1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 7 #include "xfs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_sb.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_btree.h" 16 #include "xfs_bmap.h" 17 #include "xfs_alloc.h" 18 #include "xfs_fsops.h" 19 #include "xfs_trans.h" 20 #include "xfs_buf_item.h" 21 #include "xfs_log.h" 22 #include "xfs_log_priv.h" 23 #include "xfs_dir2.h" 24 #include "xfs_extfree_item.h" 25 #include "xfs_mru_cache.h" 26 #include "xfs_inode_item.h" 27 #include "xfs_icache.h" 28 #include "xfs_trace.h" 29 #include "xfs_icreate_item.h" 30 #include "xfs_filestream.h" 31 #include "xfs_quota.h" 32 #include "xfs_sysfs.h" 33 #include "xfs_ondisk.h" 34 #include "xfs_rmap_item.h" 35 #include "xfs_refcount_item.h" 36 #include "xfs_bmap_item.h" 37 #include "xfs_reflink.h" 38 39 #include <linux/magic.h> 40 #include <linux/fs_context.h> 41 #include <linux/fs_parser.h> 42 43 static const struct super_operations xfs_super_operations; 44 45 static struct kset *xfs_kset; /* top-level xfs sysfs dir */ 46 #ifdef DEBUG 47 static struct xfs_kobj xfs_dbg_kobj; /* global debug sysfs attrs */ 48 #endif 49 50 /* 51 * Table driven mount option parser. 52 */ 53 enum { 54 Opt_logbufs, Opt_logbsize, Opt_logdev, Opt_rtdev, 55 Opt_wsync, Opt_noalign, Opt_swalloc, Opt_sunit, Opt_swidth, Opt_nouuid, 56 Opt_grpid, Opt_nogrpid, Opt_bsdgroups, Opt_sysvgroups, 57 Opt_allocsize, Opt_norecovery, Opt_inode64, Opt_inode32, Opt_ikeep, 58 Opt_noikeep, Opt_largeio, Opt_nolargeio, Opt_attr2, Opt_noattr2, 59 Opt_filestreams, Opt_quota, Opt_noquota, Opt_usrquota, Opt_grpquota, 60 Opt_prjquota, Opt_uquota, Opt_gquota, Opt_pquota, 61 Opt_uqnoenforce, Opt_gqnoenforce, Opt_pqnoenforce, Opt_qnoenforce, 62 Opt_discard, Opt_nodiscard, Opt_dax, 63 }; 64 65 static const struct fs_parameter_spec xfs_fs_parameters[] = { 66 fsparam_u32("logbufs", Opt_logbufs), 67 fsparam_string("logbsize", Opt_logbsize), 68 fsparam_string("logdev", Opt_logdev), 69 fsparam_string("rtdev", Opt_rtdev), 70 fsparam_flag("wsync", Opt_wsync), 71 fsparam_flag("noalign", Opt_noalign), 72 fsparam_flag("swalloc", Opt_swalloc), 73 fsparam_u32("sunit", Opt_sunit), 74 fsparam_u32("swidth", Opt_swidth), 75 fsparam_flag("nouuid", Opt_nouuid), 76 fsparam_flag("grpid", Opt_grpid), 77 fsparam_flag("nogrpid", Opt_nogrpid), 78 fsparam_flag("bsdgroups", Opt_bsdgroups), 79 fsparam_flag("sysvgroups", Opt_sysvgroups), 80 fsparam_string("allocsize", Opt_allocsize), 81 fsparam_flag("norecovery", Opt_norecovery), 82 fsparam_flag("inode64", Opt_inode64), 83 fsparam_flag("inode32", Opt_inode32), 84 fsparam_flag("ikeep", Opt_ikeep), 85 fsparam_flag("noikeep", Opt_noikeep), 86 fsparam_flag("largeio", Opt_largeio), 87 fsparam_flag("nolargeio", Opt_nolargeio), 88 fsparam_flag("attr2", Opt_attr2), 89 fsparam_flag("noattr2", Opt_noattr2), 90 fsparam_flag("filestreams", Opt_filestreams), 91 fsparam_flag("quota", Opt_quota), 92 fsparam_flag("noquota", Opt_noquota), 93 fsparam_flag("usrquota", Opt_usrquota), 94 fsparam_flag("grpquota", Opt_grpquota), 95 fsparam_flag("prjquota", Opt_prjquota), 96 fsparam_flag("uquota", Opt_uquota), 97 fsparam_flag("gquota", Opt_gquota), 98 fsparam_flag("pquota", Opt_pquota), 99 fsparam_flag("uqnoenforce", Opt_uqnoenforce), 100 fsparam_flag("gqnoenforce", Opt_gqnoenforce), 101 fsparam_flag("pqnoenforce", Opt_pqnoenforce), 102 fsparam_flag("qnoenforce", Opt_qnoenforce), 103 fsparam_flag("discard", Opt_discard), 104 fsparam_flag("nodiscard", Opt_nodiscard), 105 fsparam_flag("dax", Opt_dax), 106 {} 107 }; 108 109 struct proc_xfs_info { 110 uint64_t flag; 111 char *str; 112 }; 113 114 static int 115 xfs_fs_show_options( 116 struct seq_file *m, 117 struct dentry *root) 118 { 119 static struct proc_xfs_info xfs_info_set[] = { 120 /* the few simple ones we can get from the mount struct */ 121 { XFS_MOUNT_IKEEP, ",ikeep" }, 122 { XFS_MOUNT_WSYNC, ",wsync" }, 123 { XFS_MOUNT_NOALIGN, ",noalign" }, 124 { XFS_MOUNT_SWALLOC, ",swalloc" }, 125 { XFS_MOUNT_NOUUID, ",nouuid" }, 126 { XFS_MOUNT_NORECOVERY, ",norecovery" }, 127 { XFS_MOUNT_ATTR2, ",attr2" }, 128 { XFS_MOUNT_FILESTREAMS, ",filestreams" }, 129 { XFS_MOUNT_GRPID, ",grpid" }, 130 { XFS_MOUNT_DISCARD, ",discard" }, 131 { XFS_MOUNT_LARGEIO, ",largeio" }, 132 { XFS_MOUNT_DAX, ",dax" }, 133 { 0, NULL } 134 }; 135 struct xfs_mount *mp = XFS_M(root->d_sb); 136 struct proc_xfs_info *xfs_infop; 137 138 for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) { 139 if (mp->m_flags & xfs_infop->flag) 140 seq_puts(m, xfs_infop->str); 141 } 142 143 seq_printf(m, ",inode%d", 144 (mp->m_flags & XFS_MOUNT_SMALL_INUMS) ? 32 : 64); 145 146 if (mp->m_flags & XFS_MOUNT_ALLOCSIZE) 147 seq_printf(m, ",allocsize=%dk", 148 (1 << mp->m_allocsize_log) >> 10); 149 150 if (mp->m_logbufs > 0) 151 seq_printf(m, ",logbufs=%d", mp->m_logbufs); 152 if (mp->m_logbsize > 0) 153 seq_printf(m, ",logbsize=%dk", mp->m_logbsize >> 10); 154 155 if (mp->m_logname) 156 seq_show_option(m, "logdev", mp->m_logname); 157 if (mp->m_rtname) 158 seq_show_option(m, "rtdev", mp->m_rtname); 159 160 if (mp->m_dalign > 0) 161 seq_printf(m, ",sunit=%d", 162 (int)XFS_FSB_TO_BB(mp, mp->m_dalign)); 163 if (mp->m_swidth > 0) 164 seq_printf(m, ",swidth=%d", 165 (int)XFS_FSB_TO_BB(mp, mp->m_swidth)); 166 167 if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD)) 168 seq_puts(m, ",usrquota"); 169 else if (mp->m_qflags & XFS_UQUOTA_ACCT) 170 seq_puts(m, ",uqnoenforce"); 171 172 if (mp->m_qflags & XFS_PQUOTA_ACCT) { 173 if (mp->m_qflags & XFS_PQUOTA_ENFD) 174 seq_puts(m, ",prjquota"); 175 else 176 seq_puts(m, ",pqnoenforce"); 177 } 178 if (mp->m_qflags & XFS_GQUOTA_ACCT) { 179 if (mp->m_qflags & XFS_GQUOTA_ENFD) 180 seq_puts(m, ",grpquota"); 181 else 182 seq_puts(m, ",gqnoenforce"); 183 } 184 185 if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT)) 186 seq_puts(m, ",noquota"); 187 188 return 0; 189 } 190 191 /* 192 * Set parameters for inode allocation heuristics, taking into account 193 * filesystem size and inode32/inode64 mount options; i.e. specifically 194 * whether or not XFS_MOUNT_SMALL_INUMS is set. 195 * 196 * Inode allocation patterns are altered only if inode32 is requested 197 * (XFS_MOUNT_SMALL_INUMS), and the filesystem is sufficiently large. 198 * If altered, XFS_MOUNT_32BITINODES is set as well. 199 * 200 * An agcount independent of that in the mount structure is provided 201 * because in the growfs case, mp->m_sb.sb_agcount is not yet updated 202 * to the potentially higher ag count. 203 * 204 * Returns the maximum AG index which may contain inodes. 205 */ 206 xfs_agnumber_t 207 xfs_set_inode_alloc( 208 struct xfs_mount *mp, 209 xfs_agnumber_t agcount) 210 { 211 xfs_agnumber_t index; 212 xfs_agnumber_t maxagi = 0; 213 xfs_sb_t *sbp = &mp->m_sb; 214 xfs_agnumber_t max_metadata; 215 xfs_agino_t agino; 216 xfs_ino_t ino; 217 218 /* 219 * Calculate how much should be reserved for inodes to meet 220 * the max inode percentage. Used only for inode32. 221 */ 222 if (M_IGEO(mp)->maxicount) { 223 uint64_t icount; 224 225 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 226 do_div(icount, 100); 227 icount += sbp->sb_agblocks - 1; 228 do_div(icount, sbp->sb_agblocks); 229 max_metadata = icount; 230 } else { 231 max_metadata = agcount; 232 } 233 234 /* Get the last possible inode in the filesystem */ 235 agino = XFS_AGB_TO_AGINO(mp, sbp->sb_agblocks - 1); 236 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 237 238 /* 239 * If user asked for no more than 32-bit inodes, and the fs is 240 * sufficiently large, set XFS_MOUNT_32BITINODES if we must alter 241 * the allocator to accommodate the request. 242 */ 243 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) 244 mp->m_flags |= XFS_MOUNT_32BITINODES; 245 else 246 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 247 248 for (index = 0; index < agcount; index++) { 249 struct xfs_perag *pag; 250 251 ino = XFS_AGINO_TO_INO(mp, index, agino); 252 253 pag = xfs_perag_get(mp, index); 254 255 if (mp->m_flags & XFS_MOUNT_32BITINODES) { 256 if (ino > XFS_MAXINUMBER_32) { 257 pag->pagi_inodeok = 0; 258 pag->pagf_metadata = 0; 259 } else { 260 pag->pagi_inodeok = 1; 261 maxagi++; 262 if (index < max_metadata) 263 pag->pagf_metadata = 1; 264 else 265 pag->pagf_metadata = 0; 266 } 267 } else { 268 pag->pagi_inodeok = 1; 269 pag->pagf_metadata = 0; 270 } 271 272 xfs_perag_put(pag); 273 } 274 275 return (mp->m_flags & XFS_MOUNT_32BITINODES) ? maxagi : agcount; 276 } 277 278 STATIC int 279 xfs_blkdev_get( 280 xfs_mount_t *mp, 281 const char *name, 282 struct block_device **bdevp) 283 { 284 int error = 0; 285 286 *bdevp = blkdev_get_by_path(name, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 287 mp); 288 if (IS_ERR(*bdevp)) { 289 error = PTR_ERR(*bdevp); 290 xfs_warn(mp, "Invalid device [%s], error=%d", name, error); 291 } 292 293 return error; 294 } 295 296 STATIC void 297 xfs_blkdev_put( 298 struct block_device *bdev) 299 { 300 if (bdev) 301 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 302 } 303 304 void 305 xfs_blkdev_issue_flush( 306 xfs_buftarg_t *buftarg) 307 { 308 blkdev_issue_flush(buftarg->bt_bdev, GFP_NOFS, NULL); 309 } 310 311 STATIC void 312 xfs_close_devices( 313 struct xfs_mount *mp) 314 { 315 struct dax_device *dax_ddev = mp->m_ddev_targp->bt_daxdev; 316 317 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { 318 struct block_device *logdev = mp->m_logdev_targp->bt_bdev; 319 struct dax_device *dax_logdev = mp->m_logdev_targp->bt_daxdev; 320 321 xfs_free_buftarg(mp->m_logdev_targp); 322 xfs_blkdev_put(logdev); 323 fs_put_dax(dax_logdev); 324 } 325 if (mp->m_rtdev_targp) { 326 struct block_device *rtdev = mp->m_rtdev_targp->bt_bdev; 327 struct dax_device *dax_rtdev = mp->m_rtdev_targp->bt_daxdev; 328 329 xfs_free_buftarg(mp->m_rtdev_targp); 330 xfs_blkdev_put(rtdev); 331 fs_put_dax(dax_rtdev); 332 } 333 xfs_free_buftarg(mp->m_ddev_targp); 334 fs_put_dax(dax_ddev); 335 } 336 337 /* 338 * The file system configurations are: 339 * (1) device (partition) with data and internal log 340 * (2) logical volume with data and log subvolumes. 341 * (3) logical volume with data, log, and realtime subvolumes. 342 * 343 * We only have to handle opening the log and realtime volumes here if 344 * they are present. The data subvolume has already been opened by 345 * get_sb_bdev() and is stored in sb->s_bdev. 346 */ 347 STATIC int 348 xfs_open_devices( 349 struct xfs_mount *mp) 350 { 351 struct block_device *ddev = mp->m_super->s_bdev; 352 struct dax_device *dax_ddev = fs_dax_get_by_bdev(ddev); 353 struct dax_device *dax_logdev = NULL, *dax_rtdev = NULL; 354 struct block_device *logdev = NULL, *rtdev = NULL; 355 int error; 356 357 /* 358 * Open real time and log devices - order is important. 359 */ 360 if (mp->m_logname) { 361 error = xfs_blkdev_get(mp, mp->m_logname, &logdev); 362 if (error) 363 goto out; 364 dax_logdev = fs_dax_get_by_bdev(logdev); 365 } 366 367 if (mp->m_rtname) { 368 error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev); 369 if (error) 370 goto out_close_logdev; 371 372 if (rtdev == ddev || rtdev == logdev) { 373 xfs_warn(mp, 374 "Cannot mount filesystem with identical rtdev and ddev/logdev."); 375 error = -EINVAL; 376 goto out_close_rtdev; 377 } 378 dax_rtdev = fs_dax_get_by_bdev(rtdev); 379 } 380 381 /* 382 * Setup xfs_mount buffer target pointers 383 */ 384 error = -ENOMEM; 385 mp->m_ddev_targp = xfs_alloc_buftarg(mp, ddev, dax_ddev); 386 if (!mp->m_ddev_targp) 387 goto out_close_rtdev; 388 389 if (rtdev) { 390 mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev, dax_rtdev); 391 if (!mp->m_rtdev_targp) 392 goto out_free_ddev_targ; 393 } 394 395 if (logdev && logdev != ddev) { 396 mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev, dax_logdev); 397 if (!mp->m_logdev_targp) 398 goto out_free_rtdev_targ; 399 } else { 400 mp->m_logdev_targp = mp->m_ddev_targp; 401 } 402 403 return 0; 404 405 out_free_rtdev_targ: 406 if (mp->m_rtdev_targp) 407 xfs_free_buftarg(mp->m_rtdev_targp); 408 out_free_ddev_targ: 409 xfs_free_buftarg(mp->m_ddev_targp); 410 out_close_rtdev: 411 xfs_blkdev_put(rtdev); 412 fs_put_dax(dax_rtdev); 413 out_close_logdev: 414 if (logdev && logdev != ddev) { 415 xfs_blkdev_put(logdev); 416 fs_put_dax(dax_logdev); 417 } 418 out: 419 fs_put_dax(dax_ddev); 420 return error; 421 } 422 423 /* 424 * Setup xfs_mount buffer target pointers based on superblock 425 */ 426 STATIC int 427 xfs_setup_devices( 428 struct xfs_mount *mp) 429 { 430 int error; 431 432 error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_sectsize); 433 if (error) 434 return error; 435 436 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { 437 unsigned int log_sector_size = BBSIZE; 438 439 if (xfs_sb_version_hassector(&mp->m_sb)) 440 log_sector_size = mp->m_sb.sb_logsectsize; 441 error = xfs_setsize_buftarg(mp->m_logdev_targp, 442 log_sector_size); 443 if (error) 444 return error; 445 } 446 if (mp->m_rtdev_targp) { 447 error = xfs_setsize_buftarg(mp->m_rtdev_targp, 448 mp->m_sb.sb_sectsize); 449 if (error) 450 return error; 451 } 452 453 return 0; 454 } 455 456 STATIC int 457 xfs_init_mount_workqueues( 458 struct xfs_mount *mp) 459 { 460 mp->m_buf_workqueue = alloc_workqueue("xfs-buf/%s", 461 WQ_MEM_RECLAIM|WQ_FREEZABLE, 1, mp->m_super->s_id); 462 if (!mp->m_buf_workqueue) 463 goto out; 464 465 mp->m_unwritten_workqueue = alloc_workqueue("xfs-conv/%s", 466 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id); 467 if (!mp->m_unwritten_workqueue) 468 goto out_destroy_buf; 469 470 mp->m_cil_workqueue = alloc_workqueue("xfs-cil/%s", 471 WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND, 472 0, mp->m_super->s_id); 473 if (!mp->m_cil_workqueue) 474 goto out_destroy_unwritten; 475 476 mp->m_reclaim_workqueue = alloc_workqueue("xfs-reclaim/%s", 477 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id); 478 if (!mp->m_reclaim_workqueue) 479 goto out_destroy_cil; 480 481 mp->m_eofblocks_workqueue = alloc_workqueue("xfs-eofblocks/%s", 482 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id); 483 if (!mp->m_eofblocks_workqueue) 484 goto out_destroy_reclaim; 485 486 mp->m_sync_workqueue = alloc_workqueue("xfs-sync/%s", WQ_FREEZABLE, 0, 487 mp->m_super->s_id); 488 if (!mp->m_sync_workqueue) 489 goto out_destroy_eofb; 490 491 return 0; 492 493 out_destroy_eofb: 494 destroy_workqueue(mp->m_eofblocks_workqueue); 495 out_destroy_reclaim: 496 destroy_workqueue(mp->m_reclaim_workqueue); 497 out_destroy_cil: 498 destroy_workqueue(mp->m_cil_workqueue); 499 out_destroy_unwritten: 500 destroy_workqueue(mp->m_unwritten_workqueue); 501 out_destroy_buf: 502 destroy_workqueue(mp->m_buf_workqueue); 503 out: 504 return -ENOMEM; 505 } 506 507 STATIC void 508 xfs_destroy_mount_workqueues( 509 struct xfs_mount *mp) 510 { 511 destroy_workqueue(mp->m_sync_workqueue); 512 destroy_workqueue(mp->m_eofblocks_workqueue); 513 destroy_workqueue(mp->m_reclaim_workqueue); 514 destroy_workqueue(mp->m_cil_workqueue); 515 destroy_workqueue(mp->m_unwritten_workqueue); 516 destroy_workqueue(mp->m_buf_workqueue); 517 } 518 519 /* 520 * Flush all dirty data to disk. Must not be called while holding an XFS_ILOCK 521 * or a page lock. We use sync_inodes_sb() here to ensure we block while waiting 522 * for IO to complete so that we effectively throttle multiple callers to the 523 * rate at which IO is completing. 524 */ 525 void 526 xfs_flush_inodes( 527 struct xfs_mount *mp) 528 { 529 struct super_block *sb = mp->m_super; 530 531 if (down_read_trylock(&sb->s_umount)) { 532 sync_inodes_sb(sb); 533 up_read(&sb->s_umount); 534 } 535 } 536 537 /* Catch misguided souls that try to use this interface on XFS */ 538 STATIC struct inode * 539 xfs_fs_alloc_inode( 540 struct super_block *sb) 541 { 542 BUG(); 543 return NULL; 544 } 545 546 #ifdef DEBUG 547 static void 548 xfs_check_delalloc( 549 struct xfs_inode *ip, 550 int whichfork) 551 { 552 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 553 struct xfs_bmbt_irec got; 554 struct xfs_iext_cursor icur; 555 556 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got)) 557 return; 558 do { 559 if (isnullstartblock(got.br_startblock)) { 560 xfs_warn(ip->i_mount, 561 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]", 562 ip->i_ino, 563 whichfork == XFS_DATA_FORK ? "data" : "cow", 564 got.br_startoff, got.br_blockcount); 565 } 566 } while (xfs_iext_next_extent(ifp, &icur, &got)); 567 } 568 #else 569 #define xfs_check_delalloc(ip, whichfork) do { } while (0) 570 #endif 571 572 /* 573 * Now that the generic code is guaranteed not to be accessing 574 * the linux inode, we can inactivate and reclaim the inode. 575 */ 576 STATIC void 577 xfs_fs_destroy_inode( 578 struct inode *inode) 579 { 580 struct xfs_inode *ip = XFS_I(inode); 581 582 trace_xfs_destroy_inode(ip); 583 584 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 585 XFS_STATS_INC(ip->i_mount, vn_rele); 586 XFS_STATS_INC(ip->i_mount, vn_remove); 587 588 xfs_inactive(ip); 589 590 if (!XFS_FORCED_SHUTDOWN(ip->i_mount) && ip->i_delayed_blks) { 591 xfs_check_delalloc(ip, XFS_DATA_FORK); 592 xfs_check_delalloc(ip, XFS_COW_FORK); 593 ASSERT(0); 594 } 595 596 XFS_STATS_INC(ip->i_mount, vn_reclaim); 597 598 /* 599 * We should never get here with one of the reclaim flags already set. 600 */ 601 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIMABLE)); 602 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM)); 603 604 /* 605 * We always use background reclaim here because even if the 606 * inode is clean, it still may be under IO and hence we have 607 * to take the flush lock. The background reclaim path handles 608 * this more efficiently than we can here, so simply let background 609 * reclaim tear down all inodes. 610 */ 611 xfs_inode_set_reclaim_tag(ip); 612 } 613 614 static void 615 xfs_fs_dirty_inode( 616 struct inode *inode, 617 int flag) 618 { 619 struct xfs_inode *ip = XFS_I(inode); 620 struct xfs_mount *mp = ip->i_mount; 621 struct xfs_trans *tp; 622 623 if (!(inode->i_sb->s_flags & SB_LAZYTIME)) 624 return; 625 if (flag != I_DIRTY_SYNC || !(inode->i_state & I_DIRTY_TIME)) 626 return; 627 628 if (xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp)) 629 return; 630 xfs_ilock(ip, XFS_ILOCK_EXCL); 631 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 632 xfs_trans_log_inode(tp, ip, XFS_ILOG_TIMESTAMP); 633 xfs_trans_commit(tp); 634 } 635 636 /* 637 * Slab object creation initialisation for the XFS inode. 638 * This covers only the idempotent fields in the XFS inode; 639 * all other fields need to be initialised on allocation 640 * from the slab. This avoids the need to repeatedly initialise 641 * fields in the xfs inode that left in the initialise state 642 * when freeing the inode. 643 */ 644 STATIC void 645 xfs_fs_inode_init_once( 646 void *inode) 647 { 648 struct xfs_inode *ip = inode; 649 650 memset(ip, 0, sizeof(struct xfs_inode)); 651 652 /* vfs inode */ 653 inode_init_once(VFS_I(ip)); 654 655 /* xfs inode */ 656 atomic_set(&ip->i_pincount, 0); 657 spin_lock_init(&ip->i_flags_lock); 658 659 mrlock_init(&ip->i_mmaplock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER, 660 "xfsino", ip->i_ino); 661 mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER, 662 "xfsino", ip->i_ino); 663 } 664 665 /* 666 * We do an unlocked check for XFS_IDONTCACHE here because we are already 667 * serialised against cache hits here via the inode->i_lock and igrab() in 668 * xfs_iget_cache_hit(). Hence a lookup that might clear this flag will not be 669 * racing with us, and it avoids needing to grab a spinlock here for every inode 670 * we drop the final reference on. 671 */ 672 STATIC int 673 xfs_fs_drop_inode( 674 struct inode *inode) 675 { 676 struct xfs_inode *ip = XFS_I(inode); 677 678 /* 679 * If this unlinked inode is in the middle of recovery, don't 680 * drop the inode just yet; log recovery will take care of 681 * that. See the comment for this inode flag. 682 */ 683 if (ip->i_flags & XFS_IRECOVERY) { 684 ASSERT(ip->i_mount->m_log->l_flags & XLOG_RECOVERY_NEEDED); 685 return 0; 686 } 687 688 return generic_drop_inode(inode) || (ip->i_flags & XFS_IDONTCACHE); 689 } 690 691 static void 692 xfs_mount_free( 693 struct xfs_mount *mp) 694 { 695 kfree(mp->m_rtname); 696 kfree(mp->m_logname); 697 kmem_free(mp); 698 } 699 700 STATIC int 701 xfs_fs_sync_fs( 702 struct super_block *sb, 703 int wait) 704 { 705 struct xfs_mount *mp = XFS_M(sb); 706 707 /* 708 * Doing anything during the async pass would be counterproductive. 709 */ 710 if (!wait) 711 return 0; 712 713 xfs_log_force(mp, XFS_LOG_SYNC); 714 if (laptop_mode) { 715 /* 716 * The disk must be active because we're syncing. 717 * We schedule log work now (now that the disk is 718 * active) instead of later (when it might not be). 719 */ 720 flush_delayed_work(&mp->m_log->l_work); 721 } 722 723 return 0; 724 } 725 726 STATIC int 727 xfs_fs_statfs( 728 struct dentry *dentry, 729 struct kstatfs *statp) 730 { 731 struct xfs_mount *mp = XFS_M(dentry->d_sb); 732 xfs_sb_t *sbp = &mp->m_sb; 733 struct xfs_inode *ip = XFS_I(d_inode(dentry)); 734 uint64_t fakeinos, id; 735 uint64_t icount; 736 uint64_t ifree; 737 uint64_t fdblocks; 738 xfs_extlen_t lsize; 739 int64_t ffree; 740 741 statp->f_type = XFS_SUPER_MAGIC; 742 statp->f_namelen = MAXNAMELEN - 1; 743 744 id = huge_encode_dev(mp->m_ddev_targp->bt_dev); 745 statp->f_fsid.val[0] = (u32)id; 746 statp->f_fsid.val[1] = (u32)(id >> 32); 747 748 icount = percpu_counter_sum(&mp->m_icount); 749 ifree = percpu_counter_sum(&mp->m_ifree); 750 fdblocks = percpu_counter_sum(&mp->m_fdblocks); 751 752 spin_lock(&mp->m_sb_lock); 753 statp->f_bsize = sbp->sb_blocksize; 754 lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0; 755 statp->f_blocks = sbp->sb_dblocks - lsize; 756 spin_unlock(&mp->m_sb_lock); 757 758 statp->f_bfree = fdblocks - mp->m_alloc_set_aside; 759 statp->f_bavail = statp->f_bfree; 760 761 fakeinos = XFS_FSB_TO_INO(mp, statp->f_bfree); 762 statp->f_files = min(icount + fakeinos, (uint64_t)XFS_MAXINUMBER); 763 if (M_IGEO(mp)->maxicount) 764 statp->f_files = min_t(typeof(statp->f_files), 765 statp->f_files, 766 M_IGEO(mp)->maxicount); 767 768 /* If sb_icount overshot maxicount, report actual allocation */ 769 statp->f_files = max_t(typeof(statp->f_files), 770 statp->f_files, 771 sbp->sb_icount); 772 773 /* make sure statp->f_ffree does not underflow */ 774 ffree = statp->f_files - (icount - ifree); 775 statp->f_ffree = max_t(int64_t, ffree, 0); 776 777 778 if ((ip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 779 ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))) == 780 (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD)) 781 xfs_qm_statvfs(ip, statp); 782 783 if (XFS_IS_REALTIME_MOUNT(mp) && 784 (ip->i_d.di_flags & (XFS_DIFLAG_RTINHERIT | XFS_DIFLAG_REALTIME))) { 785 statp->f_blocks = sbp->sb_rblocks; 786 statp->f_bavail = statp->f_bfree = 787 sbp->sb_frextents * sbp->sb_rextsize; 788 } 789 790 return 0; 791 } 792 793 STATIC void 794 xfs_save_resvblks(struct xfs_mount *mp) 795 { 796 uint64_t resblks = 0; 797 798 mp->m_resblks_save = mp->m_resblks; 799 xfs_reserve_blocks(mp, &resblks, NULL); 800 } 801 802 STATIC void 803 xfs_restore_resvblks(struct xfs_mount *mp) 804 { 805 uint64_t resblks; 806 807 if (mp->m_resblks_save) { 808 resblks = mp->m_resblks_save; 809 mp->m_resblks_save = 0; 810 } else 811 resblks = xfs_default_resblks(mp); 812 813 xfs_reserve_blocks(mp, &resblks, NULL); 814 } 815 816 /* 817 * Trigger writeback of all the dirty metadata in the file system. 818 * 819 * This ensures that the metadata is written to their location on disk rather 820 * than just existing in transactions in the log. This means after a quiesce 821 * there is no log replay required to write the inodes to disk - this is the 822 * primary difference between a sync and a quiesce. 823 * 824 * Note: xfs_log_quiesce() stops background log work - the callers must ensure 825 * it is started again when appropriate. 826 */ 827 void 828 xfs_quiesce_attr( 829 struct xfs_mount *mp) 830 { 831 int error = 0; 832 833 /* wait for all modifications to complete */ 834 while (atomic_read(&mp->m_active_trans) > 0) 835 delay(100); 836 837 /* force the log to unpin objects from the now complete transactions */ 838 xfs_log_force(mp, XFS_LOG_SYNC); 839 840 /* reclaim inodes to do any IO before the freeze completes */ 841 xfs_reclaim_inodes(mp, 0); 842 xfs_reclaim_inodes(mp, SYNC_WAIT); 843 844 /* Push the superblock and write an unmount record */ 845 error = xfs_log_sbcount(mp); 846 if (error) 847 xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. " 848 "Frozen image may not be consistent."); 849 /* 850 * Just warn here till VFS can correctly support 851 * read-only remount without racing. 852 */ 853 WARN_ON(atomic_read(&mp->m_active_trans) != 0); 854 855 xfs_log_quiesce(mp); 856 } 857 858 /* 859 * Second stage of a freeze. The data is already frozen so we only 860 * need to take care of the metadata. Once that's done sync the superblock 861 * to the log to dirty it in case of a crash while frozen. This ensures that we 862 * will recover the unlinked inode lists on the next mount. 863 */ 864 STATIC int 865 xfs_fs_freeze( 866 struct super_block *sb) 867 { 868 struct xfs_mount *mp = XFS_M(sb); 869 870 xfs_stop_block_reaping(mp); 871 xfs_save_resvblks(mp); 872 xfs_quiesce_attr(mp); 873 return xfs_sync_sb(mp, true); 874 } 875 876 STATIC int 877 xfs_fs_unfreeze( 878 struct super_block *sb) 879 { 880 struct xfs_mount *mp = XFS_M(sb); 881 882 xfs_restore_resvblks(mp); 883 xfs_log_work_queue(mp); 884 xfs_start_block_reaping(mp); 885 return 0; 886 } 887 888 /* 889 * This function fills in xfs_mount_t fields based on mount args. 890 * Note: the superblock _has_ now been read in. 891 */ 892 STATIC int 893 xfs_finish_flags( 894 struct xfs_mount *mp) 895 { 896 int ronly = (mp->m_flags & XFS_MOUNT_RDONLY); 897 898 /* Fail a mount where the logbuf is smaller than the log stripe */ 899 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 900 if (mp->m_logbsize <= 0 && 901 mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) { 902 mp->m_logbsize = mp->m_sb.sb_logsunit; 903 } else if (mp->m_logbsize > 0 && 904 mp->m_logbsize < mp->m_sb.sb_logsunit) { 905 xfs_warn(mp, 906 "logbuf size must be greater than or equal to log stripe size"); 907 return -EINVAL; 908 } 909 } else { 910 /* Fail a mount if the logbuf is larger than 32K */ 911 if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) { 912 xfs_warn(mp, 913 "logbuf size for version 1 logs must be 16K or 32K"); 914 return -EINVAL; 915 } 916 } 917 918 /* 919 * V5 filesystems always use attr2 format for attributes. 920 */ 921 if (xfs_sb_version_hascrc(&mp->m_sb) && 922 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 923 xfs_warn(mp, "Cannot mount a V5 filesystem as noattr2. " 924 "attr2 is always enabled for V5 filesystems."); 925 return -EINVAL; 926 } 927 928 /* 929 * mkfs'ed attr2 will turn on attr2 mount unless explicitly 930 * told by noattr2 to turn it off 931 */ 932 if (xfs_sb_version_hasattr2(&mp->m_sb) && 933 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 934 mp->m_flags |= XFS_MOUNT_ATTR2; 935 936 /* 937 * prohibit r/w mounts of read-only filesystems 938 */ 939 if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) { 940 xfs_warn(mp, 941 "cannot mount a read-only filesystem as read-write"); 942 return -EROFS; 943 } 944 945 if ((mp->m_qflags & (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE)) && 946 (mp->m_qflags & (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE)) && 947 !xfs_sb_version_has_pquotino(&mp->m_sb)) { 948 xfs_warn(mp, 949 "Super block does not support project and group quota together"); 950 return -EINVAL; 951 } 952 953 return 0; 954 } 955 956 static int 957 xfs_init_percpu_counters( 958 struct xfs_mount *mp) 959 { 960 int error; 961 962 error = percpu_counter_init(&mp->m_icount, 0, GFP_KERNEL); 963 if (error) 964 return -ENOMEM; 965 966 error = percpu_counter_init(&mp->m_ifree, 0, GFP_KERNEL); 967 if (error) 968 goto free_icount; 969 970 error = percpu_counter_init(&mp->m_fdblocks, 0, GFP_KERNEL); 971 if (error) 972 goto free_ifree; 973 974 error = percpu_counter_init(&mp->m_delalloc_blks, 0, GFP_KERNEL); 975 if (error) 976 goto free_fdblocks; 977 978 return 0; 979 980 free_fdblocks: 981 percpu_counter_destroy(&mp->m_fdblocks); 982 free_ifree: 983 percpu_counter_destroy(&mp->m_ifree); 984 free_icount: 985 percpu_counter_destroy(&mp->m_icount); 986 return -ENOMEM; 987 } 988 989 void 990 xfs_reinit_percpu_counters( 991 struct xfs_mount *mp) 992 { 993 percpu_counter_set(&mp->m_icount, mp->m_sb.sb_icount); 994 percpu_counter_set(&mp->m_ifree, mp->m_sb.sb_ifree); 995 percpu_counter_set(&mp->m_fdblocks, mp->m_sb.sb_fdblocks); 996 } 997 998 static void 999 xfs_destroy_percpu_counters( 1000 struct xfs_mount *mp) 1001 { 1002 percpu_counter_destroy(&mp->m_icount); 1003 percpu_counter_destroy(&mp->m_ifree); 1004 percpu_counter_destroy(&mp->m_fdblocks); 1005 ASSERT(XFS_FORCED_SHUTDOWN(mp) || 1006 percpu_counter_sum(&mp->m_delalloc_blks) == 0); 1007 percpu_counter_destroy(&mp->m_delalloc_blks); 1008 } 1009 1010 static void 1011 xfs_fs_put_super( 1012 struct super_block *sb) 1013 { 1014 struct xfs_mount *mp = XFS_M(sb); 1015 1016 /* if ->fill_super failed, we have no mount to tear down */ 1017 if (!sb->s_fs_info) 1018 return; 1019 1020 xfs_notice(mp, "Unmounting Filesystem"); 1021 xfs_filestream_unmount(mp); 1022 xfs_unmountfs(mp); 1023 1024 xfs_freesb(mp); 1025 free_percpu(mp->m_stats.xs_stats); 1026 xfs_destroy_percpu_counters(mp); 1027 xfs_destroy_mount_workqueues(mp); 1028 xfs_close_devices(mp); 1029 1030 sb->s_fs_info = NULL; 1031 xfs_mount_free(mp); 1032 } 1033 1034 static long 1035 xfs_fs_nr_cached_objects( 1036 struct super_block *sb, 1037 struct shrink_control *sc) 1038 { 1039 /* Paranoia: catch incorrect calls during mount setup or teardown */ 1040 if (WARN_ON_ONCE(!sb->s_fs_info)) 1041 return 0; 1042 return xfs_reclaim_inodes_count(XFS_M(sb)); 1043 } 1044 1045 static long 1046 xfs_fs_free_cached_objects( 1047 struct super_block *sb, 1048 struct shrink_control *sc) 1049 { 1050 return xfs_reclaim_inodes_nr(XFS_M(sb), sc->nr_to_scan); 1051 } 1052 1053 static const struct super_operations xfs_super_operations = { 1054 .alloc_inode = xfs_fs_alloc_inode, 1055 .destroy_inode = xfs_fs_destroy_inode, 1056 .dirty_inode = xfs_fs_dirty_inode, 1057 .drop_inode = xfs_fs_drop_inode, 1058 .put_super = xfs_fs_put_super, 1059 .sync_fs = xfs_fs_sync_fs, 1060 .freeze_fs = xfs_fs_freeze, 1061 .unfreeze_fs = xfs_fs_unfreeze, 1062 .statfs = xfs_fs_statfs, 1063 .show_options = xfs_fs_show_options, 1064 .nr_cached_objects = xfs_fs_nr_cached_objects, 1065 .free_cached_objects = xfs_fs_free_cached_objects, 1066 }; 1067 1068 static int 1069 suffix_kstrtoint( 1070 const char *s, 1071 unsigned int base, 1072 int *res) 1073 { 1074 int last, shift_left_factor = 0, _res; 1075 char *value; 1076 int ret = 0; 1077 1078 value = kstrdup(s, GFP_KERNEL); 1079 if (!value) 1080 return -ENOMEM; 1081 1082 last = strlen(value) - 1; 1083 if (value[last] == 'K' || value[last] == 'k') { 1084 shift_left_factor = 10; 1085 value[last] = '\0'; 1086 } 1087 if (value[last] == 'M' || value[last] == 'm') { 1088 shift_left_factor = 20; 1089 value[last] = '\0'; 1090 } 1091 if (value[last] == 'G' || value[last] == 'g') { 1092 shift_left_factor = 30; 1093 value[last] = '\0'; 1094 } 1095 1096 if (kstrtoint(value, base, &_res)) 1097 ret = -EINVAL; 1098 kfree(value); 1099 *res = _res << shift_left_factor; 1100 return ret; 1101 } 1102 1103 /* 1104 * Set mount state from a mount option. 1105 * 1106 * NOTE: mp->m_super is NULL here! 1107 */ 1108 static int 1109 xfs_fc_parse_param( 1110 struct fs_context *fc, 1111 struct fs_parameter *param) 1112 { 1113 struct xfs_mount *mp = fc->s_fs_info; 1114 struct fs_parse_result result; 1115 int size = 0; 1116 int opt; 1117 1118 opt = fs_parse(fc, xfs_fs_parameters, param, &result); 1119 if (opt < 0) 1120 return opt; 1121 1122 switch (opt) { 1123 case Opt_logbufs: 1124 mp->m_logbufs = result.uint_32; 1125 return 0; 1126 case Opt_logbsize: 1127 if (suffix_kstrtoint(param->string, 10, &mp->m_logbsize)) 1128 return -EINVAL; 1129 return 0; 1130 case Opt_logdev: 1131 kfree(mp->m_logname); 1132 mp->m_logname = kstrdup(param->string, GFP_KERNEL); 1133 if (!mp->m_logname) 1134 return -ENOMEM; 1135 return 0; 1136 case Opt_rtdev: 1137 kfree(mp->m_rtname); 1138 mp->m_rtname = kstrdup(param->string, GFP_KERNEL); 1139 if (!mp->m_rtname) 1140 return -ENOMEM; 1141 return 0; 1142 case Opt_allocsize: 1143 if (suffix_kstrtoint(param->string, 10, &size)) 1144 return -EINVAL; 1145 mp->m_allocsize_log = ffs(size) - 1; 1146 mp->m_flags |= XFS_MOUNT_ALLOCSIZE; 1147 return 0; 1148 case Opt_grpid: 1149 case Opt_bsdgroups: 1150 mp->m_flags |= XFS_MOUNT_GRPID; 1151 return 0; 1152 case Opt_nogrpid: 1153 case Opt_sysvgroups: 1154 mp->m_flags &= ~XFS_MOUNT_GRPID; 1155 return 0; 1156 case Opt_wsync: 1157 mp->m_flags |= XFS_MOUNT_WSYNC; 1158 return 0; 1159 case Opt_norecovery: 1160 mp->m_flags |= XFS_MOUNT_NORECOVERY; 1161 return 0; 1162 case Opt_noalign: 1163 mp->m_flags |= XFS_MOUNT_NOALIGN; 1164 return 0; 1165 case Opt_swalloc: 1166 mp->m_flags |= XFS_MOUNT_SWALLOC; 1167 return 0; 1168 case Opt_sunit: 1169 mp->m_dalign = result.uint_32; 1170 return 0; 1171 case Opt_swidth: 1172 mp->m_swidth = result.uint_32; 1173 return 0; 1174 case Opt_inode32: 1175 mp->m_flags |= XFS_MOUNT_SMALL_INUMS; 1176 return 0; 1177 case Opt_inode64: 1178 mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS; 1179 return 0; 1180 case Opt_nouuid: 1181 mp->m_flags |= XFS_MOUNT_NOUUID; 1182 return 0; 1183 case Opt_ikeep: 1184 mp->m_flags |= XFS_MOUNT_IKEEP; 1185 return 0; 1186 case Opt_noikeep: 1187 mp->m_flags &= ~XFS_MOUNT_IKEEP; 1188 return 0; 1189 case Opt_largeio: 1190 mp->m_flags |= XFS_MOUNT_LARGEIO; 1191 return 0; 1192 case Opt_nolargeio: 1193 mp->m_flags &= ~XFS_MOUNT_LARGEIO; 1194 return 0; 1195 case Opt_attr2: 1196 mp->m_flags |= XFS_MOUNT_ATTR2; 1197 return 0; 1198 case Opt_noattr2: 1199 mp->m_flags &= ~XFS_MOUNT_ATTR2; 1200 mp->m_flags |= XFS_MOUNT_NOATTR2; 1201 return 0; 1202 case Opt_filestreams: 1203 mp->m_flags |= XFS_MOUNT_FILESTREAMS; 1204 return 0; 1205 case Opt_noquota: 1206 mp->m_qflags &= ~XFS_ALL_QUOTA_ACCT; 1207 mp->m_qflags &= ~XFS_ALL_QUOTA_ENFD; 1208 mp->m_qflags &= ~XFS_ALL_QUOTA_ACTIVE; 1209 return 0; 1210 case Opt_quota: 1211 case Opt_uquota: 1212 case Opt_usrquota: 1213 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE | 1214 XFS_UQUOTA_ENFD); 1215 return 0; 1216 case Opt_qnoenforce: 1217 case Opt_uqnoenforce: 1218 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE); 1219 mp->m_qflags &= ~XFS_UQUOTA_ENFD; 1220 return 0; 1221 case Opt_pquota: 1222 case Opt_prjquota: 1223 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE | 1224 XFS_PQUOTA_ENFD); 1225 return 0; 1226 case Opt_pqnoenforce: 1227 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE); 1228 mp->m_qflags &= ~XFS_PQUOTA_ENFD; 1229 return 0; 1230 case Opt_gquota: 1231 case Opt_grpquota: 1232 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE | 1233 XFS_GQUOTA_ENFD); 1234 return 0; 1235 case Opt_gqnoenforce: 1236 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE); 1237 mp->m_qflags &= ~XFS_GQUOTA_ENFD; 1238 return 0; 1239 case Opt_discard: 1240 mp->m_flags |= XFS_MOUNT_DISCARD; 1241 return 0; 1242 case Opt_nodiscard: 1243 mp->m_flags &= ~XFS_MOUNT_DISCARD; 1244 return 0; 1245 #ifdef CONFIG_FS_DAX 1246 case Opt_dax: 1247 mp->m_flags |= XFS_MOUNT_DAX; 1248 return 0; 1249 #endif 1250 default: 1251 xfs_warn(mp, "unknown mount option [%s].", param->key); 1252 return -EINVAL; 1253 } 1254 1255 return 0; 1256 } 1257 1258 static int 1259 xfs_fc_validate_params( 1260 struct xfs_mount *mp) 1261 { 1262 /* 1263 * no recovery flag requires a read-only mount 1264 */ 1265 if ((mp->m_flags & XFS_MOUNT_NORECOVERY) && 1266 !(mp->m_flags & XFS_MOUNT_RDONLY)) { 1267 xfs_warn(mp, "no-recovery mounts must be read-only."); 1268 return -EINVAL; 1269 } 1270 1271 if ((mp->m_flags & XFS_MOUNT_NOALIGN) && 1272 (mp->m_dalign || mp->m_swidth)) { 1273 xfs_warn(mp, 1274 "sunit and swidth options incompatible with the noalign option"); 1275 return -EINVAL; 1276 } 1277 1278 if (!IS_ENABLED(CONFIG_XFS_QUOTA) && mp->m_qflags != 0) { 1279 xfs_warn(mp, "quota support not available in this kernel."); 1280 return -EINVAL; 1281 } 1282 1283 if ((mp->m_dalign && !mp->m_swidth) || 1284 (!mp->m_dalign && mp->m_swidth)) { 1285 xfs_warn(mp, "sunit and swidth must be specified together"); 1286 return -EINVAL; 1287 } 1288 1289 if (mp->m_dalign && (mp->m_swidth % mp->m_dalign != 0)) { 1290 xfs_warn(mp, 1291 "stripe width (%d) must be a multiple of the stripe unit (%d)", 1292 mp->m_swidth, mp->m_dalign); 1293 return -EINVAL; 1294 } 1295 1296 if (mp->m_logbufs != -1 && 1297 mp->m_logbufs != 0 && 1298 (mp->m_logbufs < XLOG_MIN_ICLOGS || 1299 mp->m_logbufs > XLOG_MAX_ICLOGS)) { 1300 xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]", 1301 mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS); 1302 return -EINVAL; 1303 } 1304 1305 if (mp->m_logbsize != -1 && 1306 mp->m_logbsize != 0 && 1307 (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE || 1308 mp->m_logbsize > XLOG_MAX_RECORD_BSIZE || 1309 !is_power_of_2(mp->m_logbsize))) { 1310 xfs_warn(mp, 1311 "invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]", 1312 mp->m_logbsize); 1313 return -EINVAL; 1314 } 1315 1316 if ((mp->m_flags & XFS_MOUNT_ALLOCSIZE) && 1317 (mp->m_allocsize_log > XFS_MAX_IO_LOG || 1318 mp->m_allocsize_log < XFS_MIN_IO_LOG)) { 1319 xfs_warn(mp, "invalid log iosize: %d [not %d-%d]", 1320 mp->m_allocsize_log, XFS_MIN_IO_LOG, XFS_MAX_IO_LOG); 1321 return -EINVAL; 1322 } 1323 1324 return 0; 1325 } 1326 1327 static int 1328 xfs_fc_fill_super( 1329 struct super_block *sb, 1330 struct fs_context *fc) 1331 { 1332 struct xfs_mount *mp = sb->s_fs_info; 1333 struct inode *root; 1334 int flags = 0, error; 1335 1336 mp->m_super = sb; 1337 1338 error = xfs_fc_validate_params(mp); 1339 if (error) 1340 goto out_free_names; 1341 1342 sb_min_blocksize(sb, BBSIZE); 1343 sb->s_xattr = xfs_xattr_handlers; 1344 sb->s_export_op = &xfs_export_operations; 1345 #ifdef CONFIG_XFS_QUOTA 1346 sb->s_qcop = &xfs_quotactl_operations; 1347 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 1348 #endif 1349 sb->s_op = &xfs_super_operations; 1350 1351 /* 1352 * Delay mount work if the debug hook is set. This is debug 1353 * instrumention to coordinate simulation of xfs mount failures with 1354 * VFS superblock operations 1355 */ 1356 if (xfs_globals.mount_delay) { 1357 xfs_notice(mp, "Delaying mount for %d seconds.", 1358 xfs_globals.mount_delay); 1359 msleep(xfs_globals.mount_delay * 1000); 1360 } 1361 1362 if (fc->sb_flags & SB_SILENT) 1363 flags |= XFS_MFSI_QUIET; 1364 1365 error = xfs_open_devices(mp); 1366 if (error) 1367 goto out_free_names; 1368 1369 error = xfs_init_mount_workqueues(mp); 1370 if (error) 1371 goto out_close_devices; 1372 1373 error = xfs_init_percpu_counters(mp); 1374 if (error) 1375 goto out_destroy_workqueues; 1376 1377 /* Allocate stats memory before we do operations that might use it */ 1378 mp->m_stats.xs_stats = alloc_percpu(struct xfsstats); 1379 if (!mp->m_stats.xs_stats) { 1380 error = -ENOMEM; 1381 goto out_destroy_counters; 1382 } 1383 1384 error = xfs_readsb(mp, flags); 1385 if (error) 1386 goto out_free_stats; 1387 1388 error = xfs_finish_flags(mp); 1389 if (error) 1390 goto out_free_sb; 1391 1392 error = xfs_setup_devices(mp); 1393 if (error) 1394 goto out_free_sb; 1395 1396 /* 1397 * XFS block mappings use 54 bits to store the logical block offset. 1398 * This should suffice to handle the maximum file size that the VFS 1399 * supports (currently 2^63 bytes on 64-bit and ULONG_MAX << PAGE_SHIFT 1400 * bytes on 32-bit), but as XFS and VFS have gotten the s_maxbytes 1401 * calculation wrong on 32-bit kernels in the past, we'll add a WARN_ON 1402 * to check this assertion. 1403 * 1404 * Avoid integer overflow by comparing the maximum bmbt offset to the 1405 * maximum pagecache offset in units of fs blocks. 1406 */ 1407 if (XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE) > XFS_MAX_FILEOFF) { 1408 xfs_warn(mp, 1409 "MAX_LFS_FILESIZE block offset (%llu) exceeds extent map maximum (%llu)!", 1410 XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE), 1411 XFS_MAX_FILEOFF); 1412 error = -EINVAL; 1413 goto out_free_sb; 1414 } 1415 1416 error = xfs_filestream_mount(mp); 1417 if (error) 1418 goto out_free_sb; 1419 1420 /* 1421 * we must configure the block size in the superblock before we run the 1422 * full mount process as the mount process can lookup and cache inodes. 1423 */ 1424 sb->s_magic = XFS_SUPER_MAGIC; 1425 sb->s_blocksize = mp->m_sb.sb_blocksize; 1426 sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1; 1427 sb->s_maxbytes = MAX_LFS_FILESIZE; 1428 sb->s_max_links = XFS_MAXLINK; 1429 sb->s_time_gran = 1; 1430 sb->s_time_min = S32_MIN; 1431 sb->s_time_max = S32_MAX; 1432 sb->s_iflags |= SB_I_CGROUPWB; 1433 1434 set_posix_acl_flag(sb); 1435 1436 /* version 5 superblocks support inode version counters. */ 1437 if (XFS_SB_VERSION_NUM(&mp->m_sb) == XFS_SB_VERSION_5) 1438 sb->s_flags |= SB_I_VERSION; 1439 1440 if (mp->m_flags & XFS_MOUNT_DAX) { 1441 bool rtdev_is_dax = false, datadev_is_dax; 1442 1443 xfs_warn(mp, 1444 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1445 1446 datadev_is_dax = bdev_dax_supported(mp->m_ddev_targp->bt_bdev, 1447 sb->s_blocksize); 1448 if (mp->m_rtdev_targp) 1449 rtdev_is_dax = bdev_dax_supported( 1450 mp->m_rtdev_targp->bt_bdev, sb->s_blocksize); 1451 if (!rtdev_is_dax && !datadev_is_dax) { 1452 xfs_alert(mp, 1453 "DAX unsupported by block device. Turning off DAX."); 1454 mp->m_flags &= ~XFS_MOUNT_DAX; 1455 } 1456 if (xfs_sb_version_hasreflink(&mp->m_sb)) { 1457 xfs_alert(mp, 1458 "DAX and reflink cannot be used together!"); 1459 error = -EINVAL; 1460 goto out_filestream_unmount; 1461 } 1462 } 1463 1464 if (mp->m_flags & XFS_MOUNT_DISCARD) { 1465 struct request_queue *q = bdev_get_queue(sb->s_bdev); 1466 1467 if (!blk_queue_discard(q)) { 1468 xfs_warn(mp, "mounting with \"discard\" option, but " 1469 "the device does not support discard"); 1470 mp->m_flags &= ~XFS_MOUNT_DISCARD; 1471 } 1472 } 1473 1474 if (xfs_sb_version_hasreflink(&mp->m_sb)) { 1475 if (mp->m_sb.sb_rblocks) { 1476 xfs_alert(mp, 1477 "reflink not compatible with realtime device!"); 1478 error = -EINVAL; 1479 goto out_filestream_unmount; 1480 } 1481 1482 if (xfs_globals.always_cow) { 1483 xfs_info(mp, "using DEBUG-only always_cow mode."); 1484 mp->m_always_cow = true; 1485 } 1486 } 1487 1488 if (xfs_sb_version_hasrmapbt(&mp->m_sb) && mp->m_sb.sb_rblocks) { 1489 xfs_alert(mp, 1490 "reverse mapping btree not compatible with realtime device!"); 1491 error = -EINVAL; 1492 goto out_filestream_unmount; 1493 } 1494 1495 error = xfs_mountfs(mp); 1496 if (error) 1497 goto out_filestream_unmount; 1498 1499 root = igrab(VFS_I(mp->m_rootip)); 1500 if (!root) { 1501 error = -ENOENT; 1502 goto out_unmount; 1503 } 1504 sb->s_root = d_make_root(root); 1505 if (!sb->s_root) { 1506 error = -ENOMEM; 1507 goto out_unmount; 1508 } 1509 1510 return 0; 1511 1512 out_filestream_unmount: 1513 xfs_filestream_unmount(mp); 1514 out_free_sb: 1515 xfs_freesb(mp); 1516 out_free_stats: 1517 free_percpu(mp->m_stats.xs_stats); 1518 out_destroy_counters: 1519 xfs_destroy_percpu_counters(mp); 1520 out_destroy_workqueues: 1521 xfs_destroy_mount_workqueues(mp); 1522 out_close_devices: 1523 xfs_close_devices(mp); 1524 out_free_names: 1525 sb->s_fs_info = NULL; 1526 xfs_mount_free(mp); 1527 return error; 1528 1529 out_unmount: 1530 xfs_filestream_unmount(mp); 1531 xfs_unmountfs(mp); 1532 goto out_free_sb; 1533 } 1534 1535 static int 1536 xfs_fc_get_tree( 1537 struct fs_context *fc) 1538 { 1539 return get_tree_bdev(fc, xfs_fc_fill_super); 1540 } 1541 1542 static int 1543 xfs_remount_rw( 1544 struct xfs_mount *mp) 1545 { 1546 struct xfs_sb *sbp = &mp->m_sb; 1547 int error; 1548 1549 if (mp->m_flags & XFS_MOUNT_NORECOVERY) { 1550 xfs_warn(mp, 1551 "ro->rw transition prohibited on norecovery mount"); 1552 return -EINVAL; 1553 } 1554 1555 if (XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5 && 1556 xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { 1557 xfs_warn(mp, 1558 "ro->rw transition prohibited on unknown (0x%x) ro-compat filesystem", 1559 (sbp->sb_features_ro_compat & 1560 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); 1561 return -EINVAL; 1562 } 1563 1564 mp->m_flags &= ~XFS_MOUNT_RDONLY; 1565 1566 /* 1567 * If this is the first remount to writeable state we might have some 1568 * superblock changes to update. 1569 */ 1570 if (mp->m_update_sb) { 1571 error = xfs_sync_sb(mp, false); 1572 if (error) { 1573 xfs_warn(mp, "failed to write sb changes"); 1574 return error; 1575 } 1576 mp->m_update_sb = false; 1577 } 1578 1579 /* 1580 * Fill out the reserve pool if it is empty. Use the stashed value if 1581 * it is non-zero, otherwise go with the default. 1582 */ 1583 xfs_restore_resvblks(mp); 1584 xfs_log_work_queue(mp); 1585 1586 /* Recover any CoW blocks that never got remapped. */ 1587 error = xfs_reflink_recover_cow(mp); 1588 if (error) { 1589 xfs_err(mp, 1590 "Error %d recovering leftover CoW allocations.", error); 1591 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1592 return error; 1593 } 1594 xfs_start_block_reaping(mp); 1595 1596 /* Create the per-AG metadata reservation pool .*/ 1597 error = xfs_fs_reserve_ag_blocks(mp); 1598 if (error && error != -ENOSPC) 1599 return error; 1600 1601 return 0; 1602 } 1603 1604 static int 1605 xfs_remount_ro( 1606 struct xfs_mount *mp) 1607 { 1608 int error; 1609 1610 /* 1611 * Cancel background eofb scanning so it cannot race with the final 1612 * log force+buftarg wait and deadlock the remount. 1613 */ 1614 xfs_stop_block_reaping(mp); 1615 1616 /* Get rid of any leftover CoW reservations... */ 1617 error = xfs_icache_free_cowblocks(mp, NULL); 1618 if (error) { 1619 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1620 return error; 1621 } 1622 1623 /* Free the per-AG metadata reservation pool. */ 1624 error = xfs_fs_unreserve_ag_blocks(mp); 1625 if (error) { 1626 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1627 return error; 1628 } 1629 1630 /* 1631 * Before we sync the metadata, we need to free up the reserve block 1632 * pool so that the used block count in the superblock on disk is 1633 * correct at the end of the remount. Stash the current* reserve pool 1634 * size so that if we get remounted rw, we can return it to the same 1635 * size. 1636 */ 1637 xfs_save_resvblks(mp); 1638 1639 xfs_quiesce_attr(mp); 1640 mp->m_flags |= XFS_MOUNT_RDONLY; 1641 1642 return 0; 1643 } 1644 1645 /* 1646 * Logically we would return an error here to prevent users from believing 1647 * they might have changed mount options using remount which can't be changed. 1648 * 1649 * But unfortunately mount(8) adds all options from mtab and fstab to the mount 1650 * arguments in some cases so we can't blindly reject options, but have to 1651 * check for each specified option if it actually differs from the currently 1652 * set option and only reject it if that's the case. 1653 * 1654 * Until that is implemented we return success for every remount request, and 1655 * silently ignore all options that we can't actually change. 1656 */ 1657 static int 1658 xfs_fc_reconfigure( 1659 struct fs_context *fc) 1660 { 1661 struct xfs_mount *mp = XFS_M(fc->root->d_sb); 1662 struct xfs_mount *new_mp = fc->s_fs_info; 1663 xfs_sb_t *sbp = &mp->m_sb; 1664 int flags = fc->sb_flags; 1665 int error; 1666 1667 error = xfs_fc_validate_params(new_mp); 1668 if (error) 1669 return error; 1670 1671 sync_filesystem(mp->m_super); 1672 1673 /* inode32 -> inode64 */ 1674 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && 1675 !(new_mp->m_flags & XFS_MOUNT_SMALL_INUMS)) { 1676 mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS; 1677 mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount); 1678 } 1679 1680 /* inode64 -> inode32 */ 1681 if (!(mp->m_flags & XFS_MOUNT_SMALL_INUMS) && 1682 (new_mp->m_flags & XFS_MOUNT_SMALL_INUMS)) { 1683 mp->m_flags |= XFS_MOUNT_SMALL_INUMS; 1684 mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount); 1685 } 1686 1687 /* ro -> rw */ 1688 if ((mp->m_flags & XFS_MOUNT_RDONLY) && !(flags & SB_RDONLY)) { 1689 error = xfs_remount_rw(mp); 1690 if (error) 1691 return error; 1692 } 1693 1694 /* rw -> ro */ 1695 if (!(mp->m_flags & XFS_MOUNT_RDONLY) && (flags & SB_RDONLY)) { 1696 error = xfs_remount_ro(mp); 1697 if (error) 1698 return error; 1699 } 1700 1701 return 0; 1702 } 1703 1704 static void xfs_fc_free( 1705 struct fs_context *fc) 1706 { 1707 struct xfs_mount *mp = fc->s_fs_info; 1708 1709 /* 1710 * mp is stored in the fs_context when it is initialized. 1711 * mp is transferred to the superblock on a successful mount, 1712 * but if an error occurs before the transfer we have to free 1713 * it here. 1714 */ 1715 if (mp) 1716 xfs_mount_free(mp); 1717 } 1718 1719 static const struct fs_context_operations xfs_context_ops = { 1720 .parse_param = xfs_fc_parse_param, 1721 .get_tree = xfs_fc_get_tree, 1722 .reconfigure = xfs_fc_reconfigure, 1723 .free = xfs_fc_free, 1724 }; 1725 1726 static int xfs_init_fs_context( 1727 struct fs_context *fc) 1728 { 1729 struct xfs_mount *mp; 1730 1731 mp = kmem_alloc(sizeof(struct xfs_mount), KM_ZERO); 1732 if (!mp) 1733 return -ENOMEM; 1734 1735 spin_lock_init(&mp->m_sb_lock); 1736 spin_lock_init(&mp->m_agirotor_lock); 1737 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 1738 spin_lock_init(&mp->m_perag_lock); 1739 mutex_init(&mp->m_growlock); 1740 atomic_set(&mp->m_active_trans, 0); 1741 INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker); 1742 INIT_DELAYED_WORK(&mp->m_eofblocks_work, xfs_eofblocks_worker); 1743 INIT_DELAYED_WORK(&mp->m_cowblocks_work, xfs_cowblocks_worker); 1744 mp->m_kobj.kobject.kset = xfs_kset; 1745 /* 1746 * We don't create the finobt per-ag space reservation until after log 1747 * recovery, so we must set this to true so that an ifree transaction 1748 * started during log recovery will not depend on space reservations 1749 * for finobt expansion. 1750 */ 1751 mp->m_finobt_nores = true; 1752 1753 /* 1754 * These can be overridden by the mount option parsing. 1755 */ 1756 mp->m_logbufs = -1; 1757 mp->m_logbsize = -1; 1758 mp->m_allocsize_log = 16; /* 64k */ 1759 1760 /* 1761 * Copy binary VFS mount flags we are interested in. 1762 */ 1763 if (fc->sb_flags & SB_RDONLY) 1764 mp->m_flags |= XFS_MOUNT_RDONLY; 1765 if (fc->sb_flags & SB_DIRSYNC) 1766 mp->m_flags |= XFS_MOUNT_DIRSYNC; 1767 if (fc->sb_flags & SB_SYNCHRONOUS) 1768 mp->m_flags |= XFS_MOUNT_WSYNC; 1769 1770 fc->s_fs_info = mp; 1771 fc->ops = &xfs_context_ops; 1772 1773 return 0; 1774 } 1775 1776 static struct file_system_type xfs_fs_type = { 1777 .owner = THIS_MODULE, 1778 .name = "xfs", 1779 .init_fs_context = xfs_init_fs_context, 1780 .parameters = xfs_fs_parameters, 1781 .kill_sb = kill_block_super, 1782 .fs_flags = FS_REQUIRES_DEV, 1783 }; 1784 MODULE_ALIAS_FS("xfs"); 1785 1786 STATIC int __init 1787 xfs_init_zones(void) 1788 { 1789 xfs_log_ticket_zone = kmem_cache_create("xfs_log_ticket", 1790 sizeof(struct xlog_ticket), 1791 0, 0, NULL); 1792 if (!xfs_log_ticket_zone) 1793 goto out; 1794 1795 xfs_bmap_free_item_zone = kmem_cache_create("xfs_bmap_free_item", 1796 sizeof(struct xfs_extent_free_item), 1797 0, 0, NULL); 1798 if (!xfs_bmap_free_item_zone) 1799 goto out_destroy_log_ticket_zone; 1800 1801 xfs_btree_cur_zone = kmem_cache_create("xfs_btree_cur", 1802 sizeof(struct xfs_btree_cur), 1803 0, 0, NULL); 1804 if (!xfs_btree_cur_zone) 1805 goto out_destroy_bmap_free_item_zone; 1806 1807 xfs_da_state_zone = kmem_cache_create("xfs_da_state", 1808 sizeof(struct xfs_da_state), 1809 0, 0, NULL); 1810 if (!xfs_da_state_zone) 1811 goto out_destroy_btree_cur_zone; 1812 1813 xfs_ifork_zone = kmem_cache_create("xfs_ifork", 1814 sizeof(struct xfs_ifork), 1815 0, 0, NULL); 1816 if (!xfs_ifork_zone) 1817 goto out_destroy_da_state_zone; 1818 1819 xfs_trans_zone = kmem_cache_create("xf_trans", 1820 sizeof(struct xfs_trans), 1821 0, 0, NULL); 1822 if (!xfs_trans_zone) 1823 goto out_destroy_ifork_zone; 1824 1825 1826 /* 1827 * The size of the zone allocated buf log item is the maximum 1828 * size possible under XFS. This wastes a little bit of memory, 1829 * but it is much faster. 1830 */ 1831 xfs_buf_item_zone = kmem_cache_create("xfs_buf_item", 1832 sizeof(struct xfs_buf_log_item), 1833 0, 0, NULL); 1834 if (!xfs_buf_item_zone) 1835 goto out_destroy_trans_zone; 1836 1837 xfs_efd_zone = kmem_cache_create("xfs_efd_item", 1838 (sizeof(struct xfs_efd_log_item) + 1839 (XFS_EFD_MAX_FAST_EXTENTS - 1) * 1840 sizeof(struct xfs_extent)), 1841 0, 0, NULL); 1842 if (!xfs_efd_zone) 1843 goto out_destroy_buf_item_zone; 1844 1845 xfs_efi_zone = kmem_cache_create("xfs_efi_item", 1846 (sizeof(struct xfs_efi_log_item) + 1847 (XFS_EFI_MAX_FAST_EXTENTS - 1) * 1848 sizeof(struct xfs_extent)), 1849 0, 0, NULL); 1850 if (!xfs_efi_zone) 1851 goto out_destroy_efd_zone; 1852 1853 xfs_inode_zone = kmem_cache_create("xfs_inode", 1854 sizeof(struct xfs_inode), 0, 1855 (SLAB_HWCACHE_ALIGN | 1856 SLAB_RECLAIM_ACCOUNT | 1857 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 1858 xfs_fs_inode_init_once); 1859 if (!xfs_inode_zone) 1860 goto out_destroy_efi_zone; 1861 1862 xfs_ili_zone = kmem_cache_create("xfs_ili", 1863 sizeof(struct xfs_inode_log_item), 0, 1864 SLAB_MEM_SPREAD, NULL); 1865 if (!xfs_ili_zone) 1866 goto out_destroy_inode_zone; 1867 1868 xfs_icreate_zone = kmem_cache_create("xfs_icr", 1869 sizeof(struct xfs_icreate_item), 1870 0, 0, NULL); 1871 if (!xfs_icreate_zone) 1872 goto out_destroy_ili_zone; 1873 1874 xfs_rud_zone = kmem_cache_create("xfs_rud_item", 1875 sizeof(struct xfs_rud_log_item), 1876 0, 0, NULL); 1877 if (!xfs_rud_zone) 1878 goto out_destroy_icreate_zone; 1879 1880 xfs_rui_zone = kmem_cache_create("xfs_rui_item", 1881 xfs_rui_log_item_sizeof(XFS_RUI_MAX_FAST_EXTENTS), 1882 0, 0, NULL); 1883 if (!xfs_rui_zone) 1884 goto out_destroy_rud_zone; 1885 1886 xfs_cud_zone = kmem_cache_create("xfs_cud_item", 1887 sizeof(struct xfs_cud_log_item), 1888 0, 0, NULL); 1889 if (!xfs_cud_zone) 1890 goto out_destroy_rui_zone; 1891 1892 xfs_cui_zone = kmem_cache_create("xfs_cui_item", 1893 xfs_cui_log_item_sizeof(XFS_CUI_MAX_FAST_EXTENTS), 1894 0, 0, NULL); 1895 if (!xfs_cui_zone) 1896 goto out_destroy_cud_zone; 1897 1898 xfs_bud_zone = kmem_cache_create("xfs_bud_item", 1899 sizeof(struct xfs_bud_log_item), 1900 0, 0, NULL); 1901 if (!xfs_bud_zone) 1902 goto out_destroy_cui_zone; 1903 1904 xfs_bui_zone = kmem_cache_create("xfs_bui_item", 1905 xfs_bui_log_item_sizeof(XFS_BUI_MAX_FAST_EXTENTS), 1906 0, 0, NULL); 1907 if (!xfs_bui_zone) 1908 goto out_destroy_bud_zone; 1909 1910 return 0; 1911 1912 out_destroy_bud_zone: 1913 kmem_cache_destroy(xfs_bud_zone); 1914 out_destroy_cui_zone: 1915 kmem_cache_destroy(xfs_cui_zone); 1916 out_destroy_cud_zone: 1917 kmem_cache_destroy(xfs_cud_zone); 1918 out_destroy_rui_zone: 1919 kmem_cache_destroy(xfs_rui_zone); 1920 out_destroy_rud_zone: 1921 kmem_cache_destroy(xfs_rud_zone); 1922 out_destroy_icreate_zone: 1923 kmem_cache_destroy(xfs_icreate_zone); 1924 out_destroy_ili_zone: 1925 kmem_cache_destroy(xfs_ili_zone); 1926 out_destroy_inode_zone: 1927 kmem_cache_destroy(xfs_inode_zone); 1928 out_destroy_efi_zone: 1929 kmem_cache_destroy(xfs_efi_zone); 1930 out_destroy_efd_zone: 1931 kmem_cache_destroy(xfs_efd_zone); 1932 out_destroy_buf_item_zone: 1933 kmem_cache_destroy(xfs_buf_item_zone); 1934 out_destroy_trans_zone: 1935 kmem_cache_destroy(xfs_trans_zone); 1936 out_destroy_ifork_zone: 1937 kmem_cache_destroy(xfs_ifork_zone); 1938 out_destroy_da_state_zone: 1939 kmem_cache_destroy(xfs_da_state_zone); 1940 out_destroy_btree_cur_zone: 1941 kmem_cache_destroy(xfs_btree_cur_zone); 1942 out_destroy_bmap_free_item_zone: 1943 kmem_cache_destroy(xfs_bmap_free_item_zone); 1944 out_destroy_log_ticket_zone: 1945 kmem_cache_destroy(xfs_log_ticket_zone); 1946 out: 1947 return -ENOMEM; 1948 } 1949 1950 STATIC void 1951 xfs_destroy_zones(void) 1952 { 1953 /* 1954 * Make sure all delayed rcu free are flushed before we 1955 * destroy caches. 1956 */ 1957 rcu_barrier(); 1958 kmem_cache_destroy(xfs_bui_zone); 1959 kmem_cache_destroy(xfs_bud_zone); 1960 kmem_cache_destroy(xfs_cui_zone); 1961 kmem_cache_destroy(xfs_cud_zone); 1962 kmem_cache_destroy(xfs_rui_zone); 1963 kmem_cache_destroy(xfs_rud_zone); 1964 kmem_cache_destroy(xfs_icreate_zone); 1965 kmem_cache_destroy(xfs_ili_zone); 1966 kmem_cache_destroy(xfs_inode_zone); 1967 kmem_cache_destroy(xfs_efi_zone); 1968 kmem_cache_destroy(xfs_efd_zone); 1969 kmem_cache_destroy(xfs_buf_item_zone); 1970 kmem_cache_destroy(xfs_trans_zone); 1971 kmem_cache_destroy(xfs_ifork_zone); 1972 kmem_cache_destroy(xfs_da_state_zone); 1973 kmem_cache_destroy(xfs_btree_cur_zone); 1974 kmem_cache_destroy(xfs_bmap_free_item_zone); 1975 kmem_cache_destroy(xfs_log_ticket_zone); 1976 } 1977 1978 STATIC int __init 1979 xfs_init_workqueues(void) 1980 { 1981 /* 1982 * The allocation workqueue can be used in memory reclaim situations 1983 * (writepage path), and parallelism is only limited by the number of 1984 * AGs in all the filesystems mounted. Hence use the default large 1985 * max_active value for this workqueue. 1986 */ 1987 xfs_alloc_wq = alloc_workqueue("xfsalloc", 1988 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0); 1989 if (!xfs_alloc_wq) 1990 return -ENOMEM; 1991 1992 xfs_discard_wq = alloc_workqueue("xfsdiscard", WQ_UNBOUND, 0); 1993 if (!xfs_discard_wq) 1994 goto out_free_alloc_wq; 1995 1996 return 0; 1997 out_free_alloc_wq: 1998 destroy_workqueue(xfs_alloc_wq); 1999 return -ENOMEM; 2000 } 2001 2002 STATIC void 2003 xfs_destroy_workqueues(void) 2004 { 2005 destroy_workqueue(xfs_discard_wq); 2006 destroy_workqueue(xfs_alloc_wq); 2007 } 2008 2009 STATIC int __init 2010 init_xfs_fs(void) 2011 { 2012 int error; 2013 2014 xfs_check_ondisk_structs(); 2015 2016 printk(KERN_INFO XFS_VERSION_STRING " with " 2017 XFS_BUILD_OPTIONS " enabled\n"); 2018 2019 xfs_dir_startup(); 2020 2021 error = xfs_init_zones(); 2022 if (error) 2023 goto out; 2024 2025 error = xfs_init_workqueues(); 2026 if (error) 2027 goto out_destroy_zones; 2028 2029 error = xfs_mru_cache_init(); 2030 if (error) 2031 goto out_destroy_wq; 2032 2033 error = xfs_buf_init(); 2034 if (error) 2035 goto out_mru_cache_uninit; 2036 2037 error = xfs_init_procfs(); 2038 if (error) 2039 goto out_buf_terminate; 2040 2041 error = xfs_sysctl_register(); 2042 if (error) 2043 goto out_cleanup_procfs; 2044 2045 xfs_kset = kset_create_and_add("xfs", NULL, fs_kobj); 2046 if (!xfs_kset) { 2047 error = -ENOMEM; 2048 goto out_sysctl_unregister; 2049 } 2050 2051 xfsstats.xs_kobj.kobject.kset = xfs_kset; 2052 2053 xfsstats.xs_stats = alloc_percpu(struct xfsstats); 2054 if (!xfsstats.xs_stats) { 2055 error = -ENOMEM; 2056 goto out_kset_unregister; 2057 } 2058 2059 error = xfs_sysfs_init(&xfsstats.xs_kobj, &xfs_stats_ktype, NULL, 2060 "stats"); 2061 if (error) 2062 goto out_free_stats; 2063 2064 #ifdef DEBUG 2065 xfs_dbg_kobj.kobject.kset = xfs_kset; 2066 error = xfs_sysfs_init(&xfs_dbg_kobj, &xfs_dbg_ktype, NULL, "debug"); 2067 if (error) 2068 goto out_remove_stats_kobj; 2069 #endif 2070 2071 error = xfs_qm_init(); 2072 if (error) 2073 goto out_remove_dbg_kobj; 2074 2075 error = register_filesystem(&xfs_fs_type); 2076 if (error) 2077 goto out_qm_exit; 2078 return 0; 2079 2080 out_qm_exit: 2081 xfs_qm_exit(); 2082 out_remove_dbg_kobj: 2083 #ifdef DEBUG 2084 xfs_sysfs_del(&xfs_dbg_kobj); 2085 out_remove_stats_kobj: 2086 #endif 2087 xfs_sysfs_del(&xfsstats.xs_kobj); 2088 out_free_stats: 2089 free_percpu(xfsstats.xs_stats); 2090 out_kset_unregister: 2091 kset_unregister(xfs_kset); 2092 out_sysctl_unregister: 2093 xfs_sysctl_unregister(); 2094 out_cleanup_procfs: 2095 xfs_cleanup_procfs(); 2096 out_buf_terminate: 2097 xfs_buf_terminate(); 2098 out_mru_cache_uninit: 2099 xfs_mru_cache_uninit(); 2100 out_destroy_wq: 2101 xfs_destroy_workqueues(); 2102 out_destroy_zones: 2103 xfs_destroy_zones(); 2104 out: 2105 return error; 2106 } 2107 2108 STATIC void __exit 2109 exit_xfs_fs(void) 2110 { 2111 xfs_qm_exit(); 2112 unregister_filesystem(&xfs_fs_type); 2113 #ifdef DEBUG 2114 xfs_sysfs_del(&xfs_dbg_kobj); 2115 #endif 2116 xfs_sysfs_del(&xfsstats.xs_kobj); 2117 free_percpu(xfsstats.xs_stats); 2118 kset_unregister(xfs_kset); 2119 xfs_sysctl_unregister(); 2120 xfs_cleanup_procfs(); 2121 xfs_buf_terminate(); 2122 xfs_mru_cache_uninit(); 2123 xfs_destroy_workqueues(); 2124 xfs_destroy_zones(); 2125 xfs_uuid_table_free(); 2126 } 2127 2128 module_init(init_xfs_fs); 2129 module_exit(exit_xfs_fs); 2130 2131 MODULE_AUTHOR("Silicon Graphics, Inc."); 2132 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled"); 2133 MODULE_LICENSE("GPL"); 2134