1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 7 #include "xfs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_sb.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_btree.h" 16 #include "xfs_bmap.h" 17 #include "xfs_alloc.h" 18 #include "xfs_fsops.h" 19 #include "xfs_trans.h" 20 #include "xfs_buf_item.h" 21 #include "xfs_log.h" 22 #include "xfs_log_priv.h" 23 #include "xfs_dir2.h" 24 #include "xfs_extfree_item.h" 25 #include "xfs_mru_cache.h" 26 #include "xfs_inode_item.h" 27 #include "xfs_icache.h" 28 #include "xfs_trace.h" 29 #include "xfs_icreate_item.h" 30 #include "xfs_filestream.h" 31 #include "xfs_quota.h" 32 #include "xfs_sysfs.h" 33 #include "xfs_ondisk.h" 34 #include "xfs_rmap_item.h" 35 #include "xfs_refcount_item.h" 36 #include "xfs_bmap_item.h" 37 #include "xfs_reflink.h" 38 39 #include <linux/magic.h> 40 #include <linux/fs_context.h> 41 #include <linux/fs_parser.h> 42 43 static const struct super_operations xfs_super_operations; 44 45 static struct kset *xfs_kset; /* top-level xfs sysfs dir */ 46 #ifdef DEBUG 47 static struct xfs_kobj xfs_dbg_kobj; /* global debug sysfs attrs */ 48 #endif 49 50 enum xfs_dax_mode { 51 XFS_DAX_INODE = 0, 52 XFS_DAX_ALWAYS = 1, 53 XFS_DAX_NEVER = 2, 54 }; 55 56 static void 57 xfs_mount_set_dax_mode( 58 struct xfs_mount *mp, 59 enum xfs_dax_mode mode) 60 { 61 switch (mode) { 62 case XFS_DAX_INODE: 63 mp->m_flags &= ~(XFS_MOUNT_DAX_ALWAYS | XFS_MOUNT_DAX_NEVER); 64 break; 65 case XFS_DAX_ALWAYS: 66 mp->m_flags |= XFS_MOUNT_DAX_ALWAYS; 67 mp->m_flags &= ~XFS_MOUNT_DAX_NEVER; 68 break; 69 case XFS_DAX_NEVER: 70 mp->m_flags |= XFS_MOUNT_DAX_NEVER; 71 mp->m_flags &= ~XFS_MOUNT_DAX_ALWAYS; 72 break; 73 } 74 } 75 76 static const struct constant_table dax_param_enums[] = { 77 {"inode", XFS_DAX_INODE }, 78 {"always", XFS_DAX_ALWAYS }, 79 {"never", XFS_DAX_NEVER }, 80 {} 81 }; 82 83 /* 84 * Table driven mount option parser. 85 */ 86 enum { 87 Opt_logbufs, Opt_logbsize, Opt_logdev, Opt_rtdev, 88 Opt_wsync, Opt_noalign, Opt_swalloc, Opt_sunit, Opt_swidth, Opt_nouuid, 89 Opt_grpid, Opt_nogrpid, Opt_bsdgroups, Opt_sysvgroups, 90 Opt_allocsize, Opt_norecovery, Opt_inode64, Opt_inode32, Opt_ikeep, 91 Opt_noikeep, Opt_largeio, Opt_nolargeio, Opt_attr2, Opt_noattr2, 92 Opt_filestreams, Opt_quota, Opt_noquota, Opt_usrquota, Opt_grpquota, 93 Opt_prjquota, Opt_uquota, Opt_gquota, Opt_pquota, 94 Opt_uqnoenforce, Opt_gqnoenforce, Opt_pqnoenforce, Opt_qnoenforce, 95 Opt_discard, Opt_nodiscard, Opt_dax, Opt_dax_enum, 96 }; 97 98 static const struct fs_parameter_spec xfs_fs_parameters[] = { 99 fsparam_u32("logbufs", Opt_logbufs), 100 fsparam_string("logbsize", Opt_logbsize), 101 fsparam_string("logdev", Opt_logdev), 102 fsparam_string("rtdev", Opt_rtdev), 103 fsparam_flag("wsync", Opt_wsync), 104 fsparam_flag("noalign", Opt_noalign), 105 fsparam_flag("swalloc", Opt_swalloc), 106 fsparam_u32("sunit", Opt_sunit), 107 fsparam_u32("swidth", Opt_swidth), 108 fsparam_flag("nouuid", Opt_nouuid), 109 fsparam_flag("grpid", Opt_grpid), 110 fsparam_flag("nogrpid", Opt_nogrpid), 111 fsparam_flag("bsdgroups", Opt_bsdgroups), 112 fsparam_flag("sysvgroups", Opt_sysvgroups), 113 fsparam_string("allocsize", Opt_allocsize), 114 fsparam_flag("norecovery", Opt_norecovery), 115 fsparam_flag("inode64", Opt_inode64), 116 fsparam_flag("inode32", Opt_inode32), 117 fsparam_flag("ikeep", Opt_ikeep), 118 fsparam_flag("noikeep", Opt_noikeep), 119 fsparam_flag("largeio", Opt_largeio), 120 fsparam_flag("nolargeio", Opt_nolargeio), 121 fsparam_flag("attr2", Opt_attr2), 122 fsparam_flag("noattr2", Opt_noattr2), 123 fsparam_flag("filestreams", Opt_filestreams), 124 fsparam_flag("quota", Opt_quota), 125 fsparam_flag("noquota", Opt_noquota), 126 fsparam_flag("usrquota", Opt_usrquota), 127 fsparam_flag("grpquota", Opt_grpquota), 128 fsparam_flag("prjquota", Opt_prjquota), 129 fsparam_flag("uquota", Opt_uquota), 130 fsparam_flag("gquota", Opt_gquota), 131 fsparam_flag("pquota", Opt_pquota), 132 fsparam_flag("uqnoenforce", Opt_uqnoenforce), 133 fsparam_flag("gqnoenforce", Opt_gqnoenforce), 134 fsparam_flag("pqnoenforce", Opt_pqnoenforce), 135 fsparam_flag("qnoenforce", Opt_qnoenforce), 136 fsparam_flag("discard", Opt_discard), 137 fsparam_flag("nodiscard", Opt_nodiscard), 138 fsparam_flag("dax", Opt_dax), 139 fsparam_enum("dax", Opt_dax_enum, dax_param_enums), 140 {} 141 }; 142 143 struct proc_xfs_info { 144 uint64_t flag; 145 char *str; 146 }; 147 148 static int 149 xfs_fs_show_options( 150 struct seq_file *m, 151 struct dentry *root) 152 { 153 static struct proc_xfs_info xfs_info_set[] = { 154 /* the few simple ones we can get from the mount struct */ 155 { XFS_MOUNT_IKEEP, ",ikeep" }, 156 { XFS_MOUNT_WSYNC, ",wsync" }, 157 { XFS_MOUNT_NOALIGN, ",noalign" }, 158 { XFS_MOUNT_SWALLOC, ",swalloc" }, 159 { XFS_MOUNT_NOUUID, ",nouuid" }, 160 { XFS_MOUNT_NORECOVERY, ",norecovery" }, 161 { XFS_MOUNT_ATTR2, ",attr2" }, 162 { XFS_MOUNT_FILESTREAMS, ",filestreams" }, 163 { XFS_MOUNT_GRPID, ",grpid" }, 164 { XFS_MOUNT_DISCARD, ",discard" }, 165 { XFS_MOUNT_LARGEIO, ",largeio" }, 166 { XFS_MOUNT_DAX_ALWAYS, ",dax=always" }, 167 { XFS_MOUNT_DAX_NEVER, ",dax=never" }, 168 { 0, NULL } 169 }; 170 struct xfs_mount *mp = XFS_M(root->d_sb); 171 struct proc_xfs_info *xfs_infop; 172 173 for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) { 174 if (mp->m_flags & xfs_infop->flag) 175 seq_puts(m, xfs_infop->str); 176 } 177 178 seq_printf(m, ",inode%d", 179 (mp->m_flags & XFS_MOUNT_SMALL_INUMS) ? 32 : 64); 180 181 if (mp->m_flags & XFS_MOUNT_ALLOCSIZE) 182 seq_printf(m, ",allocsize=%dk", 183 (1 << mp->m_allocsize_log) >> 10); 184 185 if (mp->m_logbufs > 0) 186 seq_printf(m, ",logbufs=%d", mp->m_logbufs); 187 if (mp->m_logbsize > 0) 188 seq_printf(m, ",logbsize=%dk", mp->m_logbsize >> 10); 189 190 if (mp->m_logname) 191 seq_show_option(m, "logdev", mp->m_logname); 192 if (mp->m_rtname) 193 seq_show_option(m, "rtdev", mp->m_rtname); 194 195 if (mp->m_dalign > 0) 196 seq_printf(m, ",sunit=%d", 197 (int)XFS_FSB_TO_BB(mp, mp->m_dalign)); 198 if (mp->m_swidth > 0) 199 seq_printf(m, ",swidth=%d", 200 (int)XFS_FSB_TO_BB(mp, mp->m_swidth)); 201 202 if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD)) 203 seq_puts(m, ",usrquota"); 204 else if (mp->m_qflags & XFS_UQUOTA_ACCT) 205 seq_puts(m, ",uqnoenforce"); 206 207 if (mp->m_qflags & XFS_PQUOTA_ACCT) { 208 if (mp->m_qflags & XFS_PQUOTA_ENFD) 209 seq_puts(m, ",prjquota"); 210 else 211 seq_puts(m, ",pqnoenforce"); 212 } 213 if (mp->m_qflags & XFS_GQUOTA_ACCT) { 214 if (mp->m_qflags & XFS_GQUOTA_ENFD) 215 seq_puts(m, ",grpquota"); 216 else 217 seq_puts(m, ",gqnoenforce"); 218 } 219 220 if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT)) 221 seq_puts(m, ",noquota"); 222 223 return 0; 224 } 225 226 /* 227 * Set parameters for inode allocation heuristics, taking into account 228 * filesystem size and inode32/inode64 mount options; i.e. specifically 229 * whether or not XFS_MOUNT_SMALL_INUMS is set. 230 * 231 * Inode allocation patterns are altered only if inode32 is requested 232 * (XFS_MOUNT_SMALL_INUMS), and the filesystem is sufficiently large. 233 * If altered, XFS_MOUNT_32BITINODES is set as well. 234 * 235 * An agcount independent of that in the mount structure is provided 236 * because in the growfs case, mp->m_sb.sb_agcount is not yet updated 237 * to the potentially higher ag count. 238 * 239 * Returns the maximum AG index which may contain inodes. 240 */ 241 xfs_agnumber_t 242 xfs_set_inode_alloc( 243 struct xfs_mount *mp, 244 xfs_agnumber_t agcount) 245 { 246 xfs_agnumber_t index; 247 xfs_agnumber_t maxagi = 0; 248 xfs_sb_t *sbp = &mp->m_sb; 249 xfs_agnumber_t max_metadata; 250 xfs_agino_t agino; 251 xfs_ino_t ino; 252 253 /* 254 * Calculate how much should be reserved for inodes to meet 255 * the max inode percentage. Used only for inode32. 256 */ 257 if (M_IGEO(mp)->maxicount) { 258 uint64_t icount; 259 260 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 261 do_div(icount, 100); 262 icount += sbp->sb_agblocks - 1; 263 do_div(icount, sbp->sb_agblocks); 264 max_metadata = icount; 265 } else { 266 max_metadata = agcount; 267 } 268 269 /* Get the last possible inode in the filesystem */ 270 agino = XFS_AGB_TO_AGINO(mp, sbp->sb_agblocks - 1); 271 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 272 273 /* 274 * If user asked for no more than 32-bit inodes, and the fs is 275 * sufficiently large, set XFS_MOUNT_32BITINODES if we must alter 276 * the allocator to accommodate the request. 277 */ 278 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) 279 mp->m_flags |= XFS_MOUNT_32BITINODES; 280 else 281 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 282 283 for (index = 0; index < agcount; index++) { 284 struct xfs_perag *pag; 285 286 ino = XFS_AGINO_TO_INO(mp, index, agino); 287 288 pag = xfs_perag_get(mp, index); 289 290 if (mp->m_flags & XFS_MOUNT_32BITINODES) { 291 if (ino > XFS_MAXINUMBER_32) { 292 pag->pagi_inodeok = 0; 293 pag->pagf_metadata = 0; 294 } else { 295 pag->pagi_inodeok = 1; 296 maxagi++; 297 if (index < max_metadata) 298 pag->pagf_metadata = 1; 299 else 300 pag->pagf_metadata = 0; 301 } 302 } else { 303 pag->pagi_inodeok = 1; 304 pag->pagf_metadata = 0; 305 } 306 307 xfs_perag_put(pag); 308 } 309 310 return (mp->m_flags & XFS_MOUNT_32BITINODES) ? maxagi : agcount; 311 } 312 313 STATIC int 314 xfs_blkdev_get( 315 xfs_mount_t *mp, 316 const char *name, 317 struct block_device **bdevp) 318 { 319 int error = 0; 320 321 *bdevp = blkdev_get_by_path(name, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 322 mp); 323 if (IS_ERR(*bdevp)) { 324 error = PTR_ERR(*bdevp); 325 xfs_warn(mp, "Invalid device [%s], error=%d", name, error); 326 } 327 328 return error; 329 } 330 331 STATIC void 332 xfs_blkdev_put( 333 struct block_device *bdev) 334 { 335 if (bdev) 336 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 337 } 338 339 void 340 xfs_blkdev_issue_flush( 341 xfs_buftarg_t *buftarg) 342 { 343 blkdev_issue_flush(buftarg->bt_bdev, GFP_NOFS); 344 } 345 346 STATIC void 347 xfs_close_devices( 348 struct xfs_mount *mp) 349 { 350 struct dax_device *dax_ddev = mp->m_ddev_targp->bt_daxdev; 351 352 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { 353 struct block_device *logdev = mp->m_logdev_targp->bt_bdev; 354 struct dax_device *dax_logdev = mp->m_logdev_targp->bt_daxdev; 355 356 xfs_free_buftarg(mp->m_logdev_targp); 357 xfs_blkdev_put(logdev); 358 fs_put_dax(dax_logdev); 359 } 360 if (mp->m_rtdev_targp) { 361 struct block_device *rtdev = mp->m_rtdev_targp->bt_bdev; 362 struct dax_device *dax_rtdev = mp->m_rtdev_targp->bt_daxdev; 363 364 xfs_free_buftarg(mp->m_rtdev_targp); 365 xfs_blkdev_put(rtdev); 366 fs_put_dax(dax_rtdev); 367 } 368 xfs_free_buftarg(mp->m_ddev_targp); 369 fs_put_dax(dax_ddev); 370 } 371 372 /* 373 * The file system configurations are: 374 * (1) device (partition) with data and internal log 375 * (2) logical volume with data and log subvolumes. 376 * (3) logical volume with data, log, and realtime subvolumes. 377 * 378 * We only have to handle opening the log and realtime volumes here if 379 * they are present. The data subvolume has already been opened by 380 * get_sb_bdev() and is stored in sb->s_bdev. 381 */ 382 STATIC int 383 xfs_open_devices( 384 struct xfs_mount *mp) 385 { 386 struct block_device *ddev = mp->m_super->s_bdev; 387 struct dax_device *dax_ddev = fs_dax_get_by_bdev(ddev); 388 struct dax_device *dax_logdev = NULL, *dax_rtdev = NULL; 389 struct block_device *logdev = NULL, *rtdev = NULL; 390 int error; 391 392 /* 393 * Open real time and log devices - order is important. 394 */ 395 if (mp->m_logname) { 396 error = xfs_blkdev_get(mp, mp->m_logname, &logdev); 397 if (error) 398 goto out; 399 dax_logdev = fs_dax_get_by_bdev(logdev); 400 } 401 402 if (mp->m_rtname) { 403 error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev); 404 if (error) 405 goto out_close_logdev; 406 407 if (rtdev == ddev || rtdev == logdev) { 408 xfs_warn(mp, 409 "Cannot mount filesystem with identical rtdev and ddev/logdev."); 410 error = -EINVAL; 411 goto out_close_rtdev; 412 } 413 dax_rtdev = fs_dax_get_by_bdev(rtdev); 414 } 415 416 /* 417 * Setup xfs_mount buffer target pointers 418 */ 419 error = -ENOMEM; 420 mp->m_ddev_targp = xfs_alloc_buftarg(mp, ddev, dax_ddev); 421 if (!mp->m_ddev_targp) 422 goto out_close_rtdev; 423 424 if (rtdev) { 425 mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev, dax_rtdev); 426 if (!mp->m_rtdev_targp) 427 goto out_free_ddev_targ; 428 } 429 430 if (logdev && logdev != ddev) { 431 mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev, dax_logdev); 432 if (!mp->m_logdev_targp) 433 goto out_free_rtdev_targ; 434 } else { 435 mp->m_logdev_targp = mp->m_ddev_targp; 436 } 437 438 return 0; 439 440 out_free_rtdev_targ: 441 if (mp->m_rtdev_targp) 442 xfs_free_buftarg(mp->m_rtdev_targp); 443 out_free_ddev_targ: 444 xfs_free_buftarg(mp->m_ddev_targp); 445 out_close_rtdev: 446 xfs_blkdev_put(rtdev); 447 fs_put_dax(dax_rtdev); 448 out_close_logdev: 449 if (logdev && logdev != ddev) { 450 xfs_blkdev_put(logdev); 451 fs_put_dax(dax_logdev); 452 } 453 out: 454 fs_put_dax(dax_ddev); 455 return error; 456 } 457 458 /* 459 * Setup xfs_mount buffer target pointers based on superblock 460 */ 461 STATIC int 462 xfs_setup_devices( 463 struct xfs_mount *mp) 464 { 465 int error; 466 467 error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_sectsize); 468 if (error) 469 return error; 470 471 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { 472 unsigned int log_sector_size = BBSIZE; 473 474 if (xfs_sb_version_hassector(&mp->m_sb)) 475 log_sector_size = mp->m_sb.sb_logsectsize; 476 error = xfs_setsize_buftarg(mp->m_logdev_targp, 477 log_sector_size); 478 if (error) 479 return error; 480 } 481 if (mp->m_rtdev_targp) { 482 error = xfs_setsize_buftarg(mp->m_rtdev_targp, 483 mp->m_sb.sb_sectsize); 484 if (error) 485 return error; 486 } 487 488 return 0; 489 } 490 491 STATIC int 492 xfs_init_mount_workqueues( 493 struct xfs_mount *mp) 494 { 495 mp->m_buf_workqueue = alloc_workqueue("xfs-buf/%s", 496 WQ_MEM_RECLAIM|WQ_FREEZABLE, 1, mp->m_super->s_id); 497 if (!mp->m_buf_workqueue) 498 goto out; 499 500 mp->m_unwritten_workqueue = alloc_workqueue("xfs-conv/%s", 501 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id); 502 if (!mp->m_unwritten_workqueue) 503 goto out_destroy_buf; 504 505 mp->m_cil_workqueue = alloc_workqueue("xfs-cil/%s", 506 WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND, 507 0, mp->m_super->s_id); 508 if (!mp->m_cil_workqueue) 509 goto out_destroy_unwritten; 510 511 mp->m_reclaim_workqueue = alloc_workqueue("xfs-reclaim/%s", 512 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id); 513 if (!mp->m_reclaim_workqueue) 514 goto out_destroy_cil; 515 516 mp->m_eofblocks_workqueue = alloc_workqueue("xfs-eofblocks/%s", 517 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id); 518 if (!mp->m_eofblocks_workqueue) 519 goto out_destroy_reclaim; 520 521 mp->m_sync_workqueue = alloc_workqueue("xfs-sync/%s", WQ_FREEZABLE, 0, 522 mp->m_super->s_id); 523 if (!mp->m_sync_workqueue) 524 goto out_destroy_eofb; 525 526 return 0; 527 528 out_destroy_eofb: 529 destroy_workqueue(mp->m_eofblocks_workqueue); 530 out_destroy_reclaim: 531 destroy_workqueue(mp->m_reclaim_workqueue); 532 out_destroy_cil: 533 destroy_workqueue(mp->m_cil_workqueue); 534 out_destroy_unwritten: 535 destroy_workqueue(mp->m_unwritten_workqueue); 536 out_destroy_buf: 537 destroy_workqueue(mp->m_buf_workqueue); 538 out: 539 return -ENOMEM; 540 } 541 542 STATIC void 543 xfs_destroy_mount_workqueues( 544 struct xfs_mount *mp) 545 { 546 destroy_workqueue(mp->m_sync_workqueue); 547 destroy_workqueue(mp->m_eofblocks_workqueue); 548 destroy_workqueue(mp->m_reclaim_workqueue); 549 destroy_workqueue(mp->m_cil_workqueue); 550 destroy_workqueue(mp->m_unwritten_workqueue); 551 destroy_workqueue(mp->m_buf_workqueue); 552 } 553 554 static void 555 xfs_flush_inodes_worker( 556 struct work_struct *work) 557 { 558 struct xfs_mount *mp = container_of(work, struct xfs_mount, 559 m_flush_inodes_work); 560 struct super_block *sb = mp->m_super; 561 562 if (down_read_trylock(&sb->s_umount)) { 563 sync_inodes_sb(sb); 564 up_read(&sb->s_umount); 565 } 566 } 567 568 /* 569 * Flush all dirty data to disk. Must not be called while holding an XFS_ILOCK 570 * or a page lock. We use sync_inodes_sb() here to ensure we block while waiting 571 * for IO to complete so that we effectively throttle multiple callers to the 572 * rate at which IO is completing. 573 */ 574 void 575 xfs_flush_inodes( 576 struct xfs_mount *mp) 577 { 578 /* 579 * If flush_work() returns true then that means we waited for a flush 580 * which was already in progress. Don't bother running another scan. 581 */ 582 if (flush_work(&mp->m_flush_inodes_work)) 583 return; 584 585 queue_work(mp->m_sync_workqueue, &mp->m_flush_inodes_work); 586 flush_work(&mp->m_flush_inodes_work); 587 } 588 589 /* Catch misguided souls that try to use this interface on XFS */ 590 STATIC struct inode * 591 xfs_fs_alloc_inode( 592 struct super_block *sb) 593 { 594 BUG(); 595 return NULL; 596 } 597 598 #ifdef DEBUG 599 static void 600 xfs_check_delalloc( 601 struct xfs_inode *ip, 602 int whichfork) 603 { 604 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 605 struct xfs_bmbt_irec got; 606 struct xfs_iext_cursor icur; 607 608 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got)) 609 return; 610 do { 611 if (isnullstartblock(got.br_startblock)) { 612 xfs_warn(ip->i_mount, 613 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]", 614 ip->i_ino, 615 whichfork == XFS_DATA_FORK ? "data" : "cow", 616 got.br_startoff, got.br_blockcount); 617 } 618 } while (xfs_iext_next_extent(ifp, &icur, &got)); 619 } 620 #else 621 #define xfs_check_delalloc(ip, whichfork) do { } while (0) 622 #endif 623 624 /* 625 * Now that the generic code is guaranteed not to be accessing 626 * the linux inode, we can inactivate and reclaim the inode. 627 */ 628 STATIC void 629 xfs_fs_destroy_inode( 630 struct inode *inode) 631 { 632 struct xfs_inode *ip = XFS_I(inode); 633 634 trace_xfs_destroy_inode(ip); 635 636 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 637 XFS_STATS_INC(ip->i_mount, vn_rele); 638 XFS_STATS_INC(ip->i_mount, vn_remove); 639 640 xfs_inactive(ip); 641 642 if (!XFS_FORCED_SHUTDOWN(ip->i_mount) && ip->i_delayed_blks) { 643 xfs_check_delalloc(ip, XFS_DATA_FORK); 644 xfs_check_delalloc(ip, XFS_COW_FORK); 645 ASSERT(0); 646 } 647 648 XFS_STATS_INC(ip->i_mount, vn_reclaim); 649 650 /* 651 * We should never get here with one of the reclaim flags already set. 652 */ 653 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIMABLE)); 654 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM)); 655 656 /* 657 * We always use background reclaim here because even if the 658 * inode is clean, it still may be under IO and hence we have 659 * to take the flush lock. The background reclaim path handles 660 * this more efficiently than we can here, so simply let background 661 * reclaim tear down all inodes. 662 */ 663 xfs_inode_set_reclaim_tag(ip); 664 } 665 666 static void 667 xfs_fs_dirty_inode( 668 struct inode *inode, 669 int flag) 670 { 671 struct xfs_inode *ip = XFS_I(inode); 672 struct xfs_mount *mp = ip->i_mount; 673 struct xfs_trans *tp; 674 675 if (!(inode->i_sb->s_flags & SB_LAZYTIME)) 676 return; 677 if (flag != I_DIRTY_SYNC || !(inode->i_state & I_DIRTY_TIME)) 678 return; 679 680 if (xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp)) 681 return; 682 xfs_ilock(ip, XFS_ILOCK_EXCL); 683 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 684 xfs_trans_log_inode(tp, ip, XFS_ILOG_TIMESTAMP); 685 xfs_trans_commit(tp); 686 } 687 688 /* 689 * Slab object creation initialisation for the XFS inode. 690 * This covers only the idempotent fields in the XFS inode; 691 * all other fields need to be initialised on allocation 692 * from the slab. This avoids the need to repeatedly initialise 693 * fields in the xfs inode that left in the initialise state 694 * when freeing the inode. 695 */ 696 STATIC void 697 xfs_fs_inode_init_once( 698 void *inode) 699 { 700 struct xfs_inode *ip = inode; 701 702 memset(ip, 0, sizeof(struct xfs_inode)); 703 704 /* vfs inode */ 705 inode_init_once(VFS_I(ip)); 706 707 /* xfs inode */ 708 atomic_set(&ip->i_pincount, 0); 709 spin_lock_init(&ip->i_flags_lock); 710 711 mrlock_init(&ip->i_mmaplock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER, 712 "xfsino", ip->i_ino); 713 mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER, 714 "xfsino", ip->i_ino); 715 } 716 717 /* 718 * We do an unlocked check for XFS_IDONTCACHE here because we are already 719 * serialised against cache hits here via the inode->i_lock and igrab() in 720 * xfs_iget_cache_hit(). Hence a lookup that might clear this flag will not be 721 * racing with us, and it avoids needing to grab a spinlock here for every inode 722 * we drop the final reference on. 723 */ 724 STATIC int 725 xfs_fs_drop_inode( 726 struct inode *inode) 727 { 728 struct xfs_inode *ip = XFS_I(inode); 729 730 /* 731 * If this unlinked inode is in the middle of recovery, don't 732 * drop the inode just yet; log recovery will take care of 733 * that. See the comment for this inode flag. 734 */ 735 if (ip->i_flags & XFS_IRECOVERY) { 736 ASSERT(ip->i_mount->m_log->l_flags & XLOG_RECOVERY_NEEDED); 737 return 0; 738 } 739 740 return generic_drop_inode(inode); 741 } 742 743 static void 744 xfs_mount_free( 745 struct xfs_mount *mp) 746 { 747 kfree(mp->m_rtname); 748 kfree(mp->m_logname); 749 kmem_free(mp); 750 } 751 752 STATIC int 753 xfs_fs_sync_fs( 754 struct super_block *sb, 755 int wait) 756 { 757 struct xfs_mount *mp = XFS_M(sb); 758 759 /* 760 * Doing anything during the async pass would be counterproductive. 761 */ 762 if (!wait) 763 return 0; 764 765 xfs_log_force(mp, XFS_LOG_SYNC); 766 if (laptop_mode) { 767 /* 768 * The disk must be active because we're syncing. 769 * We schedule log work now (now that the disk is 770 * active) instead of later (when it might not be). 771 */ 772 flush_delayed_work(&mp->m_log->l_work); 773 } 774 775 return 0; 776 } 777 778 STATIC int 779 xfs_fs_statfs( 780 struct dentry *dentry, 781 struct kstatfs *statp) 782 { 783 struct xfs_mount *mp = XFS_M(dentry->d_sb); 784 xfs_sb_t *sbp = &mp->m_sb; 785 struct xfs_inode *ip = XFS_I(d_inode(dentry)); 786 uint64_t fakeinos, id; 787 uint64_t icount; 788 uint64_t ifree; 789 uint64_t fdblocks; 790 xfs_extlen_t lsize; 791 int64_t ffree; 792 793 statp->f_type = XFS_SUPER_MAGIC; 794 statp->f_namelen = MAXNAMELEN - 1; 795 796 id = huge_encode_dev(mp->m_ddev_targp->bt_dev); 797 statp->f_fsid.val[0] = (u32)id; 798 statp->f_fsid.val[1] = (u32)(id >> 32); 799 800 icount = percpu_counter_sum(&mp->m_icount); 801 ifree = percpu_counter_sum(&mp->m_ifree); 802 fdblocks = percpu_counter_sum(&mp->m_fdblocks); 803 804 spin_lock(&mp->m_sb_lock); 805 statp->f_bsize = sbp->sb_blocksize; 806 lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0; 807 statp->f_blocks = sbp->sb_dblocks - lsize; 808 spin_unlock(&mp->m_sb_lock); 809 810 /* make sure statp->f_bfree does not underflow */ 811 statp->f_bfree = max_t(int64_t, fdblocks - mp->m_alloc_set_aside, 0); 812 statp->f_bavail = statp->f_bfree; 813 814 fakeinos = XFS_FSB_TO_INO(mp, statp->f_bfree); 815 statp->f_files = min(icount + fakeinos, (uint64_t)XFS_MAXINUMBER); 816 if (M_IGEO(mp)->maxicount) 817 statp->f_files = min_t(typeof(statp->f_files), 818 statp->f_files, 819 M_IGEO(mp)->maxicount); 820 821 /* If sb_icount overshot maxicount, report actual allocation */ 822 statp->f_files = max_t(typeof(statp->f_files), 823 statp->f_files, 824 sbp->sb_icount); 825 826 /* make sure statp->f_ffree does not underflow */ 827 ffree = statp->f_files - (icount - ifree); 828 statp->f_ffree = max_t(int64_t, ffree, 0); 829 830 831 if ((ip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 832 ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))) == 833 (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD)) 834 xfs_qm_statvfs(ip, statp); 835 836 if (XFS_IS_REALTIME_MOUNT(mp) && 837 (ip->i_d.di_flags & (XFS_DIFLAG_RTINHERIT | XFS_DIFLAG_REALTIME))) { 838 statp->f_blocks = sbp->sb_rblocks; 839 statp->f_bavail = statp->f_bfree = 840 sbp->sb_frextents * sbp->sb_rextsize; 841 } 842 843 return 0; 844 } 845 846 STATIC void 847 xfs_save_resvblks(struct xfs_mount *mp) 848 { 849 uint64_t resblks = 0; 850 851 mp->m_resblks_save = mp->m_resblks; 852 xfs_reserve_blocks(mp, &resblks, NULL); 853 } 854 855 STATIC void 856 xfs_restore_resvblks(struct xfs_mount *mp) 857 { 858 uint64_t resblks; 859 860 if (mp->m_resblks_save) { 861 resblks = mp->m_resblks_save; 862 mp->m_resblks_save = 0; 863 } else 864 resblks = xfs_default_resblks(mp); 865 866 xfs_reserve_blocks(mp, &resblks, NULL); 867 } 868 869 /* 870 * Trigger writeback of all the dirty metadata in the file system. 871 * 872 * This ensures that the metadata is written to their location on disk rather 873 * than just existing in transactions in the log. This means after a quiesce 874 * there is no log replay required to write the inodes to disk - this is the 875 * primary difference between a sync and a quiesce. 876 * 877 * We cancel log work early here to ensure all transactions the log worker may 878 * run have finished before we clean up and log the superblock and write an 879 * unmount record. The unfreeze process is responsible for restarting the log 880 * worker correctly. 881 */ 882 void 883 xfs_quiesce_attr( 884 struct xfs_mount *mp) 885 { 886 int error = 0; 887 888 cancel_delayed_work_sync(&mp->m_log->l_work); 889 890 /* force the log to unpin objects from the now complete transactions */ 891 xfs_log_force(mp, XFS_LOG_SYNC); 892 893 /* reclaim inodes to do any IO before the freeze completes */ 894 xfs_reclaim_inodes(mp, 0); 895 xfs_reclaim_inodes(mp, SYNC_WAIT); 896 897 /* Push the superblock and write an unmount record */ 898 error = xfs_log_sbcount(mp); 899 if (error) 900 xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. " 901 "Frozen image may not be consistent."); 902 xfs_log_quiesce(mp); 903 } 904 905 /* 906 * Second stage of a freeze. The data is already frozen so we only 907 * need to take care of the metadata. Once that's done sync the superblock 908 * to the log to dirty it in case of a crash while frozen. This ensures that we 909 * will recover the unlinked inode lists on the next mount. 910 */ 911 STATIC int 912 xfs_fs_freeze( 913 struct super_block *sb) 914 { 915 struct xfs_mount *mp = XFS_M(sb); 916 917 xfs_stop_block_reaping(mp); 918 xfs_save_resvblks(mp); 919 xfs_quiesce_attr(mp); 920 return xfs_sync_sb(mp, true); 921 } 922 923 STATIC int 924 xfs_fs_unfreeze( 925 struct super_block *sb) 926 { 927 struct xfs_mount *mp = XFS_M(sb); 928 929 xfs_restore_resvblks(mp); 930 xfs_log_work_queue(mp); 931 xfs_start_block_reaping(mp); 932 return 0; 933 } 934 935 /* 936 * This function fills in xfs_mount_t fields based on mount args. 937 * Note: the superblock _has_ now been read in. 938 */ 939 STATIC int 940 xfs_finish_flags( 941 struct xfs_mount *mp) 942 { 943 int ronly = (mp->m_flags & XFS_MOUNT_RDONLY); 944 945 /* Fail a mount where the logbuf is smaller than the log stripe */ 946 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 947 if (mp->m_logbsize <= 0 && 948 mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) { 949 mp->m_logbsize = mp->m_sb.sb_logsunit; 950 } else if (mp->m_logbsize > 0 && 951 mp->m_logbsize < mp->m_sb.sb_logsunit) { 952 xfs_warn(mp, 953 "logbuf size must be greater than or equal to log stripe size"); 954 return -EINVAL; 955 } 956 } else { 957 /* Fail a mount if the logbuf is larger than 32K */ 958 if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) { 959 xfs_warn(mp, 960 "logbuf size for version 1 logs must be 16K or 32K"); 961 return -EINVAL; 962 } 963 } 964 965 /* 966 * V5 filesystems always use attr2 format for attributes. 967 */ 968 if (xfs_sb_version_hascrc(&mp->m_sb) && 969 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 970 xfs_warn(mp, "Cannot mount a V5 filesystem as noattr2. " 971 "attr2 is always enabled for V5 filesystems."); 972 return -EINVAL; 973 } 974 975 /* 976 * mkfs'ed attr2 will turn on attr2 mount unless explicitly 977 * told by noattr2 to turn it off 978 */ 979 if (xfs_sb_version_hasattr2(&mp->m_sb) && 980 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 981 mp->m_flags |= XFS_MOUNT_ATTR2; 982 983 /* 984 * prohibit r/w mounts of read-only filesystems 985 */ 986 if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) { 987 xfs_warn(mp, 988 "cannot mount a read-only filesystem as read-write"); 989 return -EROFS; 990 } 991 992 if ((mp->m_qflags & (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE)) && 993 (mp->m_qflags & (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE)) && 994 !xfs_sb_version_has_pquotino(&mp->m_sb)) { 995 xfs_warn(mp, 996 "Super block does not support project and group quota together"); 997 return -EINVAL; 998 } 999 1000 return 0; 1001 } 1002 1003 static int 1004 xfs_init_percpu_counters( 1005 struct xfs_mount *mp) 1006 { 1007 int error; 1008 1009 error = percpu_counter_init(&mp->m_icount, 0, GFP_KERNEL); 1010 if (error) 1011 return -ENOMEM; 1012 1013 error = percpu_counter_init(&mp->m_ifree, 0, GFP_KERNEL); 1014 if (error) 1015 goto free_icount; 1016 1017 error = percpu_counter_init(&mp->m_fdblocks, 0, GFP_KERNEL); 1018 if (error) 1019 goto free_ifree; 1020 1021 error = percpu_counter_init(&mp->m_delalloc_blks, 0, GFP_KERNEL); 1022 if (error) 1023 goto free_fdblocks; 1024 1025 return 0; 1026 1027 free_fdblocks: 1028 percpu_counter_destroy(&mp->m_fdblocks); 1029 free_ifree: 1030 percpu_counter_destroy(&mp->m_ifree); 1031 free_icount: 1032 percpu_counter_destroy(&mp->m_icount); 1033 return -ENOMEM; 1034 } 1035 1036 void 1037 xfs_reinit_percpu_counters( 1038 struct xfs_mount *mp) 1039 { 1040 percpu_counter_set(&mp->m_icount, mp->m_sb.sb_icount); 1041 percpu_counter_set(&mp->m_ifree, mp->m_sb.sb_ifree); 1042 percpu_counter_set(&mp->m_fdblocks, mp->m_sb.sb_fdblocks); 1043 } 1044 1045 static void 1046 xfs_destroy_percpu_counters( 1047 struct xfs_mount *mp) 1048 { 1049 percpu_counter_destroy(&mp->m_icount); 1050 percpu_counter_destroy(&mp->m_ifree); 1051 percpu_counter_destroy(&mp->m_fdblocks); 1052 ASSERT(XFS_FORCED_SHUTDOWN(mp) || 1053 percpu_counter_sum(&mp->m_delalloc_blks) == 0); 1054 percpu_counter_destroy(&mp->m_delalloc_blks); 1055 } 1056 1057 static void 1058 xfs_fs_put_super( 1059 struct super_block *sb) 1060 { 1061 struct xfs_mount *mp = XFS_M(sb); 1062 1063 /* if ->fill_super failed, we have no mount to tear down */ 1064 if (!sb->s_fs_info) 1065 return; 1066 1067 xfs_notice(mp, "Unmounting Filesystem"); 1068 xfs_filestream_unmount(mp); 1069 xfs_unmountfs(mp); 1070 1071 xfs_freesb(mp); 1072 free_percpu(mp->m_stats.xs_stats); 1073 xfs_destroy_percpu_counters(mp); 1074 xfs_destroy_mount_workqueues(mp); 1075 xfs_close_devices(mp); 1076 1077 sb->s_fs_info = NULL; 1078 xfs_mount_free(mp); 1079 } 1080 1081 static long 1082 xfs_fs_nr_cached_objects( 1083 struct super_block *sb, 1084 struct shrink_control *sc) 1085 { 1086 /* Paranoia: catch incorrect calls during mount setup or teardown */ 1087 if (WARN_ON_ONCE(!sb->s_fs_info)) 1088 return 0; 1089 return xfs_reclaim_inodes_count(XFS_M(sb)); 1090 } 1091 1092 static long 1093 xfs_fs_free_cached_objects( 1094 struct super_block *sb, 1095 struct shrink_control *sc) 1096 { 1097 return xfs_reclaim_inodes_nr(XFS_M(sb), sc->nr_to_scan); 1098 } 1099 1100 static const struct super_operations xfs_super_operations = { 1101 .alloc_inode = xfs_fs_alloc_inode, 1102 .destroy_inode = xfs_fs_destroy_inode, 1103 .dirty_inode = xfs_fs_dirty_inode, 1104 .drop_inode = xfs_fs_drop_inode, 1105 .put_super = xfs_fs_put_super, 1106 .sync_fs = xfs_fs_sync_fs, 1107 .freeze_fs = xfs_fs_freeze, 1108 .unfreeze_fs = xfs_fs_unfreeze, 1109 .statfs = xfs_fs_statfs, 1110 .show_options = xfs_fs_show_options, 1111 .nr_cached_objects = xfs_fs_nr_cached_objects, 1112 .free_cached_objects = xfs_fs_free_cached_objects, 1113 }; 1114 1115 static int 1116 suffix_kstrtoint( 1117 const char *s, 1118 unsigned int base, 1119 int *res) 1120 { 1121 int last, shift_left_factor = 0, _res; 1122 char *value; 1123 int ret = 0; 1124 1125 value = kstrdup(s, GFP_KERNEL); 1126 if (!value) 1127 return -ENOMEM; 1128 1129 last = strlen(value) - 1; 1130 if (value[last] == 'K' || value[last] == 'k') { 1131 shift_left_factor = 10; 1132 value[last] = '\0'; 1133 } 1134 if (value[last] == 'M' || value[last] == 'm') { 1135 shift_left_factor = 20; 1136 value[last] = '\0'; 1137 } 1138 if (value[last] == 'G' || value[last] == 'g') { 1139 shift_left_factor = 30; 1140 value[last] = '\0'; 1141 } 1142 1143 if (kstrtoint(value, base, &_res)) 1144 ret = -EINVAL; 1145 kfree(value); 1146 *res = _res << shift_left_factor; 1147 return ret; 1148 } 1149 1150 /* 1151 * Set mount state from a mount option. 1152 * 1153 * NOTE: mp->m_super is NULL here! 1154 */ 1155 static int 1156 xfs_fc_parse_param( 1157 struct fs_context *fc, 1158 struct fs_parameter *param) 1159 { 1160 struct xfs_mount *mp = fc->s_fs_info; 1161 struct fs_parse_result result; 1162 int size = 0; 1163 int opt; 1164 1165 opt = fs_parse(fc, xfs_fs_parameters, param, &result); 1166 if (opt < 0) 1167 return opt; 1168 1169 switch (opt) { 1170 case Opt_logbufs: 1171 mp->m_logbufs = result.uint_32; 1172 return 0; 1173 case Opt_logbsize: 1174 if (suffix_kstrtoint(param->string, 10, &mp->m_logbsize)) 1175 return -EINVAL; 1176 return 0; 1177 case Opt_logdev: 1178 kfree(mp->m_logname); 1179 mp->m_logname = kstrdup(param->string, GFP_KERNEL); 1180 if (!mp->m_logname) 1181 return -ENOMEM; 1182 return 0; 1183 case Opt_rtdev: 1184 kfree(mp->m_rtname); 1185 mp->m_rtname = kstrdup(param->string, GFP_KERNEL); 1186 if (!mp->m_rtname) 1187 return -ENOMEM; 1188 return 0; 1189 case Opt_allocsize: 1190 if (suffix_kstrtoint(param->string, 10, &size)) 1191 return -EINVAL; 1192 mp->m_allocsize_log = ffs(size) - 1; 1193 mp->m_flags |= XFS_MOUNT_ALLOCSIZE; 1194 return 0; 1195 case Opt_grpid: 1196 case Opt_bsdgroups: 1197 mp->m_flags |= XFS_MOUNT_GRPID; 1198 return 0; 1199 case Opt_nogrpid: 1200 case Opt_sysvgroups: 1201 mp->m_flags &= ~XFS_MOUNT_GRPID; 1202 return 0; 1203 case Opt_wsync: 1204 mp->m_flags |= XFS_MOUNT_WSYNC; 1205 return 0; 1206 case Opt_norecovery: 1207 mp->m_flags |= XFS_MOUNT_NORECOVERY; 1208 return 0; 1209 case Opt_noalign: 1210 mp->m_flags |= XFS_MOUNT_NOALIGN; 1211 return 0; 1212 case Opt_swalloc: 1213 mp->m_flags |= XFS_MOUNT_SWALLOC; 1214 return 0; 1215 case Opt_sunit: 1216 mp->m_dalign = result.uint_32; 1217 return 0; 1218 case Opt_swidth: 1219 mp->m_swidth = result.uint_32; 1220 return 0; 1221 case Opt_inode32: 1222 mp->m_flags |= XFS_MOUNT_SMALL_INUMS; 1223 return 0; 1224 case Opt_inode64: 1225 mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS; 1226 return 0; 1227 case Opt_nouuid: 1228 mp->m_flags |= XFS_MOUNT_NOUUID; 1229 return 0; 1230 case Opt_ikeep: 1231 mp->m_flags |= XFS_MOUNT_IKEEP; 1232 return 0; 1233 case Opt_noikeep: 1234 mp->m_flags &= ~XFS_MOUNT_IKEEP; 1235 return 0; 1236 case Opt_largeio: 1237 mp->m_flags |= XFS_MOUNT_LARGEIO; 1238 return 0; 1239 case Opt_nolargeio: 1240 mp->m_flags &= ~XFS_MOUNT_LARGEIO; 1241 return 0; 1242 case Opt_attr2: 1243 mp->m_flags |= XFS_MOUNT_ATTR2; 1244 return 0; 1245 case Opt_noattr2: 1246 mp->m_flags &= ~XFS_MOUNT_ATTR2; 1247 mp->m_flags |= XFS_MOUNT_NOATTR2; 1248 return 0; 1249 case Opt_filestreams: 1250 mp->m_flags |= XFS_MOUNT_FILESTREAMS; 1251 return 0; 1252 case Opt_noquota: 1253 mp->m_qflags &= ~XFS_ALL_QUOTA_ACCT; 1254 mp->m_qflags &= ~XFS_ALL_QUOTA_ENFD; 1255 mp->m_qflags &= ~XFS_ALL_QUOTA_ACTIVE; 1256 return 0; 1257 case Opt_quota: 1258 case Opt_uquota: 1259 case Opt_usrquota: 1260 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE | 1261 XFS_UQUOTA_ENFD); 1262 return 0; 1263 case Opt_qnoenforce: 1264 case Opt_uqnoenforce: 1265 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE); 1266 mp->m_qflags &= ~XFS_UQUOTA_ENFD; 1267 return 0; 1268 case Opt_pquota: 1269 case Opt_prjquota: 1270 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE | 1271 XFS_PQUOTA_ENFD); 1272 return 0; 1273 case Opt_pqnoenforce: 1274 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE); 1275 mp->m_qflags &= ~XFS_PQUOTA_ENFD; 1276 return 0; 1277 case Opt_gquota: 1278 case Opt_grpquota: 1279 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE | 1280 XFS_GQUOTA_ENFD); 1281 return 0; 1282 case Opt_gqnoenforce: 1283 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE); 1284 mp->m_qflags &= ~XFS_GQUOTA_ENFD; 1285 return 0; 1286 case Opt_discard: 1287 mp->m_flags |= XFS_MOUNT_DISCARD; 1288 return 0; 1289 case Opt_nodiscard: 1290 mp->m_flags &= ~XFS_MOUNT_DISCARD; 1291 return 0; 1292 #ifdef CONFIG_FS_DAX 1293 case Opt_dax: 1294 xfs_mount_set_dax_mode(mp, XFS_DAX_ALWAYS); 1295 return 0; 1296 case Opt_dax_enum: 1297 xfs_mount_set_dax_mode(mp, result.uint_32); 1298 return 0; 1299 #endif 1300 default: 1301 xfs_warn(mp, "unknown mount option [%s].", param->key); 1302 return -EINVAL; 1303 } 1304 1305 return 0; 1306 } 1307 1308 static int 1309 xfs_fc_validate_params( 1310 struct xfs_mount *mp) 1311 { 1312 /* 1313 * no recovery flag requires a read-only mount 1314 */ 1315 if ((mp->m_flags & XFS_MOUNT_NORECOVERY) && 1316 !(mp->m_flags & XFS_MOUNT_RDONLY)) { 1317 xfs_warn(mp, "no-recovery mounts must be read-only."); 1318 return -EINVAL; 1319 } 1320 1321 if ((mp->m_flags & XFS_MOUNT_NOALIGN) && 1322 (mp->m_dalign || mp->m_swidth)) { 1323 xfs_warn(mp, 1324 "sunit and swidth options incompatible with the noalign option"); 1325 return -EINVAL; 1326 } 1327 1328 if (!IS_ENABLED(CONFIG_XFS_QUOTA) && mp->m_qflags != 0) { 1329 xfs_warn(mp, "quota support not available in this kernel."); 1330 return -EINVAL; 1331 } 1332 1333 if ((mp->m_dalign && !mp->m_swidth) || 1334 (!mp->m_dalign && mp->m_swidth)) { 1335 xfs_warn(mp, "sunit and swidth must be specified together"); 1336 return -EINVAL; 1337 } 1338 1339 if (mp->m_dalign && (mp->m_swidth % mp->m_dalign != 0)) { 1340 xfs_warn(mp, 1341 "stripe width (%d) must be a multiple of the stripe unit (%d)", 1342 mp->m_swidth, mp->m_dalign); 1343 return -EINVAL; 1344 } 1345 1346 if (mp->m_logbufs != -1 && 1347 mp->m_logbufs != 0 && 1348 (mp->m_logbufs < XLOG_MIN_ICLOGS || 1349 mp->m_logbufs > XLOG_MAX_ICLOGS)) { 1350 xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]", 1351 mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS); 1352 return -EINVAL; 1353 } 1354 1355 if (mp->m_logbsize != -1 && 1356 mp->m_logbsize != 0 && 1357 (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE || 1358 mp->m_logbsize > XLOG_MAX_RECORD_BSIZE || 1359 !is_power_of_2(mp->m_logbsize))) { 1360 xfs_warn(mp, 1361 "invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]", 1362 mp->m_logbsize); 1363 return -EINVAL; 1364 } 1365 1366 if ((mp->m_flags & XFS_MOUNT_ALLOCSIZE) && 1367 (mp->m_allocsize_log > XFS_MAX_IO_LOG || 1368 mp->m_allocsize_log < XFS_MIN_IO_LOG)) { 1369 xfs_warn(mp, "invalid log iosize: %d [not %d-%d]", 1370 mp->m_allocsize_log, XFS_MIN_IO_LOG, XFS_MAX_IO_LOG); 1371 return -EINVAL; 1372 } 1373 1374 return 0; 1375 } 1376 1377 static int 1378 xfs_fc_fill_super( 1379 struct super_block *sb, 1380 struct fs_context *fc) 1381 { 1382 struct xfs_mount *mp = sb->s_fs_info; 1383 struct inode *root; 1384 int flags = 0, error; 1385 1386 mp->m_super = sb; 1387 1388 error = xfs_fc_validate_params(mp); 1389 if (error) 1390 goto out_free_names; 1391 1392 sb_min_blocksize(sb, BBSIZE); 1393 sb->s_xattr = xfs_xattr_handlers; 1394 sb->s_export_op = &xfs_export_operations; 1395 #ifdef CONFIG_XFS_QUOTA 1396 sb->s_qcop = &xfs_quotactl_operations; 1397 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 1398 #endif 1399 sb->s_op = &xfs_super_operations; 1400 1401 /* 1402 * Delay mount work if the debug hook is set. This is debug 1403 * instrumention to coordinate simulation of xfs mount failures with 1404 * VFS superblock operations 1405 */ 1406 if (xfs_globals.mount_delay) { 1407 xfs_notice(mp, "Delaying mount for %d seconds.", 1408 xfs_globals.mount_delay); 1409 msleep(xfs_globals.mount_delay * 1000); 1410 } 1411 1412 if (fc->sb_flags & SB_SILENT) 1413 flags |= XFS_MFSI_QUIET; 1414 1415 error = xfs_open_devices(mp); 1416 if (error) 1417 goto out_free_names; 1418 1419 error = xfs_init_mount_workqueues(mp); 1420 if (error) 1421 goto out_close_devices; 1422 1423 error = xfs_init_percpu_counters(mp); 1424 if (error) 1425 goto out_destroy_workqueues; 1426 1427 /* Allocate stats memory before we do operations that might use it */ 1428 mp->m_stats.xs_stats = alloc_percpu(struct xfsstats); 1429 if (!mp->m_stats.xs_stats) { 1430 error = -ENOMEM; 1431 goto out_destroy_counters; 1432 } 1433 1434 error = xfs_readsb(mp, flags); 1435 if (error) 1436 goto out_free_stats; 1437 1438 error = xfs_finish_flags(mp); 1439 if (error) 1440 goto out_free_sb; 1441 1442 error = xfs_setup_devices(mp); 1443 if (error) 1444 goto out_free_sb; 1445 1446 /* 1447 * XFS block mappings use 54 bits to store the logical block offset. 1448 * This should suffice to handle the maximum file size that the VFS 1449 * supports (currently 2^63 bytes on 64-bit and ULONG_MAX << PAGE_SHIFT 1450 * bytes on 32-bit), but as XFS and VFS have gotten the s_maxbytes 1451 * calculation wrong on 32-bit kernels in the past, we'll add a WARN_ON 1452 * to check this assertion. 1453 * 1454 * Avoid integer overflow by comparing the maximum bmbt offset to the 1455 * maximum pagecache offset in units of fs blocks. 1456 */ 1457 if (XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE) > XFS_MAX_FILEOFF) { 1458 xfs_warn(mp, 1459 "MAX_LFS_FILESIZE block offset (%llu) exceeds extent map maximum (%llu)!", 1460 XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE), 1461 XFS_MAX_FILEOFF); 1462 error = -EINVAL; 1463 goto out_free_sb; 1464 } 1465 1466 error = xfs_filestream_mount(mp); 1467 if (error) 1468 goto out_free_sb; 1469 1470 /* 1471 * we must configure the block size in the superblock before we run the 1472 * full mount process as the mount process can lookup and cache inodes. 1473 */ 1474 sb->s_magic = XFS_SUPER_MAGIC; 1475 sb->s_blocksize = mp->m_sb.sb_blocksize; 1476 sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1; 1477 sb->s_maxbytes = MAX_LFS_FILESIZE; 1478 sb->s_max_links = XFS_MAXLINK; 1479 sb->s_time_gran = 1; 1480 sb->s_time_min = S32_MIN; 1481 sb->s_time_max = S32_MAX; 1482 sb->s_iflags |= SB_I_CGROUPWB; 1483 1484 set_posix_acl_flag(sb); 1485 1486 /* version 5 superblocks support inode version counters. */ 1487 if (XFS_SB_VERSION_NUM(&mp->m_sb) == XFS_SB_VERSION_5) 1488 sb->s_flags |= SB_I_VERSION; 1489 1490 if (mp->m_flags & XFS_MOUNT_DAX_ALWAYS) { 1491 bool rtdev_is_dax = false, datadev_is_dax; 1492 1493 xfs_warn(mp, 1494 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1495 1496 datadev_is_dax = bdev_dax_supported(mp->m_ddev_targp->bt_bdev, 1497 sb->s_blocksize); 1498 if (mp->m_rtdev_targp) 1499 rtdev_is_dax = bdev_dax_supported( 1500 mp->m_rtdev_targp->bt_bdev, sb->s_blocksize); 1501 if (!rtdev_is_dax && !datadev_is_dax) { 1502 xfs_alert(mp, 1503 "DAX unsupported by block device. Turning off DAX."); 1504 xfs_mount_set_dax_mode(mp, XFS_DAX_NEVER); 1505 } 1506 if (xfs_sb_version_hasreflink(&mp->m_sb)) { 1507 xfs_alert(mp, 1508 "DAX and reflink cannot be used together!"); 1509 error = -EINVAL; 1510 goto out_filestream_unmount; 1511 } 1512 } 1513 1514 if (mp->m_flags & XFS_MOUNT_DISCARD) { 1515 struct request_queue *q = bdev_get_queue(sb->s_bdev); 1516 1517 if (!blk_queue_discard(q)) { 1518 xfs_warn(mp, "mounting with \"discard\" option, but " 1519 "the device does not support discard"); 1520 mp->m_flags &= ~XFS_MOUNT_DISCARD; 1521 } 1522 } 1523 1524 if (xfs_sb_version_hasreflink(&mp->m_sb)) { 1525 if (mp->m_sb.sb_rblocks) { 1526 xfs_alert(mp, 1527 "reflink not compatible with realtime device!"); 1528 error = -EINVAL; 1529 goto out_filestream_unmount; 1530 } 1531 1532 if (xfs_globals.always_cow) { 1533 xfs_info(mp, "using DEBUG-only always_cow mode."); 1534 mp->m_always_cow = true; 1535 } 1536 } 1537 1538 if (xfs_sb_version_hasrmapbt(&mp->m_sb) && mp->m_sb.sb_rblocks) { 1539 xfs_alert(mp, 1540 "reverse mapping btree not compatible with realtime device!"); 1541 error = -EINVAL; 1542 goto out_filestream_unmount; 1543 } 1544 1545 error = xfs_mountfs(mp); 1546 if (error) 1547 goto out_filestream_unmount; 1548 1549 root = igrab(VFS_I(mp->m_rootip)); 1550 if (!root) { 1551 error = -ENOENT; 1552 goto out_unmount; 1553 } 1554 sb->s_root = d_make_root(root); 1555 if (!sb->s_root) { 1556 error = -ENOMEM; 1557 goto out_unmount; 1558 } 1559 1560 return 0; 1561 1562 out_filestream_unmount: 1563 xfs_filestream_unmount(mp); 1564 out_free_sb: 1565 xfs_freesb(mp); 1566 out_free_stats: 1567 free_percpu(mp->m_stats.xs_stats); 1568 out_destroy_counters: 1569 xfs_destroy_percpu_counters(mp); 1570 out_destroy_workqueues: 1571 xfs_destroy_mount_workqueues(mp); 1572 out_close_devices: 1573 xfs_close_devices(mp); 1574 out_free_names: 1575 sb->s_fs_info = NULL; 1576 xfs_mount_free(mp); 1577 return error; 1578 1579 out_unmount: 1580 xfs_filestream_unmount(mp); 1581 xfs_unmountfs(mp); 1582 goto out_free_sb; 1583 } 1584 1585 static int 1586 xfs_fc_get_tree( 1587 struct fs_context *fc) 1588 { 1589 return get_tree_bdev(fc, xfs_fc_fill_super); 1590 } 1591 1592 static int 1593 xfs_remount_rw( 1594 struct xfs_mount *mp) 1595 { 1596 struct xfs_sb *sbp = &mp->m_sb; 1597 int error; 1598 1599 if (mp->m_flags & XFS_MOUNT_NORECOVERY) { 1600 xfs_warn(mp, 1601 "ro->rw transition prohibited on norecovery mount"); 1602 return -EINVAL; 1603 } 1604 1605 if (XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5 && 1606 xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { 1607 xfs_warn(mp, 1608 "ro->rw transition prohibited on unknown (0x%x) ro-compat filesystem", 1609 (sbp->sb_features_ro_compat & 1610 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); 1611 return -EINVAL; 1612 } 1613 1614 mp->m_flags &= ~XFS_MOUNT_RDONLY; 1615 1616 /* 1617 * If this is the first remount to writeable state we might have some 1618 * superblock changes to update. 1619 */ 1620 if (mp->m_update_sb) { 1621 error = xfs_sync_sb(mp, false); 1622 if (error) { 1623 xfs_warn(mp, "failed to write sb changes"); 1624 return error; 1625 } 1626 mp->m_update_sb = false; 1627 } 1628 1629 /* 1630 * Fill out the reserve pool if it is empty. Use the stashed value if 1631 * it is non-zero, otherwise go with the default. 1632 */ 1633 xfs_restore_resvblks(mp); 1634 xfs_log_work_queue(mp); 1635 1636 /* Recover any CoW blocks that never got remapped. */ 1637 error = xfs_reflink_recover_cow(mp); 1638 if (error) { 1639 xfs_err(mp, 1640 "Error %d recovering leftover CoW allocations.", error); 1641 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1642 return error; 1643 } 1644 xfs_start_block_reaping(mp); 1645 1646 /* Create the per-AG metadata reservation pool .*/ 1647 error = xfs_fs_reserve_ag_blocks(mp); 1648 if (error && error != -ENOSPC) 1649 return error; 1650 1651 return 0; 1652 } 1653 1654 static int 1655 xfs_remount_ro( 1656 struct xfs_mount *mp) 1657 { 1658 int error; 1659 1660 /* 1661 * Cancel background eofb scanning so it cannot race with the final 1662 * log force+buftarg wait and deadlock the remount. 1663 */ 1664 xfs_stop_block_reaping(mp); 1665 1666 /* Get rid of any leftover CoW reservations... */ 1667 error = xfs_icache_free_cowblocks(mp, NULL); 1668 if (error) { 1669 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1670 return error; 1671 } 1672 1673 /* Free the per-AG metadata reservation pool. */ 1674 error = xfs_fs_unreserve_ag_blocks(mp); 1675 if (error) { 1676 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1677 return error; 1678 } 1679 1680 /* 1681 * Before we sync the metadata, we need to free up the reserve block 1682 * pool so that the used block count in the superblock on disk is 1683 * correct at the end of the remount. Stash the current* reserve pool 1684 * size so that if we get remounted rw, we can return it to the same 1685 * size. 1686 */ 1687 xfs_save_resvblks(mp); 1688 1689 xfs_quiesce_attr(mp); 1690 mp->m_flags |= XFS_MOUNT_RDONLY; 1691 1692 return 0; 1693 } 1694 1695 /* 1696 * Logically we would return an error here to prevent users from believing 1697 * they might have changed mount options using remount which can't be changed. 1698 * 1699 * But unfortunately mount(8) adds all options from mtab and fstab to the mount 1700 * arguments in some cases so we can't blindly reject options, but have to 1701 * check for each specified option if it actually differs from the currently 1702 * set option and only reject it if that's the case. 1703 * 1704 * Until that is implemented we return success for every remount request, and 1705 * silently ignore all options that we can't actually change. 1706 */ 1707 static int 1708 xfs_fc_reconfigure( 1709 struct fs_context *fc) 1710 { 1711 struct xfs_mount *mp = XFS_M(fc->root->d_sb); 1712 struct xfs_mount *new_mp = fc->s_fs_info; 1713 xfs_sb_t *sbp = &mp->m_sb; 1714 int flags = fc->sb_flags; 1715 int error; 1716 1717 error = xfs_fc_validate_params(new_mp); 1718 if (error) 1719 return error; 1720 1721 sync_filesystem(mp->m_super); 1722 1723 /* inode32 -> inode64 */ 1724 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && 1725 !(new_mp->m_flags & XFS_MOUNT_SMALL_INUMS)) { 1726 mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS; 1727 mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount); 1728 } 1729 1730 /* inode64 -> inode32 */ 1731 if (!(mp->m_flags & XFS_MOUNT_SMALL_INUMS) && 1732 (new_mp->m_flags & XFS_MOUNT_SMALL_INUMS)) { 1733 mp->m_flags |= XFS_MOUNT_SMALL_INUMS; 1734 mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount); 1735 } 1736 1737 /* ro -> rw */ 1738 if ((mp->m_flags & XFS_MOUNT_RDONLY) && !(flags & SB_RDONLY)) { 1739 error = xfs_remount_rw(mp); 1740 if (error) 1741 return error; 1742 } 1743 1744 /* rw -> ro */ 1745 if (!(mp->m_flags & XFS_MOUNT_RDONLY) && (flags & SB_RDONLY)) { 1746 error = xfs_remount_ro(mp); 1747 if (error) 1748 return error; 1749 } 1750 1751 return 0; 1752 } 1753 1754 static void xfs_fc_free( 1755 struct fs_context *fc) 1756 { 1757 struct xfs_mount *mp = fc->s_fs_info; 1758 1759 /* 1760 * mp is stored in the fs_context when it is initialized. 1761 * mp is transferred to the superblock on a successful mount, 1762 * but if an error occurs before the transfer we have to free 1763 * it here. 1764 */ 1765 if (mp) 1766 xfs_mount_free(mp); 1767 } 1768 1769 static const struct fs_context_operations xfs_context_ops = { 1770 .parse_param = xfs_fc_parse_param, 1771 .get_tree = xfs_fc_get_tree, 1772 .reconfigure = xfs_fc_reconfigure, 1773 .free = xfs_fc_free, 1774 }; 1775 1776 static int xfs_init_fs_context( 1777 struct fs_context *fc) 1778 { 1779 struct xfs_mount *mp; 1780 1781 mp = kmem_alloc(sizeof(struct xfs_mount), KM_ZERO); 1782 if (!mp) 1783 return -ENOMEM; 1784 1785 spin_lock_init(&mp->m_sb_lock); 1786 spin_lock_init(&mp->m_agirotor_lock); 1787 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 1788 spin_lock_init(&mp->m_perag_lock); 1789 mutex_init(&mp->m_growlock); 1790 INIT_WORK(&mp->m_flush_inodes_work, xfs_flush_inodes_worker); 1791 INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker); 1792 INIT_DELAYED_WORK(&mp->m_eofblocks_work, xfs_eofblocks_worker); 1793 INIT_DELAYED_WORK(&mp->m_cowblocks_work, xfs_cowblocks_worker); 1794 mp->m_kobj.kobject.kset = xfs_kset; 1795 /* 1796 * We don't create the finobt per-ag space reservation until after log 1797 * recovery, so we must set this to true so that an ifree transaction 1798 * started during log recovery will not depend on space reservations 1799 * for finobt expansion. 1800 */ 1801 mp->m_finobt_nores = true; 1802 1803 /* 1804 * These can be overridden by the mount option parsing. 1805 */ 1806 mp->m_logbufs = -1; 1807 mp->m_logbsize = -1; 1808 mp->m_allocsize_log = 16; /* 64k */ 1809 1810 /* 1811 * Copy binary VFS mount flags we are interested in. 1812 */ 1813 if (fc->sb_flags & SB_RDONLY) 1814 mp->m_flags |= XFS_MOUNT_RDONLY; 1815 if (fc->sb_flags & SB_DIRSYNC) 1816 mp->m_flags |= XFS_MOUNT_DIRSYNC; 1817 if (fc->sb_flags & SB_SYNCHRONOUS) 1818 mp->m_flags |= XFS_MOUNT_WSYNC; 1819 1820 fc->s_fs_info = mp; 1821 fc->ops = &xfs_context_ops; 1822 1823 return 0; 1824 } 1825 1826 static struct file_system_type xfs_fs_type = { 1827 .owner = THIS_MODULE, 1828 .name = "xfs", 1829 .init_fs_context = xfs_init_fs_context, 1830 .parameters = xfs_fs_parameters, 1831 .kill_sb = kill_block_super, 1832 .fs_flags = FS_REQUIRES_DEV, 1833 }; 1834 MODULE_ALIAS_FS("xfs"); 1835 1836 STATIC int __init 1837 xfs_init_zones(void) 1838 { 1839 xfs_log_ticket_zone = kmem_cache_create("xfs_log_ticket", 1840 sizeof(struct xlog_ticket), 1841 0, 0, NULL); 1842 if (!xfs_log_ticket_zone) 1843 goto out; 1844 1845 xfs_bmap_free_item_zone = kmem_cache_create("xfs_bmap_free_item", 1846 sizeof(struct xfs_extent_free_item), 1847 0, 0, NULL); 1848 if (!xfs_bmap_free_item_zone) 1849 goto out_destroy_log_ticket_zone; 1850 1851 xfs_btree_cur_zone = kmem_cache_create("xfs_btree_cur", 1852 sizeof(struct xfs_btree_cur), 1853 0, 0, NULL); 1854 if (!xfs_btree_cur_zone) 1855 goto out_destroy_bmap_free_item_zone; 1856 1857 xfs_da_state_zone = kmem_cache_create("xfs_da_state", 1858 sizeof(struct xfs_da_state), 1859 0, 0, NULL); 1860 if (!xfs_da_state_zone) 1861 goto out_destroy_btree_cur_zone; 1862 1863 xfs_ifork_zone = kmem_cache_create("xfs_ifork", 1864 sizeof(struct xfs_ifork), 1865 0, 0, NULL); 1866 if (!xfs_ifork_zone) 1867 goto out_destroy_da_state_zone; 1868 1869 xfs_trans_zone = kmem_cache_create("xf_trans", 1870 sizeof(struct xfs_trans), 1871 0, 0, NULL); 1872 if (!xfs_trans_zone) 1873 goto out_destroy_ifork_zone; 1874 1875 1876 /* 1877 * The size of the zone allocated buf log item is the maximum 1878 * size possible under XFS. This wastes a little bit of memory, 1879 * but it is much faster. 1880 */ 1881 xfs_buf_item_zone = kmem_cache_create("xfs_buf_item", 1882 sizeof(struct xfs_buf_log_item), 1883 0, 0, NULL); 1884 if (!xfs_buf_item_zone) 1885 goto out_destroy_trans_zone; 1886 1887 xfs_efd_zone = kmem_cache_create("xfs_efd_item", 1888 (sizeof(struct xfs_efd_log_item) + 1889 (XFS_EFD_MAX_FAST_EXTENTS - 1) * 1890 sizeof(struct xfs_extent)), 1891 0, 0, NULL); 1892 if (!xfs_efd_zone) 1893 goto out_destroy_buf_item_zone; 1894 1895 xfs_efi_zone = kmem_cache_create("xfs_efi_item", 1896 (sizeof(struct xfs_efi_log_item) + 1897 (XFS_EFI_MAX_FAST_EXTENTS - 1) * 1898 sizeof(struct xfs_extent)), 1899 0, 0, NULL); 1900 if (!xfs_efi_zone) 1901 goto out_destroy_efd_zone; 1902 1903 xfs_inode_zone = kmem_cache_create("xfs_inode", 1904 sizeof(struct xfs_inode), 0, 1905 (SLAB_HWCACHE_ALIGN | 1906 SLAB_RECLAIM_ACCOUNT | 1907 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 1908 xfs_fs_inode_init_once); 1909 if (!xfs_inode_zone) 1910 goto out_destroy_efi_zone; 1911 1912 xfs_ili_zone = kmem_cache_create("xfs_ili", 1913 sizeof(struct xfs_inode_log_item), 0, 1914 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 1915 NULL); 1916 if (!xfs_ili_zone) 1917 goto out_destroy_inode_zone; 1918 1919 xfs_icreate_zone = kmem_cache_create("xfs_icr", 1920 sizeof(struct xfs_icreate_item), 1921 0, 0, NULL); 1922 if (!xfs_icreate_zone) 1923 goto out_destroy_ili_zone; 1924 1925 xfs_rud_zone = kmem_cache_create("xfs_rud_item", 1926 sizeof(struct xfs_rud_log_item), 1927 0, 0, NULL); 1928 if (!xfs_rud_zone) 1929 goto out_destroy_icreate_zone; 1930 1931 xfs_rui_zone = kmem_cache_create("xfs_rui_item", 1932 xfs_rui_log_item_sizeof(XFS_RUI_MAX_FAST_EXTENTS), 1933 0, 0, NULL); 1934 if (!xfs_rui_zone) 1935 goto out_destroy_rud_zone; 1936 1937 xfs_cud_zone = kmem_cache_create("xfs_cud_item", 1938 sizeof(struct xfs_cud_log_item), 1939 0, 0, NULL); 1940 if (!xfs_cud_zone) 1941 goto out_destroy_rui_zone; 1942 1943 xfs_cui_zone = kmem_cache_create("xfs_cui_item", 1944 xfs_cui_log_item_sizeof(XFS_CUI_MAX_FAST_EXTENTS), 1945 0, 0, NULL); 1946 if (!xfs_cui_zone) 1947 goto out_destroy_cud_zone; 1948 1949 xfs_bud_zone = kmem_cache_create("xfs_bud_item", 1950 sizeof(struct xfs_bud_log_item), 1951 0, 0, NULL); 1952 if (!xfs_bud_zone) 1953 goto out_destroy_cui_zone; 1954 1955 xfs_bui_zone = kmem_cache_create("xfs_bui_item", 1956 xfs_bui_log_item_sizeof(XFS_BUI_MAX_FAST_EXTENTS), 1957 0, 0, NULL); 1958 if (!xfs_bui_zone) 1959 goto out_destroy_bud_zone; 1960 1961 return 0; 1962 1963 out_destroy_bud_zone: 1964 kmem_cache_destroy(xfs_bud_zone); 1965 out_destroy_cui_zone: 1966 kmem_cache_destroy(xfs_cui_zone); 1967 out_destroy_cud_zone: 1968 kmem_cache_destroy(xfs_cud_zone); 1969 out_destroy_rui_zone: 1970 kmem_cache_destroy(xfs_rui_zone); 1971 out_destroy_rud_zone: 1972 kmem_cache_destroy(xfs_rud_zone); 1973 out_destroy_icreate_zone: 1974 kmem_cache_destroy(xfs_icreate_zone); 1975 out_destroy_ili_zone: 1976 kmem_cache_destroy(xfs_ili_zone); 1977 out_destroy_inode_zone: 1978 kmem_cache_destroy(xfs_inode_zone); 1979 out_destroy_efi_zone: 1980 kmem_cache_destroy(xfs_efi_zone); 1981 out_destroy_efd_zone: 1982 kmem_cache_destroy(xfs_efd_zone); 1983 out_destroy_buf_item_zone: 1984 kmem_cache_destroy(xfs_buf_item_zone); 1985 out_destroy_trans_zone: 1986 kmem_cache_destroy(xfs_trans_zone); 1987 out_destroy_ifork_zone: 1988 kmem_cache_destroy(xfs_ifork_zone); 1989 out_destroy_da_state_zone: 1990 kmem_cache_destroy(xfs_da_state_zone); 1991 out_destroy_btree_cur_zone: 1992 kmem_cache_destroy(xfs_btree_cur_zone); 1993 out_destroy_bmap_free_item_zone: 1994 kmem_cache_destroy(xfs_bmap_free_item_zone); 1995 out_destroy_log_ticket_zone: 1996 kmem_cache_destroy(xfs_log_ticket_zone); 1997 out: 1998 return -ENOMEM; 1999 } 2000 2001 STATIC void 2002 xfs_destroy_zones(void) 2003 { 2004 /* 2005 * Make sure all delayed rcu free are flushed before we 2006 * destroy caches. 2007 */ 2008 rcu_barrier(); 2009 kmem_cache_destroy(xfs_bui_zone); 2010 kmem_cache_destroy(xfs_bud_zone); 2011 kmem_cache_destroy(xfs_cui_zone); 2012 kmem_cache_destroy(xfs_cud_zone); 2013 kmem_cache_destroy(xfs_rui_zone); 2014 kmem_cache_destroy(xfs_rud_zone); 2015 kmem_cache_destroy(xfs_icreate_zone); 2016 kmem_cache_destroy(xfs_ili_zone); 2017 kmem_cache_destroy(xfs_inode_zone); 2018 kmem_cache_destroy(xfs_efi_zone); 2019 kmem_cache_destroy(xfs_efd_zone); 2020 kmem_cache_destroy(xfs_buf_item_zone); 2021 kmem_cache_destroy(xfs_trans_zone); 2022 kmem_cache_destroy(xfs_ifork_zone); 2023 kmem_cache_destroy(xfs_da_state_zone); 2024 kmem_cache_destroy(xfs_btree_cur_zone); 2025 kmem_cache_destroy(xfs_bmap_free_item_zone); 2026 kmem_cache_destroy(xfs_log_ticket_zone); 2027 } 2028 2029 STATIC int __init 2030 xfs_init_workqueues(void) 2031 { 2032 /* 2033 * The allocation workqueue can be used in memory reclaim situations 2034 * (writepage path), and parallelism is only limited by the number of 2035 * AGs in all the filesystems mounted. Hence use the default large 2036 * max_active value for this workqueue. 2037 */ 2038 xfs_alloc_wq = alloc_workqueue("xfsalloc", 2039 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0); 2040 if (!xfs_alloc_wq) 2041 return -ENOMEM; 2042 2043 xfs_discard_wq = alloc_workqueue("xfsdiscard", WQ_UNBOUND, 0); 2044 if (!xfs_discard_wq) 2045 goto out_free_alloc_wq; 2046 2047 return 0; 2048 out_free_alloc_wq: 2049 destroy_workqueue(xfs_alloc_wq); 2050 return -ENOMEM; 2051 } 2052 2053 STATIC void 2054 xfs_destroy_workqueues(void) 2055 { 2056 destroy_workqueue(xfs_discard_wq); 2057 destroy_workqueue(xfs_alloc_wq); 2058 } 2059 2060 STATIC int __init 2061 init_xfs_fs(void) 2062 { 2063 int error; 2064 2065 xfs_check_ondisk_structs(); 2066 2067 printk(KERN_INFO XFS_VERSION_STRING " with " 2068 XFS_BUILD_OPTIONS " enabled\n"); 2069 2070 xfs_dir_startup(); 2071 2072 error = xfs_init_zones(); 2073 if (error) 2074 goto out; 2075 2076 error = xfs_init_workqueues(); 2077 if (error) 2078 goto out_destroy_zones; 2079 2080 error = xfs_mru_cache_init(); 2081 if (error) 2082 goto out_destroy_wq; 2083 2084 error = xfs_buf_init(); 2085 if (error) 2086 goto out_mru_cache_uninit; 2087 2088 error = xfs_init_procfs(); 2089 if (error) 2090 goto out_buf_terminate; 2091 2092 error = xfs_sysctl_register(); 2093 if (error) 2094 goto out_cleanup_procfs; 2095 2096 xfs_kset = kset_create_and_add("xfs", NULL, fs_kobj); 2097 if (!xfs_kset) { 2098 error = -ENOMEM; 2099 goto out_sysctl_unregister; 2100 } 2101 2102 xfsstats.xs_kobj.kobject.kset = xfs_kset; 2103 2104 xfsstats.xs_stats = alloc_percpu(struct xfsstats); 2105 if (!xfsstats.xs_stats) { 2106 error = -ENOMEM; 2107 goto out_kset_unregister; 2108 } 2109 2110 error = xfs_sysfs_init(&xfsstats.xs_kobj, &xfs_stats_ktype, NULL, 2111 "stats"); 2112 if (error) 2113 goto out_free_stats; 2114 2115 #ifdef DEBUG 2116 xfs_dbg_kobj.kobject.kset = xfs_kset; 2117 error = xfs_sysfs_init(&xfs_dbg_kobj, &xfs_dbg_ktype, NULL, "debug"); 2118 if (error) 2119 goto out_remove_stats_kobj; 2120 #endif 2121 2122 error = xfs_qm_init(); 2123 if (error) 2124 goto out_remove_dbg_kobj; 2125 2126 error = register_filesystem(&xfs_fs_type); 2127 if (error) 2128 goto out_qm_exit; 2129 return 0; 2130 2131 out_qm_exit: 2132 xfs_qm_exit(); 2133 out_remove_dbg_kobj: 2134 #ifdef DEBUG 2135 xfs_sysfs_del(&xfs_dbg_kobj); 2136 out_remove_stats_kobj: 2137 #endif 2138 xfs_sysfs_del(&xfsstats.xs_kobj); 2139 out_free_stats: 2140 free_percpu(xfsstats.xs_stats); 2141 out_kset_unregister: 2142 kset_unregister(xfs_kset); 2143 out_sysctl_unregister: 2144 xfs_sysctl_unregister(); 2145 out_cleanup_procfs: 2146 xfs_cleanup_procfs(); 2147 out_buf_terminate: 2148 xfs_buf_terminate(); 2149 out_mru_cache_uninit: 2150 xfs_mru_cache_uninit(); 2151 out_destroy_wq: 2152 xfs_destroy_workqueues(); 2153 out_destroy_zones: 2154 xfs_destroy_zones(); 2155 out: 2156 return error; 2157 } 2158 2159 STATIC void __exit 2160 exit_xfs_fs(void) 2161 { 2162 xfs_qm_exit(); 2163 unregister_filesystem(&xfs_fs_type); 2164 #ifdef DEBUG 2165 xfs_sysfs_del(&xfs_dbg_kobj); 2166 #endif 2167 xfs_sysfs_del(&xfsstats.xs_kobj); 2168 free_percpu(xfsstats.xs_stats); 2169 kset_unregister(xfs_kset); 2170 xfs_sysctl_unregister(); 2171 xfs_cleanup_procfs(); 2172 xfs_buf_terminate(); 2173 xfs_mru_cache_uninit(); 2174 xfs_destroy_workqueues(); 2175 xfs_destroy_zones(); 2176 xfs_uuid_table_free(); 2177 } 2178 2179 module_init(init_xfs_fs); 2180 module_exit(exit_xfs_fs); 2181 2182 MODULE_AUTHOR("Silicon Graphics, Inc."); 2183 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled"); 2184 MODULE_LICENSE("GPL"); 2185