 1271 case Opt_uqnoenforce: 1272 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE); 1273 mp->m_qflags &= ~XFS_UQUOTA_ENFD; 1274 return 0; 1275 case Opt_pquota: 1276 case Opt_prjquota: 1277 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE | 1278 XFS_PQUOTA_ENFD); 1279 return 0; 1280 case Opt_pqnoenforce: 1281 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE); 1282 mp->m_qflags &= ~XFS_PQUOTA_ENFD; 1283 return 0; 1284 case Opt_gquota: 1285 case Opt_grpquota: 1286 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE | 1287 XFS_GQUOTA_ENFD); 1288 return 0; 1289 case Opt_gqnoenforce: 1290 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE); 1291 mp->m_qflags &= ~XFS_GQUOTA_ENFD; 1292 return 0; 1293 case Opt_discard: 1294 mp->m_flags |= XFS_MOUNT_DISCARD; 1295 return 0; 1296 case Opt_nodiscard: 1297 mp->m_flags &= ~XFS_MOUNT_DISCARD; 1298 return 0; 1299 #ifdef CONFIG_FS_DAX 1300 case Opt_dax: 1301 xfs_mount_set_dax_mode(mp, XFS_DAX_ALWAYS); 1302 return 0; 1303 case Opt_dax_enum: 1304 xfs_mount_set_dax_mode(mp, result.uint_32); 1305 return 0; 1306 #endif 1307 default: 1308 xfs_warn(mp, "unknown mount option [%s].", param->key); 1309 return -EINVAL; 1310 } 1311 1312 return 0; 1313 } 1314 1315 static int 1316 xfs_fc_validate_params( 1317 struct xfs_mount *mp) 1318 { 1319 /* 1320 * no recovery flag requires a read-only mount 1321 */ 1322 if ((mp->m_flags & XFS_MOUNT_NORECOVERY) && 1323 !(mp->m_flags & XFS_MOUNT_RDONLY)) { 1324 xfs_warn(mp, "no-recovery mounts must be read-only."); 1325 return -EINVAL; 1326 } 1327 1328 if ((mp->m_flags & XFS_MOUNT_NOALIGN) && 1329 (mp->m_dalign || mp->m_swidth)) { 1330 xfs_warn(mp, 1331 "sunit and swidth options incompatible with the noalign option"); 1332 return -EINVAL; 1333 } 1334 1335 if (!IS_ENABLED(CONFIG_XFS_QUOTA) && mp->m_qflags != 0) { 1336 xfs_warn(mp, "quota support not available in this kernel."); 1337 return -EINVAL; 1338 } 1339 1340 if ((mp->m_dalign && !mp->m_swidth) || 1341 (!mp->m_dalign && mp->m_swidth)) { 1342 xfs_warn(mp, "sunit and swidth must be specified together"); 1343 return -EINVAL; 1344 } 1345 1346 if (mp->m_dalign && (mp->m_swidth % mp->m_dalign != 0)) { 1347 xfs_warn(mp, 1348 "stripe width (%d) must be a multiple of the stripe unit (%d)", 1349 mp->m_swidth, mp->m_dalign); 1350 return -EINVAL; 1351 } 1352 1353 if (mp->m_logbufs != -1 && 1354 mp->m_logbufs != 0 && 1355 (mp->m_logbufs < XLOG_MIN_ICLOGS || 1356 mp->m_logbufs > XLOG_MAX_ICLOGS)) { 1357 xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]", 1358 mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS); 1359 return -EINVAL; 1360 } 1361 1362 if (mp->m_logbsize != -1 && 1363 mp->m_logbsize != 0 && 1364 (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE || 1365 mp->m_logbsize > XLOG_MAX_RECORD_BSIZE || 1366 !is_power_of_2(mp->m_logbsize))) { 1367 xfs_warn(mp, 1368 "invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]", 1369 mp->m_logbsize); 1370 return -EINVAL; 1371 } 1372 1373 if ((mp->m_flags & XFS_MOUNT_ALLOCSIZE) && 1374 (mp->m_allocsize_log > XFS_MAX_IO_LOG || 1375 mp->m_allocsize_log < XFS_MIN_IO_LOG)) { 1376 xfs_warn(mp, "invalid log iosize: %d [not %d-%d]", 1377 mp->m_allocsize_log, XFS_MIN_IO_LOG, XFS_MAX_IO_LOG); 1378 return -EINVAL; 1379 } 1380 1381 return 0; 1382 } 1383 1384 static int 1385 xfs_fc_fill_super( 1386 struct super_block *sb, 1387 struct fs_context *fc) 1388 { 1389 struct xfs_mount *mp = sb->s_fs_info; 1390 struct inode *root; 1391 int flags = 0, error; 1392 1393 mp->m_super = sb; 1394 1395 error = xfs_fc_validate_params(mp); 1396 if (error) 1397 goto out_free_names; 1398 1399 sb_min_blocksize(sb, BBSIZE); 1400 sb->s_xattr = xfs_xattr_handlers; 1401 sb->s_export_op = &xfs_export_operations; 1402 #ifdef CONFIG_XFS_QUOTA 1403 sb->s_qcop = &xfs_quotactl_operations; 1404 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 1405 #endif 1406 sb->s_op = &xfs_super_operations; 1407 1408 /* 1409 * Delay mount work if the debug hook is set. This is debug 1410 * instrumention to coordinate simulation of xfs mount failures with 1411 * VFS superblock operations 1412 */ 1413 if (xfs_globals.mount_delay) { 1414 xfs_notice(mp, "Delaying mount for %d seconds.", 1415 xfs_globals.mount_delay); 1416 msleep(xfs_globals.mount_delay * 1000); 1417 } 1418 1419 if (fc->sb_flags & SB_SILENT) 1420 flags |= XFS_MFSI_QUIET; 1421 1422 error = xfs_open_devices(mp); 1423 if (error) 1424 goto out_free_names; 1425 1426 error = xfs_init_mount_workqueues(mp); 1427 if (error) 1428 goto out_close_devices; 1429 1430 error = xfs_init_percpu_counters(mp); 1431 if (error) 1432 goto out_destroy_workqueues; 1433 1434 /* Allocate stats memory before we do operations that might use it */ 1435 mp->m_stats.xs_stats = alloc_percpu(struct xfsstats); 1436 if (!mp->m_stats.xs_stats) { 1437 error = -ENOMEM; 1438 goto out_destroy_counters; 1439 } 1440 1441 error = xfs_readsb(mp, flags); 1442 if (error) 1443 goto out_free_stats; 1444 1445 error = xfs_finish_flags(mp); 1446 if (error) 1447 goto out_free_sb; 1448 1449 error = xfs_setup_devices(mp); 1450 if (error) 1451 goto out_free_sb; 1452 1453 /* 1454 * XFS block mappings use 54 bits to store the logical block offset. 1455 * This should suffice to handle the maximum file size that the VFS 1456 * supports (currently 2^63 bytes on 64-bit and ULONG_MAX << PAGE_SHIFT 1457 * bytes on 32-bit), but as XFS and VFS have gotten the s_maxbytes 1458 * calculation wrong on 32-bit kernels in the past, we'll add a WARN_ON 1459 * to check this assertion. 1460 * 1461 * Avoid integer overflow by comparing the maximum bmbt offset to the 1462 * maximum pagecache offset in units of fs blocks. 1463 */ 1464 if (XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE) > XFS_MAX_FILEOFF) { 1465 xfs_warn(mp, 1466 "MAX_LFS_FILESIZE block offset (%llu) exceeds extent map maximum (%llu)!", 1467 XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE), 1468 XFS_MAX_FILEOFF); 1469 error = -EINVAL; 1470 goto out_free_sb; 1471 } 1472 1473 error = xfs_filestream_mount(mp); 1474 if (error) 1475 goto out_free_sb; 1476 1477 /* 1478 * we must configure the block size in the superblock before we run the 1479 * full mount process as the mount process can lookup and cache inodes. 1480 */ 1481 sb->s_magic = XFS_SUPER_MAGIC; 1482 sb->s_blocksize = mp->m_sb.sb_blocksize; 1483 sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1; 1484 sb->s_maxbytes = MAX_LFS_FILESIZE; 1485 sb->s_max_links = XFS_MAXLINK; 1486 sb->s_time_gran = 1; 1487 sb->s_time_min = S32_MIN; 1488 sb->s_time_max = S32_MAX; 1489 sb->s_iflags |= SB_I_CGROUPWB; 1490 1491 set_posix_acl_flag(sb); 1492 1493 /* version 5 superblocks support inode version counters. */ 1494 if (XFS_SB_VERSION_NUM(&mp->m_sb) == XFS_SB_VERSION_5) 1495 sb->s_flags |= SB_I_VERSION; 1496 1497 if (mp->m_flags & XFS_MOUNT_DAX_ALWAYS) { 1498 bool rtdev_is_dax = false, datadev_is_dax; 1499 1500 xfs_warn(mp, 1501 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1502 1503 datadev_is_dax = bdev_dax_supported(mp->m_ddev_targp->bt_bdev, 1504 sb->s_blocksize); 1505 if (mp->m_rtdev_targp) 1506 rtdev_is_dax = bdev_dax_supported( 1507 mp->m_rtdev_targp->bt_bdev, sb->s_blocksize); 1508 if (!rtdev_is_dax && !datadev_is_dax) { 1509 xfs_alert(mp, 1510 "DAX unsupported by block device. Turning off DAX."); 1511 xfs_mount_set_dax_mode(mp, XFS_DAX_NEVER); 1512 } 1513 if (xfs_sb_version_hasreflink(&mp->m_sb)) { 1514 xfs_alert(mp, 1515 "DAX and reflink cannot be used together!"); 1516 error = -EINVAL; 1517 goto out_filestream_unmount; 1518 } 1519 } 1520 1521 if (mp->m_flags & XFS_MOUNT_DISCARD) { 1522 struct request_queue *q = bdev_get_queue(sb->s_bdev); 1523 1524 if (!blk_queue_discard(q)) { 1525 xfs_warn(mp, "mounting with \"discard\" option, but " 1526 "the device does not support discard"); 1527 mp->m_flags &= ~XFS_MOUNT_DISCARD; 1528 } 1529 } 1530 1531 if (xfs_sb_version_hasreflink(&mp->m_sb)) { 1532 if (mp->m_sb.sb_rblocks) { 1533 xfs_alert(mp, 1534 "reflink not compatible with realtime device!"); 1535 error = -EINVAL; 1536 goto out_filestream_unmount; 1537 } 1538 1539 if (xfs_globals.always_cow) { 1540 xfs_info(mp, "using DEBUG-only always_cow mode."); 1541 mp->m_always_cow = true; 1542 } 1543 } 1544 1545 if (xfs_sb_version_hasrmapbt(&mp->m_sb) && mp->m_sb.sb_rblocks) { 1546 xfs_alert(mp, 1547 "reverse mapping btree not compatible with realtime device!"); 1548 error = -EINVAL; 1549 goto out_filestream_unmount; 1550 } 1551 1552 error = xfs_mountfs(mp); 1553 if (error) 1554 goto out_filestream_unmount; 1555 1556 root = igrab(VFS_I(mp->m_rootip)); 1557 if (!root) { 1558 error = -ENOENT; 1559 goto out_unmount; 1560 } 1561 sb->s_root = d_make_root(root); 1562 if (!sb->s_root) { 1563 error = -ENOMEM; 1564 goto out_unmount; 1565 } 1566 1567 return 0; 1568 1569 out_filestream_unmount: 1570 xfs_filestream_unmount(mp); 1571 out_free_sb: 1572 xfs_freesb(mp); 1573 out_free_stats: 1574 free_percpu(mp->m_stats.xs_stats); 1575 out_destroy_counters: 1576 xfs_destroy_percpu_counters(mp); 1577 out_destroy_workqueues: 1578 xfs_destroy_mount_workqueues(mp); 1579 out_close_devices: 1580 xfs_close_devices(mp); 1581 out_free_names: 1582 sb->s_fs_info = NULL; 1583 xfs_mount_free(mp); 1584 return error; 1585 1586 out_unmount: 1587 xfs_filestream_unmount(mp); 1588 xfs_unmountfs(mp); 1589 goto out_free_sb; 1590 } 1591 1592 static int 1593 xfs_fc_get_tree( 1594 struct fs_context *fc) 1595 { 1596 return get_tree_bdev(fc, xfs_fc_fill_super); 1597 } 1598 1599 static int 1600 xfs_remount_rw( 1601 struct xfs_mount *mp) 1602 { 1603 struct xfs_sb *sbp = &mp->m_sb; 1604 int error; 1605 1606 if (mp->m_flags & XFS_MOUNT_NORECOVERY) { 1607 xfs_warn(mp, 1608 "ro->rw transition prohibited on norecovery mount"); 1609 return -EINVAL; 1610 } 1611 1612 if (XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5 && 1613 xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { 1614 xfs_warn(mp, 1615 "ro->rw transition prohibited on unknown (0x%x) ro-compat filesystem", 1616 (sbp->sb_features_ro_compat & 1617 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); 1618 return -EINVAL; 1619 } 1620 1621 mp->m_flags &= ~XFS_MOUNT_RDONLY; 1622 1623 /* 1624 * If this is the first remount to writeable state we might have some 1625 * superblock changes to update. 1626 */ 1627 if (mp->m_update_sb) { 1628 error = xfs_sync_sb(mp, false); 1629 if (error) { 1630 xfs_warn(mp, "failed to write sb changes"); 1631 return error; 1632 } 1633 mp->m_update_sb = false; 1634 } 1635 1636 /* 1637 * Fill out the reserve pool if it is empty. Use the stashed value if 1638 * it is non-zero, otherwise go with the default. 1639 */ 1640 xfs_restore_resvblks(mp); 1641 xfs_log_work_queue(mp); 1642 1643 /* Recover any CoW blocks that never got remapped. */ 1644 error = xfs_reflink_recover_cow(mp); 1645 if (error) { 1646 xfs_err(mp, 1647 "Error %d recovering leftover CoW allocations.", error); 1648 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1649 return error; 1650 } 1651 xfs_start_block_reaping(mp); 1652 1653 /* Create the per-AG metadata reservation pool .*/ 1654 error = xfs_fs_reserve_ag_blocks(mp); 1655 if (error && error != -ENOSPC) 1656 return error; 1657 1658 return 0; 1659 } 1660 1661 static int 1662 xfs_remount_ro( 1663 struct xfs_mount *mp) 1664 { 1665 int error; 1666 1667 /* 1668 * Cancel background eofb scanning so it cannot race with the final 1669 * log force+buftarg wait and deadlock the remount. 1670 */ 1671 xfs_stop_block_reaping(mp); 1672 1673 /* Get rid of any leftover CoW reservations... */ 1674 error = xfs_icache_free_cowblocks(mp, NULL); 1675 if (error) { 1676 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1677 return error; 1678 } 1679 1680 /* Free the per-AG metadata reservation pool. */ 1681 error = xfs_fs_unreserve_ag_blocks(mp); 1682 if (error) { 1683 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1684 return error; 1685 } 1686 1687 /* 1688 * Before we sync the metadata, we need to free up the reserve block 1689 * pool so that the used block count in the superblock on disk is 1690 * correct at the end of the remount. Stash the current* reserve pool 1691 * size so that if we get remounted rw, we can return it to the same 1692 * size. 1693 */ 1694 xfs_save_resvblks(mp); 1695 1696 xfs_quiesce_attr(mp); 1697 mp->m_flags |= XFS_MOUNT_RDONLY; 1698 1699 return 0; 1700 } 1701 1702 /* 1703 * Logically we would return an error here to prevent users from believing 1704 * they might have changed mount options using remount which can't be changed. 1705 * 1706 * But unfortunately mount(8) adds all options from mtab and fstab to the mount 1707 * arguments in some cases so we can't blindly reject options, but have to 1708 * check for each specified option if it actually differs from the currently 1709 * set option and only reject it if that's the case. 1710 * 1711 * Until that is implemented we return success for every remount request, and 1712 * silently ignore all options that we can't actually change. 1713 */ 1714 static int 1715 xfs_fc_reconfigure( 1716 struct fs_context *fc) 1717 { 1718 struct xfs_mount *mp = XFS_M(fc->root->d_sb); 1719 struct xfs_mount *new_mp = fc->s_fs_info; 1720 xfs_sb_t *sbp = &mp->m_sb; 1721 int flags = fc->sb_flags; 1722 int error; 1723 1724 /* version 5 superblocks always support version counters. */ 1725 if (XFS_SB_VERSION_NUM(&mp->m_sb) == XFS_SB_VERSION_5) 1726 fc->sb_flags |= SB_I_VERSION; 1727 1728 error = xfs_fc_validate_params(new_mp); 1729 if (error) 1730 return error; 1731 1732 sync_filesystem(mp->m_super); 1733 1734 /* inode32 -> inode64 */ 1735 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && 1736 !(new_mp->m_flags & XFS_MOUNT_SMALL_INUMS)) { 1737 mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS; 1738 mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount); 1739 } 1740 1741 /* inode64 -> inode32 */ 1742 if (!(mp->m_flags & XFS_MOUNT_SMALL_INUMS) && 1743 (new_mp->m_flags & XFS_MOUNT_SMALL_INUMS)) { 1744 mp->m_flags |= XFS_MOUNT_SMALL_INUMS; 1745 mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount); 1746 } 1747 1748 /* ro -> rw */ 1749 if ((mp->m_flags & XFS_MOUNT_RDONLY) && !(flags & SB_RDONLY)) { 1750 error = xfs_remount_rw(mp); 1751 if (error) 1752 return error; 1753 } 1754 1755 /* rw -> ro */ 1756 if (!(mp->m_flags & XFS_MOUNT_RDONLY) && (flags & SB_RDONLY)) { 1757 error = xfs_remount_ro(mp); 1758 if (error) 1759 return error; 1760 } 1761 1762 return 0; 1763 } 1764 1765 static void xfs_fc_free( 1766 struct fs_context *fc) 1767 { 1768 struct xfs_mount *mp = fc->s_fs_info; 1769 1770 /* 1771 * mp is stored in the fs_context when it is initialized. 1772 * mp is transferred to the superblock on a successful mount, 1773 * but if an error occurs before the transfer we have to free 1774 * it here. 1775 */ 1776 if (mp) 1777 xfs_mount_free(mp); 1778 } 1779 1780 static const struct fs_context_operations xfs_context_ops = { 1781 .parse_param = xfs_fc_parse_param, 1782 .get_tree = xfs_fc_get_tree, 1783 .reconfigure = xfs_fc_reconfigure, 1784 .free = xfs_fc_free, 1785 }; 1786 1787 static int xfs_init_fs_context( 1788 struct fs_context *fc) 1789 { 1790 struct xfs_mount *mp; 1791 1792 mp = kmem_alloc(sizeof(struct xfs_mount), KM_ZERO); 1793 if (!mp) 1794 return -ENOMEM; 1795 1796 spin_lock_init(&mp->m_sb_lock); 1797 spin_lock_init(&mp->m_agirotor_lock); 1798 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 1799 spin_lock_init(&mp->m_perag_lock); 1800 mutex_init(&mp->m_growlock); 1801 INIT_WORK(&mp->m_flush_inodes_work, xfs_flush_inodes_worker); 1802 INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker); 1803 INIT_DELAYED_WORK(&mp->m_eofblocks_work, xfs_eofblocks_worker); 1804 INIT_DELAYED_WORK(&mp->m_cowblocks_work, xfs_cowblocks_worker); 1805 mp->m_kobj.kobject.kset = xfs_kset; 1806 /* 1807 * We don't create the finobt per-ag space reservation until after log 1808 * recovery, so we must set this to true so that an ifree transaction 1809 * started during log recovery will not depend on space reservations 1810 * for finobt expansion. 1811 */ 1812 mp->m_finobt_nores = true; 1813 1814 /* 1815 * These can be overridden by the mount option parsing. 1816 */ 1817 mp->m_logbufs = -1; 1818 mp->m_logbsize = -1; 1819 mp->m_allocsize_log = 16; /* 64k */ 1820 1821 /* 1822 * Copy binary VFS mount flags we are interested in. 1823 */ 1824 if (fc->sb_flags & SB_RDONLY) 1825 mp->m_flags |= XFS_MOUNT_RDONLY; 1826 if (fc->sb_flags & SB_DIRSYNC) 1827 mp->m_flags |= XFS_MOUNT_DIRSYNC; 1828 if (fc->sb_flags & SB_SYNCHRONOUS) 1829 mp->m_flags |= XFS_MOUNT_WSYNC; 1830 1831 fc->s_fs_info = mp; 1832 fc->ops = &xfs_context_ops; 1833 1834 return 0; 1835 } 1836 1837 static struct file_system_type xfs_fs_type = { 1838 .owner = THIS_MODULE, 1839 .name = "xfs", 1840 .init_fs_context = xfs_init_fs_context, 1841 .parameters = xfs_fs_parameters, 1842 .kill_sb = kill_block_super, 1843 .fs_flags = FS_REQUIRES_DEV, 1844 }; 1845 MODULE_ALIAS_FS("xfs"); 1846 1847 STATIC int __init 1848 xfs_init_zones(void) 1849 { 1850 xfs_log_ticket_zone = kmem_cache_create("xfs_log_ticket", 1851 sizeof(struct xlog_ticket), 1852 0, 0, NULL); 1853 if (!xfs_log_ticket_zone) 1854 goto out; 1855 1856 xfs_bmap_free_item_zone = kmem_cache_create("xfs_bmap_free_item", 1857 sizeof(struct xfs_extent_free_item), 1858 0, 0, NULL); 1859 if (!xfs_bmap_free_item_zone) 1860 goto out_destroy_log_ticket_zone; 1861 1862 xfs_btree_cur_zone = kmem_cache_create("xfs_btree_cur", 1863 sizeof(struct xfs_btree_cur), 1864 0, 0, NULL); 1865 if (!xfs_btree_cur_zone) 1866 goto out_destroy_bmap_free_item_zone; 1867 1868 xfs_da_state_zone = kmem_cache_create("xfs_da_state", 1869 sizeof(struct xfs_da_state), 1870 0, 0, NULL); 1871 if (!xfs_da_state_zone) 1872 goto out_destroy_btree_cur_zone; 1873 1874 xfs_ifork_zone = kmem_cache_create("xfs_ifork", 1875 sizeof(struct xfs_ifork), 1876 0, 0, NULL); 1877 if (!xfs_ifork_zone) 1878 goto out_destroy_da_state_zone; 1879 1880 xfs_trans_zone = kmem_cache_create("xf_trans", 1881 sizeof(struct xfs_trans), 1882 0, 0, NULL); 1883 if (!xfs_trans_zone) 1884 goto out_destroy_ifork_zone; 1885 1886 1887 /* 1888 * The size of the zone allocated buf log item is the maximum 1889 * size possible under XFS. This wastes a little bit of memory, 1890 * but it is much faster. 1891 */ 1892 xfs_buf_item_zone = kmem_cache_create("xfs_buf_item", 1893 sizeof(struct xfs_buf_log_item), 1894 0, 0, NULL); 1895 if (!xfs_buf_item_zone) 1896 goto out_destroy_trans_zone; 1897 1898 xfs_efd_zone = kmem_cache_create("xfs_efd_item", 1899 (sizeof(struct xfs_efd_log_item) + 1900 (XFS_EFD_MAX_FAST_EXTENTS - 1) * 1901 sizeof(struct xfs_extent)), 1902 0, 0, NULL); 1903 if (!xfs_efd_zone) 1904 goto out_destroy_buf_item_zone; 1905 1906 xfs_efi_zone = kmem_cache_create("xfs_efi_item", 1907 (sizeof(struct xfs_efi_log_item) + 1908 (XFS_EFI_MAX_FAST_EXTENTS - 1) * 1909 sizeof(struct xfs_extent)), 1910 0, 0, NULL); 1911 if (!xfs_efi_zone) 1912 goto out_destroy_efd_zone; 1913 1914 xfs_inode_zone = kmem_cache_create("xfs_inode", 1915 sizeof(struct xfs_inode), 0, 1916 (SLAB_HWCACHE_ALIGN | 1917 SLAB_RECLAIM_ACCOUNT | 1918 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 1919 xfs_fs_inode_init_once); 1920 if (!xfs_inode_zone) 1921 goto out_destroy_efi_zone; 1922 1923 xfs_ili_zone = kmem_cache_create("xfs_ili", 1924 sizeof(struct xfs_inode_log_item), 0, 1925 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 1926 NULL); 1927 if (!xfs_ili_zone) 1928 goto out_destroy_inode_zone; 1929 1930 xfs_icreate_zone = kmem_cache_create("xfs_icr", 1931 sizeof(struct xfs_icreate_item), 1932 0, 0, NULL); 1933 if (!xfs_icreate_zone) 1934 goto out_destroy_ili_zone; 1935 1936 xfs_rud_zone = kmem_cache_create("xfs_rud_item", 1937 sizeof(struct xfs_rud_log_item), 1938 0, 0, NULL); 1939 if (!xfs_rud_zone) 1940 goto out_destroy_icreate_zone; 1941 1942 xfs_rui_zone = kmem_cache_create("xfs_rui_item", 1943 xfs_rui_log_item_sizeof(XFS_RUI_MAX_FAST_EXTENTS), 1944 0, 0, NULL); 1945 if (!xfs_rui_zone) 1946 goto out_destroy_rud_zone; 1947 1948 xfs_cud_zone = kmem_cache_create("xfs_cud_item", 1949 sizeof(struct xfs_cud_log_item), 1950 0, 0, NULL); 1951 if (!xfs_cud_zone) 1952 goto out_destroy_rui_zone; 1953 1954 xfs_cui_zone = kmem_cache_create("xfs_cui_item", 1955 xfs_cui_log_item_sizeof(XFS_CUI_MAX_FAST_EXTENTS), 1956 0, 0, NULL); 1957 if (!xfs_cui_zone) 1958 goto out_destroy_cud_zone; 1959 1960 xfs_bud_zone = kmem_cache_create("xfs_bud_item", 1961 sizeof(struct xfs_bud_log_item), 1962 0, 0, NULL); 1963 if (!xfs_bud_zone) 1964 goto out_destroy_cui_zone; 1965 1966 xfs_bui_zone = kmem_cache_create("xfs_bui_item", 1967 xfs_bui_log_item_sizeof(XFS_BUI_MAX_FAST_EXTENTS), 1968 0, 0, NULL); 1969 if (!xfs_bui_zone) 1970 goto out_destroy_bud_zone; 1971 1972 return 0; 1973 1974 out_destroy_bud_zone: 1975 kmem_cache_destroy(xfs_bud_zone); 1976 out_destroy_cui_zone: 1977 kmem_cache_destroy(xfs_cui_zone); 1978 out_destroy_cud_zone: 1979 kmem_cache_destroy(xfs_cud_zone); 1980 out_destroy_rui_zone: 1981 kmem_cache_destroy(xfs_rui_zone); 1982 out_destroy_rud_zone: 1983 kmem_cache_destroy(xfs_rud_zone); 1984 out_destroy_icreate_zone: 1985 kmem_cache_destroy(xfs_icreate_zone); 1986 out_destroy_ili_zone: 1987 kmem_cache_destroy(xfs_ili_zone); 1988 out_destroy_inode_zone: 1989 kmem_cache_destroy(xfs_inode_zone); 1990 out_destroy_efi_zone: 1991 kmem_cache_destroy(xfs_efi_zone); 1992 out_destroy_efd_zone: 1993 kmem_cache_destroy(xfs_efd_zone); 1994 out_destroy_buf_item_zone: 1995 kmem_cache_destroy(xfs_buf_item_zone); 1996 out_destroy_trans_zone: 1997 kmem_cache_destroy(xfs_trans_zone); 1998 out_destroy_ifork_zone: 1999 kmem_cache_destroy(xfs_ifork_zone); 2000 out_destroy_da_state_zone: 2001 kmem_cache_destroy(xfs_da_state_zone); 2002 out_destroy_btree_cur_zone: 2003 kmem_cache_destroy(xfs_btree_cur_zone); 2004 out_destroy_bmap_free_item_zone: 2005 kmem_cache_destroy(xfs_bmap_free_item_zone); 2006 out_destroy_log_ticket_zone: 2007 kmem_cache_destroy(xfs_log_ticket_zone); 2008 out: 2009 return -ENOMEM; 2010 } 2011 2012 STATIC void 2013 xfs_destroy_zones(void) 2014 { 2015 /* 2016 * Make sure all delayed rcu free are flushed before we 2017 * destroy caches. 2018 */ 2019 rcu_barrier(); 2020 kmem_cache_destroy(xfs_bui_zone); 2021 kmem_cache_destroy(xfs_bud_zone); 2022 kmem_cache_destroy(xfs_cui_zone); 2023 kmem_cache_destroy(xfs_cud_zone); 2024 kmem_cache_destroy(xfs_rui_zone); 2025 kmem_cache_destroy(xfs_rud_zone); 2026 kmem_cache_destroy(xfs_icreate_zone); 2027 kmem_cache_destroy(xfs_ili_zone); 2028 kmem_cache_destroy(xfs_inode_zone); 2029 kmem_cache_destroy(xfs_efi_zone); 2030 kmem_cache_destroy(xfs_efd_zone); 2031 kmem_cache_destroy(xfs_buf_item_zone); 2032 kmem_cache_destroy(xfs_trans_zone); 2033 kmem_cache_destroy(xfs_ifork_zone); 2034 kmem_cache_destroy(xfs_da_state_zone); 2035 kmem_cache_destroy(xfs_btree_cur_zone); 2036 kmem_cache_destroy(xfs_bmap_free_item_zone); 2037 kmem_cache_destroy(xfs_log_ticket_zone); 2038 } 2039 2040 STATIC int __init 2041 xfs_init_workqueues(void) 2042 { 2043 /* 2044 * The allocation workqueue can be used in memory reclaim situations 2045 * (writepage path), and parallelism is only limited by the number of 2046 * AGs in all the filesystems mounted. Hence use the default large 2047 * max_active value for this workqueue. 2048 */ 2049 xfs_alloc_wq = alloc_workqueue("xfsalloc", 2050 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0); 2051 if (!xfs_alloc_wq) 2052 return -ENOMEM; 2053 2054 xfs_discard_wq = alloc_workqueue("xfsdiscard", WQ_UNBOUND, 0); 2055 if (!xfs_discard_wq) 2056 goto out_free_alloc_wq; 2057 2058 return 0; 2059 out_free_alloc_wq: 2060 destroy_workqueue(xfs_alloc_wq); 2061 return -ENOMEM; 2062 } 2063 2064 STATIC void 2065 xfs_destroy_workqueues(void) 2066 { 2067 destroy_workqueue(xfs_discard_wq); 2068 destroy_workqueue(xfs_alloc_wq); 2069 } 2070 2071 STATIC int __init 2072 init_xfs_fs(void) 2073 { 2074 int error; 2075 2076 xfs_check_ondisk_structs(); 2077 2078 printk(KERN_INFO XFS_VERSION_STRING " with " 2079 XFS_BUILD_OPTIONS " enabled\n"); 2080 2081 xfs_dir_startup(); 2082 2083 error = xfs_init_zones(); 2084 if (error) 2085 goto out; 2086 2087 error = xfs_init_workqueues(); 2088 if (error) 2089 goto out_destroy_zones; 2090 2091 error = xfs_mru_cache_init(); 2092 if (error) 2093 goto out_destroy_wq; 2094 2095 error = xfs_buf_init(); 2096 if (error) 2097 goto out_mru_cache_uninit; 2098 2099 error = xfs_init_procfs(); 2100 if (error) 2101 goto out_buf_terminate; 2102 2103 error = xfs_sysctl_register(); 2104 if (error) 2105 goto out_cleanup_procfs; 2106 2107 xfs_kset = kset_create_and_add("xfs", NULL, fs_kobj); 2108 if (!xfs_kset) { 2109 error = -ENOMEM; 2110 goto out_sysctl_unregister; 2111 } 2112 2113 xfsstats.xs_kobj.kobject.kset = xfs_kset; 2114 2115 xfsstats.xs_stats = alloc_percpu(struct xfsstats); 2116 if (!xfsstats.xs_stats) { 2117 error = -ENOMEM; 2118 goto out_kset_unregister; 2119 } 2120 2121 error = xfs_sysfs_init(&xfsstats.xs_kobj, &xfs_stats_ktype, NULL, 2122 "stats"); 2123 if (error) 2124 goto out_free_stats; 2125 2126 #ifdef DEBUG 2127 xfs_dbg_kobj.kobject.kset = xfs_kset; 2128 error = xfs_sysfs_init(&xfs_dbg_kobj, &xfs_dbg_ktype, NULL, "debug"); 2129 if (error) 2130 goto out_remove_stats_kobj; 2131 #endif 2132 2133 error = xfs_qm_init(); 2134 if (error) 2135 goto out_remove_dbg_kobj; 2136 2137 error = register_filesystem(&xfs_fs_type); 2138 if (error) 2139 goto out_qm_exit; 2140 return 0; 2141 2142 out_qm_exit: 2143 xfs_qm_exit(); 2144 out_remove_dbg_kobj: 2145 #ifdef DEBUG 2146 xfs_sysfs_del(&xfs_dbg_kobj); 2147 out_remove_stats_kobj: 2148 #endif 2149 xfs_sysfs_del(&xfsstats.xs_kobj); 2150 out_free_stats: 2151 free_percpu(xfsstats.xs_stats); 2152 out_kset_unregister: 2153 kset_unregister(xfs_kset); 2154 out_sysctl_unregister: 2155 xfs_sysctl_unregister(); 2156 out_cleanup_procfs: 2157 xfs_cleanup_procfs(); 2158 out_buf_terminate: 2159 xfs_buf_terminate(); 2160 out_mru_cache_uninit: 2161 xfs_mru_cache_uninit(); 2162 out_destroy_wq: 2163 xfs_destroy_workqueues(); 2164 out_destroy_zones: 2165 xfs_destroy_zones(); 2166 out: 2167 return error; 2168 } 2169 2170 STATIC void __exit 2171 exit_xfs_fs(void) 2172 { 2173 xfs_qm_exit(); 2174 unregister_filesystem(&xfs_fs_type); 2175 #ifdef DEBUG 2176 xfs_sysfs_del(&xfs_dbg_kobj); 2177 #endif 2178 xfs_sysfs_del(&xfsstats.xs_kobj); 2179 free_percpu(xfsstats.xs_stats); 2180 kset_unregister(xfs_kset); 2181 xfs_sysctl_unregister(); 2182 xfs_cleanup_procfs(); 2183 xfs_buf_terminate(); 2184 xfs_mru_cache_uninit(); 2185 xfs_destroy_workqueues(); 2186 xfs_destroy_zones(); 2187 xfs_uuid_table_free(); 2188 } 2189 2190 module_init(init_xfs_fs); 2191 module_exit(exit_xfs_fs); 2192 2193 MODULE_AUTHOR("Silicon Graphics, Inc."); 2194 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled"); 2195 MODULE_LICENSE("GPL"); 2196