1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 7 #include "xfs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_sb.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_btree.h" 16 #include "xfs_bmap.h" 17 #include "xfs_alloc.h" 18 #include "xfs_fsops.h" 19 #include "xfs_trans.h" 20 #include "xfs_buf_item.h" 21 #include "xfs_log.h" 22 #include "xfs_log_priv.h" 23 #include "xfs_dir2.h" 24 #include "xfs_extfree_item.h" 25 #include "xfs_mru_cache.h" 26 #include "xfs_inode_item.h" 27 #include "xfs_icache.h" 28 #include "xfs_trace.h" 29 #include "xfs_icreate_item.h" 30 #include "xfs_filestream.h" 31 #include "xfs_quota.h" 32 #include "xfs_sysfs.h" 33 #include "xfs_ondisk.h" 34 #include "xfs_rmap_item.h" 35 #include "xfs_refcount_item.h" 36 #include "xfs_bmap_item.h" 37 #include "xfs_reflink.h" 38 39 #include <linux/magic.h> 40 #include <linux/fs_context.h> 41 #include <linux/fs_parser.h> 42 43 static const struct super_operations xfs_super_operations; 44 45 static struct kset *xfs_kset; /* top-level xfs sysfs dir */ 46 #ifdef DEBUG 47 static struct xfs_kobj xfs_dbg_kobj; /* global debug sysfs attrs */ 48 #endif 49 50 /* 51 * Table driven mount option parser. 52 */ 53 enum { 54 Opt_logbufs, Opt_logbsize, Opt_logdev, Opt_rtdev, 55 Opt_wsync, Opt_noalign, Opt_swalloc, Opt_sunit, Opt_swidth, Opt_nouuid, 56 Opt_grpid, Opt_nogrpid, Opt_bsdgroups, Opt_sysvgroups, 57 Opt_allocsize, Opt_norecovery, Opt_inode64, Opt_inode32, Opt_ikeep, 58 Opt_noikeep, Opt_largeio, Opt_nolargeio, Opt_attr2, Opt_noattr2, 59 Opt_filestreams, Opt_quota, Opt_noquota, Opt_usrquota, Opt_grpquota, 60 Opt_prjquota, Opt_uquota, Opt_gquota, Opt_pquota, 61 Opt_uqnoenforce, Opt_gqnoenforce, Opt_pqnoenforce, Opt_qnoenforce, 62 Opt_discard, Opt_nodiscard, Opt_dax, 63 }; 64 65 static const struct fs_parameter_spec xfs_fs_parameters[] = { 66 fsparam_u32("logbufs", Opt_logbufs), 67 fsparam_string("logbsize", Opt_logbsize), 68 fsparam_string("logdev", Opt_logdev), 69 fsparam_string("rtdev", Opt_rtdev), 70 fsparam_flag("wsync", Opt_wsync), 71 fsparam_flag("noalign", Opt_noalign), 72 fsparam_flag("swalloc", Opt_swalloc), 73 fsparam_u32("sunit", Opt_sunit), 74 fsparam_u32("swidth", Opt_swidth), 75 fsparam_flag("nouuid", Opt_nouuid), 76 fsparam_flag("grpid", Opt_grpid), 77 fsparam_flag("nogrpid", Opt_nogrpid), 78 fsparam_flag("bsdgroups", Opt_bsdgroups), 79 fsparam_flag("sysvgroups", Opt_sysvgroups), 80 fsparam_string("allocsize", Opt_allocsize), 81 fsparam_flag("norecovery", Opt_norecovery), 82 fsparam_flag("inode64", Opt_inode64), 83 fsparam_flag("inode32", Opt_inode32), 84 fsparam_flag("ikeep", Opt_ikeep), 85 fsparam_flag("noikeep", Opt_noikeep), 86 fsparam_flag("largeio", Opt_largeio), 87 fsparam_flag("nolargeio", Opt_nolargeio), 88 fsparam_flag("attr2", Opt_attr2), 89 fsparam_flag("noattr2", Opt_noattr2), 90 fsparam_flag("filestreams", Opt_filestreams), 91 fsparam_flag("quota", Opt_quota), 92 fsparam_flag("noquota", Opt_noquota), 93 fsparam_flag("usrquota", Opt_usrquota), 94 fsparam_flag("grpquota", Opt_grpquota), 95 fsparam_flag("prjquota", Opt_prjquota), 96 fsparam_flag("uquota", Opt_uquota), 97 fsparam_flag("gquota", Opt_gquota), 98 fsparam_flag("pquota", Opt_pquota), 99 fsparam_flag("uqnoenforce", Opt_uqnoenforce), 100 fsparam_flag("gqnoenforce", Opt_gqnoenforce), 101 fsparam_flag("pqnoenforce", Opt_pqnoenforce), 102 fsparam_flag("qnoenforce", Opt_qnoenforce), 103 fsparam_flag("discard", Opt_discard), 104 fsparam_flag("nodiscard", Opt_nodiscard), 105 fsparam_flag("dax", Opt_dax), 106 {} 107 }; 108 109 struct proc_xfs_info { 110 uint64_t flag; 111 char *str; 112 }; 113 114 static int 115 xfs_fs_show_options( 116 struct seq_file *m, 117 struct dentry *root) 118 { 119 static struct proc_xfs_info xfs_info_set[] = { 120 /* the few simple ones we can get from the mount struct */ 121 { XFS_MOUNT_IKEEP, ",ikeep" }, 122 { XFS_MOUNT_WSYNC, ",wsync" }, 123 { XFS_MOUNT_NOALIGN, ",noalign" }, 124 { XFS_MOUNT_SWALLOC, ",swalloc" }, 125 { XFS_MOUNT_NOUUID, ",nouuid" }, 126 { XFS_MOUNT_NORECOVERY, ",norecovery" }, 127 { XFS_MOUNT_ATTR2, ",attr2" }, 128 { XFS_MOUNT_FILESTREAMS, ",filestreams" }, 129 { XFS_MOUNT_GRPID, ",grpid" }, 130 { XFS_MOUNT_DISCARD, ",discard" }, 131 { XFS_MOUNT_LARGEIO, ",largeio" }, 132 { XFS_MOUNT_DAX, ",dax" }, 133 { 0, NULL } 134 }; 135 struct xfs_mount *mp = XFS_M(root->d_sb); 136 struct proc_xfs_info *xfs_infop; 137 138 for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) { 139 if (mp->m_flags & xfs_infop->flag) 140 seq_puts(m, xfs_infop->str); 141 } 142 143 seq_printf(m, ",inode%d", 144 (mp->m_flags & XFS_MOUNT_SMALL_INUMS) ? 32 : 64); 145 146 if (mp->m_flags & XFS_MOUNT_ALLOCSIZE) 147 seq_printf(m, ",allocsize=%dk", 148 (1 << mp->m_allocsize_log) >> 10); 149 150 if (mp->m_logbufs > 0) 151 seq_printf(m, ",logbufs=%d", mp->m_logbufs); 152 if (mp->m_logbsize > 0) 153 seq_printf(m, ",logbsize=%dk", mp->m_logbsize >> 10); 154 155 if (mp->m_logname) 156 seq_show_option(m, "logdev", mp->m_logname); 157 if (mp->m_rtname) 158 seq_show_option(m, "rtdev", mp->m_rtname); 159 160 if (mp->m_dalign > 0) 161 seq_printf(m, ",sunit=%d", 162 (int)XFS_FSB_TO_BB(mp, mp->m_dalign)); 163 if (mp->m_swidth > 0) 164 seq_printf(m, ",swidth=%d", 165 (int)XFS_FSB_TO_BB(mp, mp->m_swidth)); 166 167 if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD)) 168 seq_puts(m, ",usrquota"); 169 else if (mp->m_qflags & XFS_UQUOTA_ACCT) 170 seq_puts(m, ",uqnoenforce"); 171 172 if (mp->m_qflags & XFS_PQUOTA_ACCT) { 173 if (mp->m_qflags & XFS_PQUOTA_ENFD) 174 seq_puts(m, ",prjquota"); 175 else 176 seq_puts(m, ",pqnoenforce"); 177 } 178 if (mp->m_qflags & XFS_GQUOTA_ACCT) { 179 if (mp->m_qflags & XFS_GQUOTA_ENFD) 180 seq_puts(m, ",grpquota"); 181 else 182 seq_puts(m, ",gqnoenforce"); 183 } 184 185 if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT)) 186 seq_puts(m, ",noquota"); 187 188 return 0; 189 } 190 191 /* 192 * Set parameters for inode allocation heuristics, taking into account 193 * filesystem size and inode32/inode64 mount options; i.e. specifically 194 * whether or not XFS_MOUNT_SMALL_INUMS is set. 195 * 196 * Inode allocation patterns are altered only if inode32 is requested 197 * (XFS_MOUNT_SMALL_INUMS), and the filesystem is sufficiently large. 198 * If altered, XFS_MOUNT_32BITINODES is set as well. 199 * 200 * An agcount independent of that in the mount structure is provided 201 * because in the growfs case, mp->m_sb.sb_agcount is not yet updated 202 * to the potentially higher ag count. 203 * 204 * Returns the maximum AG index which may contain inodes. 205 */ 206 xfs_agnumber_t 207 xfs_set_inode_alloc( 208 struct xfs_mount *mp, 209 xfs_agnumber_t agcount) 210 { 211 xfs_agnumber_t index; 212 xfs_agnumber_t maxagi = 0; 213 xfs_sb_t *sbp = &mp->m_sb; 214 xfs_agnumber_t max_metadata; 215 xfs_agino_t agino; 216 xfs_ino_t ino; 217 218 /* 219 * Calculate how much should be reserved for inodes to meet 220 * the max inode percentage. Used only for inode32. 221 */ 222 if (M_IGEO(mp)->maxicount) { 223 uint64_t icount; 224 225 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 226 do_div(icount, 100); 227 icount += sbp->sb_agblocks - 1; 228 do_div(icount, sbp->sb_agblocks); 229 max_metadata = icount; 230 } else { 231 max_metadata = agcount; 232 } 233 234 /* Get the last possible inode in the filesystem */ 235 agino = XFS_AGB_TO_AGINO(mp, sbp->sb_agblocks - 1); 236 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 237 238 /* 239 * If user asked for no more than 32-bit inodes, and the fs is 240 * sufficiently large, set XFS_MOUNT_32BITINODES if we must alter 241 * the allocator to accommodate the request. 242 */ 243 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) 244 mp->m_flags |= XFS_MOUNT_32BITINODES; 245 else 246 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 247 248 for (index = 0; index < agcount; index++) { 249 struct xfs_perag *pag; 250 251 ino = XFS_AGINO_TO_INO(mp, index, agino); 252 253 pag = xfs_perag_get(mp, index); 254 255 if (mp->m_flags & XFS_MOUNT_32BITINODES) { 256 if (ino > XFS_MAXINUMBER_32) { 257 pag->pagi_inodeok = 0; 258 pag->pagf_metadata = 0; 259 } else { 260 pag->pagi_inodeok = 1; 261 maxagi++; 262 if (index < max_metadata) 263 pag->pagf_metadata = 1; 264 else 265 pag->pagf_metadata = 0; 266 } 267 } else { 268 pag->pagi_inodeok = 1; 269 pag->pagf_metadata = 0; 270 } 271 272 xfs_perag_put(pag); 273 } 274 275 return (mp->m_flags & XFS_MOUNT_32BITINODES) ? maxagi : agcount; 276 } 277 278 STATIC int 279 xfs_blkdev_get( 280 xfs_mount_t *mp, 281 const char *name, 282 struct block_device **bdevp) 283 { 284 int error = 0; 285 286 *bdevp = blkdev_get_by_path(name, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 287 mp); 288 if (IS_ERR(*bdevp)) { 289 error = PTR_ERR(*bdevp); 290 xfs_warn(mp, "Invalid device [%s], error=%d", name, error); 291 } 292 293 return error; 294 } 295 296 STATIC void 297 xfs_blkdev_put( 298 struct block_device *bdev) 299 { 300 if (bdev) 301 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 302 } 303 304 void 305 xfs_blkdev_issue_flush( 306 xfs_buftarg_t *buftarg) 307 { 308 blkdev_issue_flush(buftarg->bt_bdev, GFP_NOFS, NULL); 309 } 310 311 STATIC void 312 xfs_close_devices( 313 struct xfs_mount *mp) 314 { 315 struct dax_device *dax_ddev = mp->m_ddev_targp->bt_daxdev; 316 317 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { 318 struct block_device *logdev = mp->m_logdev_targp->bt_bdev; 319 struct dax_device *dax_logdev = mp->m_logdev_targp->bt_daxdev; 320 321 xfs_free_buftarg(mp->m_logdev_targp); 322 xfs_blkdev_put(logdev); 323 fs_put_dax(dax_logdev); 324 } 325 if (mp->m_rtdev_targp) { 326 struct block_device *rtdev = mp->m_rtdev_targp->bt_bdev; 327 struct dax_device *dax_rtdev = mp->m_rtdev_targp->bt_daxdev; 328 329 xfs_free_buftarg(mp->m_rtdev_targp); 330 xfs_blkdev_put(rtdev); 331 fs_put_dax(dax_rtdev); 332 } 333 xfs_free_buftarg(mp->m_ddev_targp); 334 fs_put_dax(dax_ddev); 335 } 336 337 /* 338 * The file system configurations are: 339 * (1) device (partition) with data and internal log 340 * (2) logical volume with data and log subvolumes. 341 * (3) logical volume with data, log, and realtime subvolumes. 342 * 343 * We only have to handle opening the log and realtime volumes here if 344 * they are present. The data subvolume has already been opened by 345 * get_sb_bdev() and is stored in sb->s_bdev. 346 */ 347 STATIC int 348 xfs_open_devices( 349 struct xfs_mount *mp) 350 { 351 struct block_device *ddev = mp->m_super->s_bdev; 352 struct dax_device *dax_ddev = fs_dax_get_by_bdev(ddev); 353 struct dax_device *dax_logdev = NULL, *dax_rtdev = NULL; 354 struct block_device *logdev = NULL, *rtdev = NULL; 355 int error; 356 357 /* 358 * Open real time and log devices - order is important. 359 */ 360 if (mp->m_logname) { 361 error = xfs_blkdev_get(mp, mp->m_logname, &logdev); 362 if (error) 363 goto out; 364 dax_logdev = fs_dax_get_by_bdev(logdev); 365 } 366 367 if (mp->m_rtname) { 368 error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev); 369 if (error) 370 goto out_close_logdev; 371 372 if (rtdev == ddev || rtdev == logdev) { 373 xfs_warn(mp, 374 "Cannot mount filesystem with identical rtdev and ddev/logdev."); 375 error = -EINVAL; 376 goto out_close_rtdev; 377 } 378 dax_rtdev = fs_dax_get_by_bdev(rtdev); 379 } 380 381 /* 382 * Setup xfs_mount buffer target pointers 383 */ 384 error = -ENOMEM; 385 mp->m_ddev_targp = xfs_alloc_buftarg(mp, ddev, dax_ddev); 386 if (!mp->m_ddev_targp) 387 goto out_close_rtdev; 388 389 if (rtdev) { 390 mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev, dax_rtdev); 391 if (!mp->m_rtdev_targp) 392 goto out_free_ddev_targ; 393 } 394 395 if (logdev && logdev != ddev) { 396 mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev, dax_logdev); 397 if (!mp->m_logdev_targp) 398 goto out_free_rtdev_targ; 399 } else { 400 mp->m_logdev_targp = mp->m_ddev_targp; 401 } 402 403 return 0; 404 405 out_free_rtdev_targ: 406 if (mp->m_rtdev_targp) 407 xfs_free_buftarg(mp->m_rtdev_targp); 408 out_free_ddev_targ: 409 xfs_free_buftarg(mp->m_ddev_targp); 410 out_close_rtdev: 411 xfs_blkdev_put(rtdev); 412 fs_put_dax(dax_rtdev); 413 out_close_logdev: 414 if (logdev && logdev != ddev) { 415 xfs_blkdev_put(logdev); 416 fs_put_dax(dax_logdev); 417 } 418 out: 419 fs_put_dax(dax_ddev); 420 return error; 421 } 422 423 /* 424 * Setup xfs_mount buffer target pointers based on superblock 425 */ 426 STATIC int 427 xfs_setup_devices( 428 struct xfs_mount *mp) 429 { 430 int error; 431 432 error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_sectsize); 433 if (error) 434 return error; 435 436 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { 437 unsigned int log_sector_size = BBSIZE; 438 439 if (xfs_sb_version_hassector(&mp->m_sb)) 440 log_sector_size = mp->m_sb.sb_logsectsize; 441 error = xfs_setsize_buftarg(mp->m_logdev_targp, 442 log_sector_size); 443 if (error) 444 return error; 445 } 446 if (mp->m_rtdev_targp) { 447 error = xfs_setsize_buftarg(mp->m_rtdev_targp, 448 mp->m_sb.sb_sectsize); 449 if (error) 450 return error; 451 } 452 453 return 0; 454 } 455 456 STATIC int 457 xfs_init_mount_workqueues( 458 struct xfs_mount *mp) 459 { 460 mp->m_buf_workqueue = alloc_workqueue("xfs-buf/%s", 461 WQ_MEM_RECLAIM|WQ_FREEZABLE, 1, mp->m_super->s_id); 462 if (!mp->m_buf_workqueue) 463 goto out; 464 465 mp->m_unwritten_workqueue = alloc_workqueue("xfs-conv/%s", 466 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id); 467 if (!mp->m_unwritten_workqueue) 468 goto out_destroy_buf; 469 470 mp->m_cil_workqueue = alloc_workqueue("xfs-cil/%s", 471 WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND, 472 0, mp->m_super->s_id); 473 if (!mp->m_cil_workqueue) 474 goto out_destroy_unwritten; 475 476 mp->m_reclaim_workqueue = alloc_workqueue("xfs-reclaim/%s", 477 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id); 478 if (!mp->m_reclaim_workqueue) 479 goto out_destroy_cil; 480 481 mp->m_eofblocks_workqueue = alloc_workqueue("xfs-eofblocks/%s", 482 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id); 483 if (!mp->m_eofblocks_workqueue) 484 goto out_destroy_reclaim; 485 486 mp->m_sync_workqueue = alloc_workqueue("xfs-sync/%s", WQ_FREEZABLE, 0, 487 mp->m_super->s_id); 488 if (!mp->m_sync_workqueue) 489 goto out_destroy_eofb; 490 491 return 0; 492 493 out_destroy_eofb: 494 destroy_workqueue(mp->m_eofblocks_workqueue); 495 out_destroy_reclaim: 496 destroy_workqueue(mp->m_reclaim_workqueue); 497 out_destroy_cil: 498 destroy_workqueue(mp->m_cil_workqueue); 499 out_destroy_unwritten: 500 destroy_workqueue(mp->m_unwritten_workqueue); 501 out_destroy_buf: 502 destroy_workqueue(mp->m_buf_workqueue); 503 out: 504 return -ENOMEM; 505 } 506 507 STATIC void 508 xfs_destroy_mount_workqueues( 509 struct xfs_mount *mp) 510 { 511 destroy_workqueue(mp->m_sync_workqueue); 512 destroy_workqueue(mp->m_eofblocks_workqueue); 513 destroy_workqueue(mp->m_reclaim_workqueue); 514 destroy_workqueue(mp->m_cil_workqueue); 515 destroy_workqueue(mp->m_unwritten_workqueue); 516 destroy_workqueue(mp->m_buf_workqueue); 517 } 518 519 /* 520 * Flush all dirty data to disk. Must not be called while holding an XFS_ILOCK 521 * or a page lock. We use sync_inodes_sb() here to ensure we block while waiting 522 * for IO to complete so that we effectively throttle multiple callers to the 523 * rate at which IO is completing. 524 */ 525 void 526 xfs_flush_inodes( 527 struct xfs_mount *mp) 528 { 529 struct super_block *sb = mp->m_super; 530 531 if (!__ratelimit(&mp->m_flush_inodes_ratelimit)) 532 return; 533 534 if (down_read_trylock(&sb->s_umount)) { 535 sync_inodes_sb(sb); 536 up_read(&sb->s_umount); 537 } 538 } 539 540 /* Catch misguided souls that try to use this interface on XFS */ 541 STATIC struct inode * 542 xfs_fs_alloc_inode( 543 struct super_block *sb) 544 { 545 BUG(); 546 return NULL; 547 } 548 549 #ifdef DEBUG 550 static void 551 xfs_check_delalloc( 552 struct xfs_inode *ip, 553 int whichfork) 554 { 555 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 556 struct xfs_bmbt_irec got; 557 struct xfs_iext_cursor icur; 558 559 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got)) 560 return; 561 do { 562 if (isnullstartblock(got.br_startblock)) { 563 xfs_warn(ip->i_mount, 564 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]", 565 ip->i_ino, 566 whichfork == XFS_DATA_FORK ? "data" : "cow", 567 got.br_startoff, got.br_blockcount); 568 } 569 } while (xfs_iext_next_extent(ifp, &icur, &got)); 570 } 571 #else 572 #define xfs_check_delalloc(ip, whichfork) do { } while (0) 573 #endif 574 575 /* 576 * Now that the generic code is guaranteed not to be accessing 577 * the linux inode, we can inactivate and reclaim the inode. 578 */ 579 STATIC void 580 xfs_fs_destroy_inode( 581 struct inode *inode) 582 { 583 struct xfs_inode *ip = XFS_I(inode); 584 585 trace_xfs_destroy_inode(ip); 586 587 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 588 XFS_STATS_INC(ip->i_mount, vn_rele); 589 XFS_STATS_INC(ip->i_mount, vn_remove); 590 591 xfs_inactive(ip); 592 593 if (!XFS_FORCED_SHUTDOWN(ip->i_mount) && ip->i_delayed_blks) { 594 xfs_check_delalloc(ip, XFS_DATA_FORK); 595 xfs_check_delalloc(ip, XFS_COW_FORK); 596 ASSERT(0); 597 } 598 599 XFS_STATS_INC(ip->i_mount, vn_reclaim); 600 601 /* 602 * We should never get here with one of the reclaim flags already set. 603 */ 604 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIMABLE)); 605 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM)); 606 607 /* 608 * We always use background reclaim here because even if the 609 * inode is clean, it still may be under IO and hence we have 610 * to take the flush lock. The background reclaim path handles 611 * this more efficiently than we can here, so simply let background 612 * reclaim tear down all inodes. 613 */ 614 xfs_inode_set_reclaim_tag(ip); 615 } 616 617 static void 618 xfs_fs_dirty_inode( 619 struct inode *inode, 620 int flag) 621 { 622 struct xfs_inode *ip = XFS_I(inode); 623 struct xfs_mount *mp = ip->i_mount; 624 struct xfs_trans *tp; 625 626 if (!(inode->i_sb->s_flags & SB_LAZYTIME)) 627 return; 628 if (flag != I_DIRTY_SYNC || !(inode->i_state & I_DIRTY_TIME)) 629 return; 630 631 if (xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp)) 632 return; 633 xfs_ilock(ip, XFS_ILOCK_EXCL); 634 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 635 xfs_trans_log_inode(tp, ip, XFS_ILOG_TIMESTAMP); 636 xfs_trans_commit(tp); 637 } 638 639 /* 640 * Slab object creation initialisation for the XFS inode. 641 * This covers only the idempotent fields in the XFS inode; 642 * all other fields need to be initialised on allocation 643 * from the slab. This avoids the need to repeatedly initialise 644 * fields in the xfs inode that left in the initialise state 645 * when freeing the inode. 646 */ 647 STATIC void 648 xfs_fs_inode_init_once( 649 void *inode) 650 { 651 struct xfs_inode *ip = inode; 652 653 memset(ip, 0, sizeof(struct xfs_inode)); 654 655 /* vfs inode */ 656 inode_init_once(VFS_I(ip)); 657 658 /* xfs inode */ 659 atomic_set(&ip->i_pincount, 0); 660 spin_lock_init(&ip->i_flags_lock); 661 662 mrlock_init(&ip->i_mmaplock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER, 663 "xfsino", ip->i_ino); 664 mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER, 665 "xfsino", ip->i_ino); 666 } 667 668 /* 669 * We do an unlocked check for XFS_IDONTCACHE here because we are already 670 * serialised against cache hits here via the inode->i_lock and igrab() in 671 * xfs_iget_cache_hit(). Hence a lookup that might clear this flag will not be 672 * racing with us, and it avoids needing to grab a spinlock here for every inode 673 * we drop the final reference on. 674 */ 675 STATIC int 676 xfs_fs_drop_inode( 677 struct inode *inode) 678 { 679 struct xfs_inode *ip = XFS_I(inode); 680 681 /* 682 * If this unlinked inode is in the middle of recovery, don't 683 * drop the inode just yet; log recovery will take care of 684 * that. See the comment for this inode flag. 685 */ 686 if (ip->i_flags & XFS_IRECOVERY) { 687 ASSERT(ip->i_mount->m_log->l_flags & XLOG_RECOVERY_NEEDED); 688 return 0; 689 } 690 691 return generic_drop_inode(inode) || (ip->i_flags & XFS_IDONTCACHE); 692 } 693 694 static void 695 xfs_mount_free( 696 struct xfs_mount *mp) 697 { 698 kfree(mp->m_rtname); 699 kfree(mp->m_logname); 700 kmem_free(mp); 701 } 702 703 STATIC int 704 xfs_fs_sync_fs( 705 struct super_block *sb, 706 int wait) 707 { 708 struct xfs_mount *mp = XFS_M(sb); 709 710 /* 711 * Doing anything during the async pass would be counterproductive. 712 */ 713 if (!wait) 714 return 0; 715 716 xfs_log_force(mp, XFS_LOG_SYNC); 717 if (laptop_mode) { 718 /* 719 * The disk must be active because we're syncing. 720 * We schedule log work now (now that the disk is 721 * active) instead of later (when it might not be). 722 */ 723 flush_delayed_work(&mp->m_log->l_work); 724 } 725 726 return 0; 727 } 728 729 STATIC int 730 xfs_fs_statfs( 731 struct dentry *dentry, 732 struct kstatfs *statp) 733 { 734 struct xfs_mount *mp = XFS_M(dentry->d_sb); 735 xfs_sb_t *sbp = &mp->m_sb; 736 struct xfs_inode *ip = XFS_I(d_inode(dentry)); 737 uint64_t fakeinos, id; 738 uint64_t icount; 739 uint64_t ifree; 740 uint64_t fdblocks; 741 xfs_extlen_t lsize; 742 int64_t ffree; 743 744 statp->f_type = XFS_SUPER_MAGIC; 745 statp->f_namelen = MAXNAMELEN - 1; 746 747 id = huge_encode_dev(mp->m_ddev_targp->bt_dev); 748 statp->f_fsid.val[0] = (u32)id; 749 statp->f_fsid.val[1] = (u32)(id >> 32); 750 751 icount = percpu_counter_sum(&mp->m_icount); 752 ifree = percpu_counter_sum(&mp->m_ifree); 753 fdblocks = percpu_counter_sum(&mp->m_fdblocks); 754 755 spin_lock(&mp->m_sb_lock); 756 statp->f_bsize = sbp->sb_blocksize; 757 lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0; 758 statp->f_blocks = sbp->sb_dblocks - lsize; 759 spin_unlock(&mp->m_sb_lock); 760 761 statp->f_bfree = fdblocks - mp->m_alloc_set_aside; 762 statp->f_bavail = statp->f_bfree; 763 764 fakeinos = XFS_FSB_TO_INO(mp, statp->f_bfree); 765 statp->f_files = min(icount + fakeinos, (uint64_t)XFS_MAXINUMBER); 766 if (M_IGEO(mp)->maxicount) 767 statp->f_files = min_t(typeof(statp->f_files), 768 statp->f_files, 769 M_IGEO(mp)->maxicount); 770 771 /* If sb_icount overshot maxicount, report actual allocation */ 772 statp->f_files = max_t(typeof(statp->f_files), 773 statp->f_files, 774 sbp->sb_icount); 775 776 /* make sure statp->f_ffree does not underflow */ 777 ffree = statp->f_files - (icount - ifree); 778 statp->f_ffree = max_t(int64_t, ffree, 0); 779 780 781 if ((ip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 782 ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))) == 783 (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD)) 784 xfs_qm_statvfs(ip, statp); 785 786 if (XFS_IS_REALTIME_MOUNT(mp) && 787 (ip->i_d.di_flags & (XFS_DIFLAG_RTINHERIT | XFS_DIFLAG_REALTIME))) { 788 statp->f_blocks = sbp->sb_rblocks; 789 statp->f_bavail = statp->f_bfree = 790 sbp->sb_frextents * sbp->sb_rextsize; 791 } 792 793 return 0; 794 } 795 796 STATIC void 797 xfs_save_resvblks(struct xfs_mount *mp) 798 { 799 uint64_t resblks = 0; 800 801 mp->m_resblks_save = mp->m_resblks; 802 xfs_reserve_blocks(mp, &resblks, NULL); 803 } 804 805 STATIC void 806 xfs_restore_resvblks(struct xfs_mount *mp) 807 { 808 uint64_t resblks; 809 810 if (mp->m_resblks_save) { 811 resblks = mp->m_resblks_save; 812 mp->m_resblks_save = 0; 813 } else 814 resblks = xfs_default_resblks(mp); 815 816 xfs_reserve_blocks(mp, &resblks, NULL); 817 } 818 819 /* 820 * Trigger writeback of all the dirty metadata in the file system. 821 * 822 * This ensures that the metadata is written to their location on disk rather 823 * than just existing in transactions in the log. This means after a quiesce 824 * there is no log replay required to write the inodes to disk - this is the 825 * primary difference between a sync and a quiesce. 826 * 827 * Note: xfs_log_quiesce() stops background log work - the callers must ensure 828 * it is started again when appropriate. 829 */ 830 void 831 xfs_quiesce_attr( 832 struct xfs_mount *mp) 833 { 834 int error = 0; 835 836 /* wait for all modifications to complete */ 837 while (atomic_read(&mp->m_active_trans) > 0) 838 delay(100); 839 840 /* force the log to unpin objects from the now complete transactions */ 841 xfs_log_force(mp, XFS_LOG_SYNC); 842 843 /* reclaim inodes to do any IO before the freeze completes */ 844 xfs_reclaim_inodes(mp, 0); 845 xfs_reclaim_inodes(mp, SYNC_WAIT); 846 847 /* Push the superblock and write an unmount record */ 848 error = xfs_log_sbcount(mp); 849 if (error) 850 xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. " 851 "Frozen image may not be consistent."); 852 /* 853 * Just warn here till VFS can correctly support 854 * read-only remount without racing. 855 */ 856 WARN_ON(atomic_read(&mp->m_active_trans) != 0); 857 858 xfs_log_quiesce(mp); 859 } 860 861 /* 862 * Second stage of a freeze. The data is already frozen so we only 863 * need to take care of the metadata. Once that's done sync the superblock 864 * to the log to dirty it in case of a crash while frozen. This ensures that we 865 * will recover the unlinked inode lists on the next mount. 866 */ 867 STATIC int 868 xfs_fs_freeze( 869 struct super_block *sb) 870 { 871 struct xfs_mount *mp = XFS_M(sb); 872 873 xfs_stop_block_reaping(mp); 874 xfs_save_resvblks(mp); 875 xfs_quiesce_attr(mp); 876 return xfs_sync_sb(mp, true); 877 } 878 879 STATIC int 880 xfs_fs_unfreeze( 881 struct super_block *sb) 882 { 883 struct xfs_mount *mp = XFS_M(sb); 884 885 xfs_restore_resvblks(mp); 886 xfs_log_work_queue(mp); 887 xfs_start_block_reaping(mp); 888 return 0; 889 } 890 891 /* 892 * This function fills in xfs_mount_t fields based on mount args. 893 * Note: the superblock _has_ now been read in. 894 */ 895 STATIC int 896 xfs_finish_flags( 897 struct xfs_mount *mp) 898 { 899 int ronly = (mp->m_flags & XFS_MOUNT_RDONLY); 900 901 /* Fail a mount where the logbuf is smaller than the log stripe */ 902 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 903 if (mp->m_logbsize <= 0 && 904 mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) { 905 mp->m_logbsize = mp->m_sb.sb_logsunit; 906 } else if (mp->m_logbsize > 0 && 907 mp->m_logbsize < mp->m_sb.sb_logsunit) { 908 xfs_warn(mp, 909 "logbuf size must be greater than or equal to log stripe size"); 910 return -EINVAL; 911 } 912 } else { 913 /* Fail a mount if the logbuf is larger than 32K */ 914 if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) { 915 xfs_warn(mp, 916 "logbuf size for version 1 logs must be 16K or 32K"); 917 return -EINVAL; 918 } 919 } 920 921 /* 922 * V5 filesystems always use attr2 format for attributes. 923 */ 924 if (xfs_sb_version_hascrc(&mp->m_sb) && 925 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 926 xfs_warn(mp, "Cannot mount a V5 filesystem as noattr2. " 927 "attr2 is always enabled for V5 filesystems."); 928 return -EINVAL; 929 } 930 931 /* 932 * mkfs'ed attr2 will turn on attr2 mount unless explicitly 933 * told by noattr2 to turn it off 934 */ 935 if (xfs_sb_version_hasattr2(&mp->m_sb) && 936 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 937 mp->m_flags |= XFS_MOUNT_ATTR2; 938 939 /* 940 * prohibit r/w mounts of read-only filesystems 941 */ 942 if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) { 943 xfs_warn(mp, 944 "cannot mount a read-only filesystem as read-write"); 945 return -EROFS; 946 } 947 948 if ((mp->m_qflags & (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE)) && 949 (mp->m_qflags & (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE)) && 950 !xfs_sb_version_has_pquotino(&mp->m_sb)) { 951 xfs_warn(mp, 952 "Super block does not support project and group quota together"); 953 return -EINVAL; 954 } 955 956 return 0; 957 } 958 959 static int 960 xfs_init_percpu_counters( 961 struct xfs_mount *mp) 962 { 963 int error; 964 965 error = percpu_counter_init(&mp->m_icount, 0, GFP_KERNEL); 966 if (error) 967 return -ENOMEM; 968 969 error = percpu_counter_init(&mp->m_ifree, 0, GFP_KERNEL); 970 if (error) 971 goto free_icount; 972 973 error = percpu_counter_init(&mp->m_fdblocks, 0, GFP_KERNEL); 974 if (error) 975 goto free_ifree; 976 977 error = percpu_counter_init(&mp->m_delalloc_blks, 0, GFP_KERNEL); 978 if (error) 979 goto free_fdblocks; 980 981 return 0; 982 983 free_fdblocks: 984 percpu_counter_destroy(&mp->m_fdblocks); 985 free_ifree: 986 percpu_counter_destroy(&mp->m_ifree); 987 free_icount: 988 percpu_counter_destroy(&mp->m_icount); 989 return -ENOMEM; 990 } 991 992 void 993 xfs_reinit_percpu_counters( 994 struct xfs_mount *mp) 995 { 996 percpu_counter_set(&mp->m_icount, mp->m_sb.sb_icount); 997 percpu_counter_set(&mp->m_ifree, mp->m_sb.sb_ifree); 998 percpu_counter_set(&mp->m_fdblocks, mp->m_sb.sb_fdblocks); 999 } 1000 1001 static void 1002 xfs_destroy_percpu_counters( 1003 struct xfs_mount *mp) 1004 { 1005 percpu_counter_destroy(&mp->m_icount); 1006 percpu_counter_destroy(&mp->m_ifree); 1007 percpu_counter_destroy(&mp->m_fdblocks); 1008 ASSERT(XFS_FORCED_SHUTDOWN(mp) || 1009 percpu_counter_sum(&mp->m_delalloc_blks) == 0); 1010 percpu_counter_destroy(&mp->m_delalloc_blks); 1011 } 1012 1013 static void 1014 xfs_fs_put_super( 1015 struct super_block *sb) 1016 { 1017 struct xfs_mount *mp = XFS_M(sb); 1018 1019 /* if ->fill_super failed, we have no mount to tear down */ 1020 if (!sb->s_fs_info) 1021 return; 1022 1023 xfs_notice(mp, "Unmounting Filesystem"); 1024 xfs_filestream_unmount(mp); 1025 xfs_unmountfs(mp); 1026 1027 xfs_freesb(mp); 1028 free_percpu(mp->m_stats.xs_stats); 1029 xfs_destroy_percpu_counters(mp); 1030 xfs_destroy_mount_workqueues(mp); 1031 xfs_close_devices(mp); 1032 1033 sb->s_fs_info = NULL; 1034 xfs_mount_free(mp); 1035 } 1036 1037 static long 1038 xfs_fs_nr_cached_objects( 1039 struct super_block *sb, 1040 struct shrink_control *sc) 1041 { 1042 /* Paranoia: catch incorrect calls during mount setup or teardown */ 1043 if (WARN_ON_ONCE(!sb->s_fs_info)) 1044 return 0; 1045 return xfs_reclaim_inodes_count(XFS_M(sb)); 1046 } 1047 1048 static long 1049 xfs_fs_free_cached_objects( 1050 struct super_block *sb, 1051 struct shrink_control *sc) 1052 { 1053 return xfs_reclaim_inodes_nr(XFS_M(sb), sc->nr_to_scan); 1054 } 1055 1056 static const struct super_operations xfs_super_operations = { 1057 .alloc_inode = xfs_fs_alloc_inode, 1058 .destroy_inode = xfs_fs_destroy_inode, 1059 .dirty_inode = xfs_fs_dirty_inode, 1060 .drop_inode = xfs_fs_drop_inode, 1061 .put_super = xfs_fs_put_super, 1062 .sync_fs = xfs_fs_sync_fs, 1063 .freeze_fs = xfs_fs_freeze, 1064 .unfreeze_fs = xfs_fs_unfreeze, 1065 .statfs = xfs_fs_statfs, 1066 .show_options = xfs_fs_show_options, 1067 .nr_cached_objects = xfs_fs_nr_cached_objects, 1068 .free_cached_objects = xfs_fs_free_cached_objects, 1069 }; 1070 1071 static int 1072 suffix_kstrtoint( 1073 const char *s, 1074 unsigned int base, 1075 int *res) 1076 { 1077 int last, shift_left_factor = 0, _res; 1078 char *value; 1079 int ret = 0; 1080 1081 value = kstrdup(s, GFP_KERNEL); 1082 if (!value) 1083 return -ENOMEM; 1084 1085 last = strlen(value) - 1; 1086 if (value[last] == 'K' || value[last] == 'k') { 1087 shift_left_factor = 10; 1088 value[last] = '\0'; 1089 } 1090 if (value[last] == 'M' || value[last] == 'm') { 1091 shift_left_factor = 20; 1092 value[last] = '\0'; 1093 } 1094 if (value[last] == 'G' || value[last] == 'g') { 1095 shift_left_factor = 30; 1096 value[last] = '\0'; 1097 } 1098 1099 if (kstrtoint(value, base, &_res)) 1100 ret = -EINVAL; 1101 kfree(value); 1102 *res = _res << shift_left_factor; 1103 return ret; 1104 } 1105 1106 /* 1107 * Set mount state from a mount option. 1108 * 1109 * NOTE: mp->m_super is NULL here! 1110 */ 1111 static int 1112 xfs_fc_parse_param( 1113 struct fs_context *fc, 1114 struct fs_parameter *param) 1115 { 1116 struct xfs_mount *mp = fc->s_fs_info; 1117 struct fs_parse_result result; 1118 int size = 0; 1119 int opt; 1120 1121 opt = fs_parse(fc, xfs_fs_parameters, param, &result); 1122 if (opt < 0) 1123 return opt; 1124 1125 switch (opt) { 1126 case Opt_logbufs: 1127 mp->m_logbufs = result.uint_32; 1128 return 0; 1129 case Opt_logbsize: 1130 if (suffix_kstrtoint(param->string, 10, &mp->m_logbsize)) 1131 return -EINVAL; 1132 return 0; 1133 case Opt_logdev: 1134 kfree(mp->m_logname); 1135 mp->m_logname = kstrdup(param->string, GFP_KERNEL); 1136 if (!mp->m_logname) 1137 return -ENOMEM; 1138 return 0; 1139 case Opt_rtdev: 1140 kfree(mp->m_rtname); 1141 mp->m_rtname = kstrdup(param->string, GFP_KERNEL); 1142 if (!mp->m_rtname) 1143 return -ENOMEM; 1144 return 0; 1145 case Opt_allocsize: 1146 if (suffix_kstrtoint(param->string, 10, &size)) 1147 return -EINVAL; 1148 mp->m_allocsize_log = ffs(size) - 1; 1149 mp->m_flags |= XFS_MOUNT_ALLOCSIZE; 1150 return 0; 1151 case Opt_grpid: 1152 case Opt_bsdgroups: 1153 mp->m_flags |= XFS_MOUNT_GRPID; 1154 return 0; 1155 case Opt_nogrpid: 1156 case Opt_sysvgroups: 1157 mp->m_flags &= ~XFS_MOUNT_GRPID; 1158 return 0; 1159 case Opt_wsync: 1160 mp->m_flags |= XFS_MOUNT_WSYNC; 1161 return 0; 1162 case Opt_norecovery: 1163 mp->m_flags |= XFS_MOUNT_NORECOVERY; 1164 return 0; 1165 case Opt_noalign: 1166 mp->m_flags |= XFS_MOUNT_NOALIGN; 1167 return 0; 1168 case Opt_swalloc: 1169 mp->m_flags |= XFS_MOUNT_SWALLOC; 1170 return 0; 1171 case Opt_sunit: 1172 mp->m_dalign = result.uint_32; 1173 return 0; 1174 case Opt_swidth: 1175 mp->m_swidth = result.uint_32; 1176 return 0; 1177 case Opt_inode32: 1178 mp->m_flags |= XFS_MOUNT_SMALL_INUMS; 1179 return 0; 1180 case Opt_inode64: 1181 mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS; 1182 return 0; 1183 case Opt_nouuid: 1184 mp->m_flags |= XFS_MOUNT_NOUUID; 1185 return 0; 1186 case Opt_ikeep: 1187 mp->m_flags |= XFS_MOUNT_IKEEP; 1188 return 0; 1189 case Opt_noikeep: 1190 mp->m_flags &= ~XFS_MOUNT_IKEEP; 1191 return 0; 1192 case Opt_largeio: 1193 mp->m_flags |= XFS_MOUNT_LARGEIO; 1194 return 0; 1195 case Opt_nolargeio: 1196 mp->m_flags &= ~XFS_MOUNT_LARGEIO; 1197 return 0; 1198 case Opt_attr2: 1199 mp->m_flags |= XFS_MOUNT_ATTR2; 1200 return 0; 1201 case Opt_noattr2: 1202 mp->m_flags &= ~XFS_MOUNT_ATTR2; 1203 mp->m_flags |= XFS_MOUNT_NOATTR2; 1204 return 0; 1205 case Opt_filestreams: 1206 mp->m_flags |= XFS_MOUNT_FILESTREAMS; 1207 return 0; 1208 case Opt_noquota: 1209 mp->m_qflags &= ~XFS_ALL_QUOTA_ACCT; 1210 mp->m_qflags &= ~XFS_ALL_QUOTA_ENFD; 1211 mp->m_qflags &= ~XFS_ALL_QUOTA_ACTIVE; 1212 return 0; 1213 case Opt_quota: 1214 case Opt_uquota: 1215 case Opt_usrquota: 1216 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE | 1217 XFS_UQUOTA_ENFD); 1218 return 0; 1219 case Opt_qnoenforce: 1220 case Opt_uqnoenforce: 1221 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE); 1222 mp->m_qflags &= ~XFS_UQUOTA_ENFD; 1223 return 0; 1224 case Opt_pquota: 1225 case Opt_prjquota: 1226 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE | 1227 XFS_PQUOTA_ENFD); 1228 return 0; 1229 case Opt_pqnoenforce: 1230 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE); 1231 mp->m_qflags &= ~XFS_PQUOTA_ENFD; 1232 return 0; 1233 case Opt_gquota: 1234 case Opt_grpquota: 1235 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE | 1236 XFS_GQUOTA_ENFD); 1237 return 0; 1238 case Opt_gqnoenforce: 1239 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE); 1240 mp->m_qflags &= ~XFS_GQUOTA_ENFD; 1241 return 0; 1242 case Opt_discard: 1243 mp->m_flags |= XFS_MOUNT_DISCARD; 1244 return 0; 1245 case Opt_nodiscard: 1246 mp->m_flags &= ~XFS_MOUNT_DISCARD; 1247 return 0; 1248 #ifdef CONFIG_FS_DAX 1249 case Opt_dax: 1250 mp->m_flags |= XFS_MOUNT_DAX; 1251 return 0; 1252 #endif 1253 default: 1254 xfs_warn(mp, "unknown mount option [%s].", param->key); 1255 return -EINVAL; 1256 } 1257 1258 return 0; 1259 } 1260 1261 static int 1262 xfs_fc_validate_params( 1263 struct xfs_mount *mp) 1264 { 1265 /* 1266 * no recovery flag requires a read-only mount 1267 */ 1268 if ((mp->m_flags & XFS_MOUNT_NORECOVERY) && 1269 !(mp->m_flags & XFS_MOUNT_RDONLY)) { 1270 xfs_warn(mp, "no-recovery mounts must be read-only."); 1271 return -EINVAL; 1272 } 1273 1274 if ((mp->m_flags & XFS_MOUNT_NOALIGN) && 1275 (mp->m_dalign || mp->m_swidth)) { 1276 xfs_warn(mp, 1277 "sunit and swidth options incompatible with the noalign option"); 1278 return -EINVAL; 1279 } 1280 1281 if (!IS_ENABLED(CONFIG_XFS_QUOTA) && mp->m_qflags != 0) { 1282 xfs_warn(mp, "quota support not available in this kernel."); 1283 return -EINVAL; 1284 } 1285 1286 if ((mp->m_dalign && !mp->m_swidth) || 1287 (!mp->m_dalign && mp->m_swidth)) { 1288 xfs_warn(mp, "sunit and swidth must be specified together"); 1289 return -EINVAL; 1290 } 1291 1292 if (mp->m_dalign && (mp->m_swidth % mp->m_dalign != 0)) { 1293 xfs_warn(mp, 1294 "stripe width (%d) must be a multiple of the stripe unit (%d)", 1295 mp->m_swidth, mp->m_dalign); 1296 return -EINVAL; 1297 } 1298 1299 if (mp->m_logbufs != -1 && 1300 mp->m_logbufs != 0 && 1301 (mp->m_logbufs < XLOG_MIN_ICLOGS || 1302 mp->m_logbufs > XLOG_MAX_ICLOGS)) { 1303 xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]", 1304 mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS); 1305 return -EINVAL; 1306 } 1307 1308 if (mp->m_logbsize != -1 && 1309 mp->m_logbsize != 0 && 1310 (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE || 1311 mp->m_logbsize > XLOG_MAX_RECORD_BSIZE || 1312 !is_power_of_2(mp->m_logbsize))) { 1313 xfs_warn(mp, 1314 "invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]", 1315 mp->m_logbsize); 1316 return -EINVAL; 1317 } 1318 1319 if ((mp->m_flags & XFS_MOUNT_ALLOCSIZE) && 1320 (mp->m_allocsize_log > XFS_MAX_IO_LOG || 1321 mp->m_allocsize_log < XFS_MIN_IO_LOG)) { 1322 xfs_warn(mp, "invalid log iosize: %d [not %d-%d]", 1323 mp->m_allocsize_log, XFS_MIN_IO_LOG, XFS_MAX_IO_LOG); 1324 return -EINVAL; 1325 } 1326 1327 return 0; 1328 } 1329 1330 static int 1331 xfs_fc_fill_super( 1332 struct super_block *sb, 1333 struct fs_context *fc) 1334 { 1335 struct xfs_mount *mp = sb->s_fs_info; 1336 struct inode *root; 1337 int flags = 0, error; 1338 1339 mp->m_super = sb; 1340 1341 error = xfs_fc_validate_params(mp); 1342 if (error) 1343 goto out_free_names; 1344 1345 sb_min_blocksize(sb, BBSIZE); 1346 sb->s_xattr = xfs_xattr_handlers; 1347 sb->s_export_op = &xfs_export_operations; 1348 #ifdef CONFIG_XFS_QUOTA 1349 sb->s_qcop = &xfs_quotactl_operations; 1350 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 1351 #endif 1352 sb->s_op = &xfs_super_operations; 1353 1354 /* 1355 * Delay mount work if the debug hook is set. This is debug 1356 * instrumention to coordinate simulation of xfs mount failures with 1357 * VFS superblock operations 1358 */ 1359 if (xfs_globals.mount_delay) { 1360 xfs_notice(mp, "Delaying mount for %d seconds.", 1361 xfs_globals.mount_delay); 1362 msleep(xfs_globals.mount_delay * 1000); 1363 } 1364 1365 if (fc->sb_flags & SB_SILENT) 1366 flags |= XFS_MFSI_QUIET; 1367 1368 error = xfs_open_devices(mp); 1369 if (error) 1370 goto out_free_names; 1371 1372 /* 1373 * Cap the number of invocations of xfs_flush_inodes to 16 for every 1374 * quarter of a second. The magic numbers here were determined by 1375 * observation neither to cause stalls in writeback when there are a 1376 * lot of IO threads and the fs is near ENOSPC, nor cause any fstest 1377 * regressions. YMMV. 1378 */ 1379 ratelimit_state_init(&mp->m_flush_inodes_ratelimit, HZ / 4, 16); 1380 ratelimit_set_flags(&mp->m_flush_inodes_ratelimit, 1381 RATELIMIT_MSG_ON_RELEASE); 1382 1383 error = xfs_init_mount_workqueues(mp); 1384 if (error) 1385 goto out_close_devices; 1386 1387 error = xfs_init_percpu_counters(mp); 1388 if (error) 1389 goto out_destroy_workqueues; 1390 1391 /* Allocate stats memory before we do operations that might use it */ 1392 mp->m_stats.xs_stats = alloc_percpu(struct xfsstats); 1393 if (!mp->m_stats.xs_stats) { 1394 error = -ENOMEM; 1395 goto out_destroy_counters; 1396 } 1397 1398 error = xfs_readsb(mp, flags); 1399 if (error) 1400 goto out_free_stats; 1401 1402 error = xfs_finish_flags(mp); 1403 if (error) 1404 goto out_free_sb; 1405 1406 error = xfs_setup_devices(mp); 1407 if (error) 1408 goto out_free_sb; 1409 1410 /* 1411 * XFS block mappings use 54 bits to store the logical block offset. 1412 * This should suffice to handle the maximum file size that the VFS 1413 * supports (currently 2^63 bytes on 64-bit and ULONG_MAX << PAGE_SHIFT 1414 * bytes on 32-bit), but as XFS and VFS have gotten the s_maxbytes 1415 * calculation wrong on 32-bit kernels in the past, we'll add a WARN_ON 1416 * to check this assertion. 1417 * 1418 * Avoid integer overflow by comparing the maximum bmbt offset to the 1419 * maximum pagecache offset in units of fs blocks. 1420 */ 1421 if (XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE) > XFS_MAX_FILEOFF) { 1422 xfs_warn(mp, 1423 "MAX_LFS_FILESIZE block offset (%llu) exceeds extent map maximum (%llu)!", 1424 XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE), 1425 XFS_MAX_FILEOFF); 1426 error = -EINVAL; 1427 goto out_free_sb; 1428 } 1429 1430 error = xfs_filestream_mount(mp); 1431 if (error) 1432 goto out_free_sb; 1433 1434 /* 1435 * we must configure the block size in the superblock before we run the 1436 * full mount process as the mount process can lookup and cache inodes. 1437 */ 1438 sb->s_magic = XFS_SUPER_MAGIC; 1439 sb->s_blocksize = mp->m_sb.sb_blocksize; 1440 sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1; 1441 sb->s_maxbytes = MAX_LFS_FILESIZE; 1442 sb->s_max_links = XFS_MAXLINK; 1443 sb->s_time_gran = 1; 1444 sb->s_time_min = S32_MIN; 1445 sb->s_time_max = S32_MAX; 1446 sb->s_iflags |= SB_I_CGROUPWB; 1447 1448 set_posix_acl_flag(sb); 1449 1450 /* version 5 superblocks support inode version counters. */ 1451 if (XFS_SB_VERSION_NUM(&mp->m_sb) == XFS_SB_VERSION_5) 1452 sb->s_flags |= SB_I_VERSION; 1453 1454 if (mp->m_flags & XFS_MOUNT_DAX) { 1455 bool rtdev_is_dax = false, datadev_is_dax; 1456 1457 xfs_warn(mp, 1458 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1459 1460 datadev_is_dax = bdev_dax_supported(mp->m_ddev_targp->bt_bdev, 1461 sb->s_blocksize); 1462 if (mp->m_rtdev_targp) 1463 rtdev_is_dax = bdev_dax_supported( 1464 mp->m_rtdev_targp->bt_bdev, sb->s_blocksize); 1465 if (!rtdev_is_dax && !datadev_is_dax) { 1466 xfs_alert(mp, 1467 "DAX unsupported by block device. Turning off DAX."); 1468 mp->m_flags &= ~XFS_MOUNT_DAX; 1469 } 1470 if (xfs_sb_version_hasreflink(&mp->m_sb)) { 1471 xfs_alert(mp, 1472 "DAX and reflink cannot be used together!"); 1473 error = -EINVAL; 1474 goto out_filestream_unmount; 1475 } 1476 } 1477 1478 if (mp->m_flags & XFS_MOUNT_DISCARD) { 1479 struct request_queue *q = bdev_get_queue(sb->s_bdev); 1480 1481 if (!blk_queue_discard(q)) { 1482 xfs_warn(mp, "mounting with \"discard\" option, but " 1483 "the device does not support discard"); 1484 mp->m_flags &= ~XFS_MOUNT_DISCARD; 1485 } 1486 } 1487 1488 if (xfs_sb_version_hasreflink(&mp->m_sb)) { 1489 if (mp->m_sb.sb_rblocks) { 1490 xfs_alert(mp, 1491 "reflink not compatible with realtime device!"); 1492 error = -EINVAL; 1493 goto out_filestream_unmount; 1494 } 1495 1496 if (xfs_globals.always_cow) { 1497 xfs_info(mp, "using DEBUG-only always_cow mode."); 1498 mp->m_always_cow = true; 1499 } 1500 } 1501 1502 if (xfs_sb_version_hasrmapbt(&mp->m_sb) && mp->m_sb.sb_rblocks) { 1503 xfs_alert(mp, 1504 "reverse mapping btree not compatible with realtime device!"); 1505 error = -EINVAL; 1506 goto out_filestream_unmount; 1507 } 1508 1509 error = xfs_mountfs(mp); 1510 if (error) 1511 goto out_filestream_unmount; 1512 1513 root = igrab(VFS_I(mp->m_rootip)); 1514 if (!root) { 1515 error = -ENOENT; 1516 goto out_unmount; 1517 } 1518 sb->s_root = d_make_root(root); 1519 if (!sb->s_root) { 1520 error = -ENOMEM; 1521 goto out_unmount; 1522 } 1523 1524 return 0; 1525 1526 out_filestream_unmount: 1527 xfs_filestream_unmount(mp); 1528 out_free_sb: 1529 xfs_freesb(mp); 1530 out_free_stats: 1531 free_percpu(mp->m_stats.xs_stats); 1532 out_destroy_counters: 1533 xfs_destroy_percpu_counters(mp); 1534 out_destroy_workqueues: 1535 xfs_destroy_mount_workqueues(mp); 1536 out_close_devices: 1537 xfs_close_devices(mp); 1538 out_free_names: 1539 sb->s_fs_info = NULL; 1540 xfs_mount_free(mp); 1541 return error; 1542 1543 out_unmount: 1544 xfs_filestream_unmount(mp); 1545 xfs_unmountfs(mp); 1546 goto out_free_sb; 1547 } 1548 1549 static int 1550 xfs_fc_get_tree( 1551 struct fs_context *fc) 1552 { 1553 return get_tree_bdev(fc, xfs_fc_fill_super); 1554 } 1555 1556 static int 1557 xfs_remount_rw( 1558 struct xfs_mount *mp) 1559 { 1560 struct xfs_sb *sbp = &mp->m_sb; 1561 int error; 1562 1563 if (mp->m_flags & XFS_MOUNT_NORECOVERY) { 1564 xfs_warn(mp, 1565 "ro->rw transition prohibited on norecovery mount"); 1566 return -EINVAL; 1567 } 1568 1569 if (XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5 && 1570 xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { 1571 xfs_warn(mp, 1572 "ro->rw transition prohibited on unknown (0x%x) ro-compat filesystem", 1573 (sbp->sb_features_ro_compat & 1574 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); 1575 return -EINVAL; 1576 } 1577 1578 mp->m_flags &= ~XFS_MOUNT_RDONLY; 1579 1580 /* 1581 * If this is the first remount to writeable state we might have some 1582 * superblock changes to update. 1583 */ 1584 if (mp->m_update_sb) { 1585 error = xfs_sync_sb(mp, false); 1586 if (error) { 1587 xfs_warn(mp, "failed to write sb changes"); 1588 return error; 1589 } 1590 mp->m_update_sb = false; 1591 } 1592 1593 /* 1594 * Fill out the reserve pool if it is empty. Use the stashed value if 1595 * it is non-zero, otherwise go with the default. 1596 */ 1597 xfs_restore_resvblks(mp); 1598 xfs_log_work_queue(mp); 1599 1600 /* Recover any CoW blocks that never got remapped. */ 1601 error = xfs_reflink_recover_cow(mp); 1602 if (error) { 1603 xfs_err(mp, 1604 "Error %d recovering leftover CoW allocations.", error); 1605 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1606 return error; 1607 } 1608 xfs_start_block_reaping(mp); 1609 1610 /* Create the per-AG metadata reservation pool .*/ 1611 error = xfs_fs_reserve_ag_blocks(mp); 1612 if (error && error != -ENOSPC) 1613 return error; 1614 1615 return 0; 1616 } 1617 1618 static int 1619 xfs_remount_ro( 1620 struct xfs_mount *mp) 1621 { 1622 int error; 1623 1624 /* 1625 * Cancel background eofb scanning so it cannot race with the final 1626 * log force+buftarg wait and deadlock the remount. 1627 */ 1628 xfs_stop_block_reaping(mp); 1629 1630 /* Get rid of any leftover CoW reservations... */ 1631 error = xfs_icache_free_cowblocks(mp, NULL); 1632 if (error) { 1633 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1634 return error; 1635 } 1636 1637 /* Free the per-AG metadata reservation pool. */ 1638 error = xfs_fs_unreserve_ag_blocks(mp); 1639 if (error) { 1640 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1641 return error; 1642 } 1643 1644 /* 1645 * Before we sync the metadata, we need to free up the reserve block 1646 * pool so that the used block count in the superblock on disk is 1647 * correct at the end of the remount. Stash the current* reserve pool 1648 * size so that if we get remounted rw, we can return it to the same 1649 * size. 1650 */ 1651 xfs_save_resvblks(mp); 1652 1653 xfs_quiesce_attr(mp); 1654 mp->m_flags |= XFS_MOUNT_RDONLY; 1655 1656 return 0; 1657 } 1658 1659 /* 1660 * Logically we would return an error here to prevent users from believing 1661 * they might have changed mount options using remount which can't be changed. 1662 * 1663 * But unfortunately mount(8) adds all options from mtab and fstab to the mount 1664 * arguments in some cases so we can't blindly reject options, but have to 1665 * check for each specified option if it actually differs from the currently 1666 * set option and only reject it if that's the case. 1667 * 1668 * Until that is implemented we return success for every remount request, and 1669 * silently ignore all options that we can't actually change. 1670 */ 1671 static int 1672 xfs_fc_reconfigure( 1673 struct fs_context *fc) 1674 { 1675 struct xfs_mount *mp = XFS_M(fc->root->d_sb); 1676 struct xfs_mount *new_mp = fc->s_fs_info; 1677 xfs_sb_t *sbp = &mp->m_sb; 1678 int flags = fc->sb_flags; 1679 int error; 1680 1681 error = xfs_fc_validate_params(new_mp); 1682 if (error) 1683 return error; 1684 1685 sync_filesystem(mp->m_super); 1686 1687 /* inode32 -> inode64 */ 1688 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && 1689 !(new_mp->m_flags & XFS_MOUNT_SMALL_INUMS)) { 1690 mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS; 1691 mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount); 1692 } 1693 1694 /* inode64 -> inode32 */ 1695 if (!(mp->m_flags & XFS_MOUNT_SMALL_INUMS) && 1696 (new_mp->m_flags & XFS_MOUNT_SMALL_INUMS)) { 1697 mp->m_flags |= XFS_MOUNT_SMALL_INUMS; 1698 mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount); 1699 } 1700 1701 /* ro -> rw */ 1702 if ((mp->m_flags & XFS_MOUNT_RDONLY) && !(flags & SB_RDONLY)) { 1703 error = xfs_remount_rw(mp); 1704 if (error) 1705 return error; 1706 } 1707 1708 /* rw -> ro */ 1709 if (!(mp->m_flags & XFS_MOUNT_RDONLY) && (flags & SB_RDONLY)) { 1710 error = xfs_remount_ro(mp); 1711 if (error) 1712 return error; 1713 } 1714 1715 return 0; 1716 } 1717 1718 static void xfs_fc_free( 1719 struct fs_context *fc) 1720 { 1721 struct xfs_mount *mp = fc->s_fs_info; 1722 1723 /* 1724 * mp is stored in the fs_context when it is initialized. 1725 * mp is transferred to the superblock on a successful mount, 1726 * but if an error occurs before the transfer we have to free 1727 * it here. 1728 */ 1729 if (mp) 1730 xfs_mount_free(mp); 1731 } 1732 1733 static const struct fs_context_operations xfs_context_ops = { 1734 .parse_param = xfs_fc_parse_param, 1735 .get_tree = xfs_fc_get_tree, 1736 .reconfigure = xfs_fc_reconfigure, 1737 .free = xfs_fc_free, 1738 }; 1739 1740 static int xfs_init_fs_context( 1741 struct fs_context *fc) 1742 { 1743 struct xfs_mount *mp; 1744 1745 mp = kmem_alloc(sizeof(struct xfs_mount), KM_ZERO); 1746 if (!mp) 1747 return -ENOMEM; 1748 1749 spin_lock_init(&mp->m_sb_lock); 1750 spin_lock_init(&mp->m_agirotor_lock); 1751 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 1752 spin_lock_init(&mp->m_perag_lock); 1753 mutex_init(&mp->m_growlock); 1754 atomic_set(&mp->m_active_trans, 0); 1755 INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker); 1756 INIT_DELAYED_WORK(&mp->m_eofblocks_work, xfs_eofblocks_worker); 1757 INIT_DELAYED_WORK(&mp->m_cowblocks_work, xfs_cowblocks_worker); 1758 mp->m_kobj.kobject.kset = xfs_kset; 1759 /* 1760 * We don't create the finobt per-ag space reservation until after log 1761 * recovery, so we must set this to true so that an ifree transaction 1762 * started during log recovery will not depend on space reservations 1763 * for finobt expansion. 1764 */ 1765 mp->m_finobt_nores = true; 1766 1767 /* 1768 * These can be overridden by the mount option parsing. 1769 */ 1770 mp->m_logbufs = -1; 1771 mp->m_logbsize = -1; 1772 mp->m_allocsize_log = 16; /* 64k */ 1773 1774 /* 1775 * Copy binary VFS mount flags we are interested in. 1776 */ 1777 if (fc->sb_flags & SB_RDONLY) 1778 mp->m_flags |= XFS_MOUNT_RDONLY; 1779 if (fc->sb_flags & SB_DIRSYNC) 1780 mp->m_flags |= XFS_MOUNT_DIRSYNC; 1781 if (fc->sb_flags & SB_SYNCHRONOUS) 1782 mp->m_flags |= XFS_MOUNT_WSYNC; 1783 1784 fc->s_fs_info = mp; 1785 fc->ops = &xfs_context_ops; 1786 1787 return 0; 1788 } 1789 1790 static struct file_system_type xfs_fs_type = { 1791 .owner = THIS_MODULE, 1792 .name = "xfs", 1793 .init_fs_context = xfs_init_fs_context, 1794 .parameters = xfs_fs_parameters, 1795 .kill_sb = kill_block_super, 1796 .fs_flags = FS_REQUIRES_DEV, 1797 }; 1798 MODULE_ALIAS_FS("xfs"); 1799 1800 STATIC int __init 1801 xfs_init_zones(void) 1802 { 1803 xfs_log_ticket_zone = kmem_cache_create("xfs_log_ticket", 1804 sizeof(struct xlog_ticket), 1805 0, 0, NULL); 1806 if (!xfs_log_ticket_zone) 1807 goto out; 1808 1809 xfs_bmap_free_item_zone = kmem_cache_create("xfs_bmap_free_item", 1810 sizeof(struct xfs_extent_free_item), 1811 0, 0, NULL); 1812 if (!xfs_bmap_free_item_zone) 1813 goto out_destroy_log_ticket_zone; 1814 1815 xfs_btree_cur_zone = kmem_cache_create("xfs_btree_cur", 1816 sizeof(struct xfs_btree_cur), 1817 0, 0, NULL); 1818 if (!xfs_btree_cur_zone) 1819 goto out_destroy_bmap_free_item_zone; 1820 1821 xfs_da_state_zone = kmem_cache_create("xfs_da_state", 1822 sizeof(struct xfs_da_state), 1823 0, 0, NULL); 1824 if (!xfs_da_state_zone) 1825 goto out_destroy_btree_cur_zone; 1826 1827 xfs_ifork_zone = kmem_cache_create("xfs_ifork", 1828 sizeof(struct xfs_ifork), 1829 0, 0, NULL); 1830 if (!xfs_ifork_zone) 1831 goto out_destroy_da_state_zone; 1832 1833 xfs_trans_zone = kmem_cache_create("xf_trans", 1834 sizeof(struct xfs_trans), 1835 0, 0, NULL); 1836 if (!xfs_trans_zone) 1837 goto out_destroy_ifork_zone; 1838 1839 1840 /* 1841 * The size of the zone allocated buf log item is the maximum 1842 * size possible under XFS. This wastes a little bit of memory, 1843 * but it is much faster. 1844 */ 1845 xfs_buf_item_zone = kmem_cache_create("xfs_buf_item", 1846 sizeof(struct xfs_buf_log_item), 1847 0, 0, NULL); 1848 if (!xfs_buf_item_zone) 1849 goto out_destroy_trans_zone; 1850 1851 xfs_efd_zone = kmem_cache_create("xfs_efd_item", 1852 (sizeof(struct xfs_efd_log_item) + 1853 (XFS_EFD_MAX_FAST_EXTENTS - 1) * 1854 sizeof(struct xfs_extent)), 1855 0, 0, NULL); 1856 if (!xfs_efd_zone) 1857 goto out_destroy_buf_item_zone; 1858 1859 xfs_efi_zone = kmem_cache_create("xfs_efi_item", 1860 (sizeof(struct xfs_efi_log_item) + 1861 (XFS_EFI_MAX_FAST_EXTENTS - 1) * 1862 sizeof(struct xfs_extent)), 1863 0, 0, NULL); 1864 if (!xfs_efi_zone) 1865 goto out_destroy_efd_zone; 1866 1867 xfs_inode_zone = kmem_cache_create("xfs_inode", 1868 sizeof(struct xfs_inode), 0, 1869 (SLAB_HWCACHE_ALIGN | 1870 SLAB_RECLAIM_ACCOUNT | 1871 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 1872 xfs_fs_inode_init_once); 1873 if (!xfs_inode_zone) 1874 goto out_destroy_efi_zone; 1875 1876 xfs_ili_zone = kmem_cache_create("xfs_ili", 1877 sizeof(struct xfs_inode_log_item), 0, 1878 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 1879 NULL); 1880 if (!xfs_ili_zone) 1881 goto out_destroy_inode_zone; 1882 1883 xfs_icreate_zone = kmem_cache_create("xfs_icr", 1884 sizeof(struct xfs_icreate_item), 1885 0, 0, NULL); 1886 if (!xfs_icreate_zone) 1887 goto out_destroy_ili_zone; 1888 1889 xfs_rud_zone = kmem_cache_create("xfs_rud_item", 1890 sizeof(struct xfs_rud_log_item), 1891 0, 0, NULL); 1892 if (!xfs_rud_zone) 1893 goto out_destroy_icreate_zone; 1894 1895 xfs_rui_zone = kmem_cache_create("xfs_rui_item", 1896 xfs_rui_log_item_sizeof(XFS_RUI_MAX_FAST_EXTENTS), 1897 0, 0, NULL); 1898 if (!xfs_rui_zone) 1899 goto out_destroy_rud_zone; 1900 1901 xfs_cud_zone = kmem_cache_create("xfs_cud_item", 1902 sizeof(struct xfs_cud_log_item), 1903 0, 0, NULL); 1904 if (!xfs_cud_zone) 1905 goto out_destroy_rui_zone; 1906 1907 xfs_cui_zone = kmem_cache_create("xfs_cui_item", 1908 xfs_cui_log_item_sizeof(XFS_CUI_MAX_FAST_EXTENTS), 1909 0, 0, NULL); 1910 if (!xfs_cui_zone) 1911 goto out_destroy_cud_zone; 1912 1913 xfs_bud_zone = kmem_cache_create("xfs_bud_item", 1914 sizeof(struct xfs_bud_log_item), 1915 0, 0, NULL); 1916 if (!xfs_bud_zone) 1917 goto out_destroy_cui_zone; 1918 1919 xfs_bui_zone = kmem_cache_create("xfs_bui_item", 1920 xfs_bui_log_item_sizeof(XFS_BUI_MAX_FAST_EXTENTS), 1921 0, 0, NULL); 1922 if (!xfs_bui_zone) 1923 goto out_destroy_bud_zone; 1924 1925 return 0; 1926 1927 out_destroy_bud_zone: 1928 kmem_cache_destroy(xfs_bud_zone); 1929 out_destroy_cui_zone: 1930 kmem_cache_destroy(xfs_cui_zone); 1931 out_destroy_cud_zone: 1932 kmem_cache_destroy(xfs_cud_zone); 1933 out_destroy_rui_zone: 1934 kmem_cache_destroy(xfs_rui_zone); 1935 out_destroy_rud_zone: 1936 kmem_cache_destroy(xfs_rud_zone); 1937 out_destroy_icreate_zone: 1938 kmem_cache_destroy(xfs_icreate_zone); 1939 out_destroy_ili_zone: 1940 kmem_cache_destroy(xfs_ili_zone); 1941 out_destroy_inode_zone: 1942 kmem_cache_destroy(xfs_inode_zone); 1943 out_destroy_efi_zone: 1944 kmem_cache_destroy(xfs_efi_zone); 1945 out_destroy_efd_zone: 1946 kmem_cache_destroy(xfs_efd_zone); 1947 out_destroy_buf_item_zone: 1948 kmem_cache_destroy(xfs_buf_item_zone); 1949 out_destroy_trans_zone: 1950 kmem_cache_destroy(xfs_trans_zone); 1951 out_destroy_ifork_zone: 1952 kmem_cache_destroy(xfs_ifork_zone); 1953 out_destroy_da_state_zone: 1954 kmem_cache_destroy(xfs_da_state_zone); 1955 out_destroy_btree_cur_zone: 1956 kmem_cache_destroy(xfs_btree_cur_zone); 1957 out_destroy_bmap_free_item_zone: 1958 kmem_cache_destroy(xfs_bmap_free_item_zone); 1959 out_destroy_log_ticket_zone: 1960 kmem_cache_destroy(xfs_log_ticket_zone); 1961 out: 1962 return -ENOMEM; 1963 } 1964 1965 STATIC void 1966 xfs_destroy_zones(void) 1967 { 1968 /* 1969 * Make sure all delayed rcu free are flushed before we 1970 * destroy caches. 1971 */ 1972 rcu_barrier(); 1973 kmem_cache_destroy(xfs_bui_zone); 1974 kmem_cache_destroy(xfs_bud_zone); 1975 kmem_cache_destroy(xfs_cui_zone); 1976 kmem_cache_destroy(xfs_cud_zone); 1977 kmem_cache_destroy(xfs_rui_zone); 1978 kmem_cache_destroy(xfs_rud_zone); 1979 kmem_cache_destroy(xfs_icreate_zone); 1980 kmem_cache_destroy(xfs_ili_zone); 1981 kmem_cache_destroy(xfs_inode_zone); 1982 kmem_cache_destroy(xfs_efi_zone); 1983 kmem_cache_destroy(xfs_efd_zone); 1984 kmem_cache_destroy(xfs_buf_item_zone); 1985 kmem_cache_destroy(xfs_trans_zone); 1986 kmem_cache_destroy(xfs_ifork_zone); 1987 kmem_cache_destroy(xfs_da_state_zone); 1988 kmem_cache_destroy(xfs_btree_cur_zone); 1989 kmem_cache_destroy(xfs_bmap_free_item_zone); 1990 kmem_cache_destroy(xfs_log_ticket_zone); 1991 } 1992 1993 STATIC int __init 1994 xfs_init_workqueues(void) 1995 { 1996 /* 1997 * The allocation workqueue can be used in memory reclaim situations 1998 * (writepage path), and parallelism is only limited by the number of 1999 * AGs in all the filesystems mounted. Hence use the default large 2000 * max_active value for this workqueue. 2001 */ 2002 xfs_alloc_wq = alloc_workqueue("xfsalloc", 2003 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0); 2004 if (!xfs_alloc_wq) 2005 return -ENOMEM; 2006 2007 xfs_discard_wq = alloc_workqueue("xfsdiscard", WQ_UNBOUND, 0); 2008 if (!xfs_discard_wq) 2009 goto out_free_alloc_wq; 2010 2011 return 0; 2012 out_free_alloc_wq: 2013 destroy_workqueue(xfs_alloc_wq); 2014 return -ENOMEM; 2015 } 2016 2017 STATIC void 2018 xfs_destroy_workqueues(void) 2019 { 2020 destroy_workqueue(xfs_discard_wq); 2021 destroy_workqueue(xfs_alloc_wq); 2022 } 2023 2024 STATIC int __init 2025 init_xfs_fs(void) 2026 { 2027 int error; 2028 2029 xfs_check_ondisk_structs(); 2030 2031 printk(KERN_INFO XFS_VERSION_STRING " with " 2032 XFS_BUILD_OPTIONS " enabled\n"); 2033 2034 xfs_dir_startup(); 2035 2036 error = xfs_init_zones(); 2037 if (error) 2038 goto out; 2039 2040 error = xfs_init_workqueues(); 2041 if (error) 2042 goto out_destroy_zones; 2043 2044 error = xfs_mru_cache_init(); 2045 if (error) 2046 goto out_destroy_wq; 2047 2048 error = xfs_buf_init(); 2049 if (error) 2050 goto out_mru_cache_uninit; 2051 2052 error = xfs_init_procfs(); 2053 if (error) 2054 goto out_buf_terminate; 2055 2056 error = xfs_sysctl_register(); 2057 if (error) 2058 goto out_cleanup_procfs; 2059 2060 xfs_kset = kset_create_and_add("xfs", NULL, fs_kobj); 2061 if (!xfs_kset) { 2062 error = -ENOMEM; 2063 goto out_sysctl_unregister; 2064 } 2065 2066 xfsstats.xs_kobj.kobject.kset = xfs_kset; 2067 2068 xfsstats.xs_stats = alloc_percpu(struct xfsstats); 2069 if (!xfsstats.xs_stats) { 2070 error = -ENOMEM; 2071 goto out_kset_unregister; 2072 } 2073 2074 error = xfs_sysfs_init(&xfsstats.xs_kobj, &xfs_stats_ktype, NULL, 2075 "stats"); 2076 if (error) 2077 goto out_free_stats; 2078 2079 #ifdef DEBUG 2080 xfs_dbg_kobj.kobject.kset = xfs_kset; 2081 error = xfs_sysfs_init(&xfs_dbg_kobj, &xfs_dbg_ktype, NULL, "debug"); 2082 if (error) 2083 goto out_remove_stats_kobj; 2084 #endif 2085 2086 error = xfs_qm_init(); 2087 if (error) 2088 goto out_remove_dbg_kobj; 2089 2090 error = register_filesystem(&xfs_fs_type); 2091 if (error) 2092 goto out_qm_exit; 2093 return 0; 2094 2095 out_qm_exit: 2096 xfs_qm_exit(); 2097 out_remove_dbg_kobj: 2098 #ifdef DEBUG 2099 xfs_sysfs_del(&xfs_dbg_kobj); 2100 out_remove_stats_kobj: 2101 #endif 2102 xfs_sysfs_del(&xfsstats.xs_kobj); 2103 out_free_stats: 2104 free_percpu(xfsstats.xs_stats); 2105 out_kset_unregister: 2106 kset_unregister(xfs_kset); 2107 out_sysctl_unregister: 2108 xfs_sysctl_unregister(); 2109 out_cleanup_procfs: 2110 xfs_cleanup_procfs(); 2111 out_buf_terminate: 2112 xfs_buf_terminate(); 2113 out_mru_cache_uninit: 2114 xfs_mru_cache_uninit(); 2115 out_destroy_wq: 2116 xfs_destroy_workqueues(); 2117 out_destroy_zones: 2118 xfs_destroy_zones(); 2119 out: 2120 return error; 2121 } 2122 2123 STATIC void __exit 2124 exit_xfs_fs(void) 2125 { 2126 xfs_qm_exit(); 2127 unregister_filesystem(&xfs_fs_type); 2128 #ifdef DEBUG 2129 xfs_sysfs_del(&xfs_dbg_kobj); 2130 #endif 2131 xfs_sysfs_del(&xfsstats.xs_kobj); 2132 free_percpu(xfsstats.xs_stats); 2133 kset_unregister(xfs_kset); 2134 xfs_sysctl_unregister(); 2135 xfs_cleanup_procfs(); 2136 xfs_buf_terminate(); 2137 xfs_mru_cache_uninit(); 2138 xfs_destroy_workqueues(); 2139 xfs_destroy_zones(); 2140 xfs_uuid_table_free(); 2141 } 2142 2143 module_init(init_xfs_fs); 2144 module_exit(exit_xfs_fs); 2145 2146 MODULE_AUTHOR("Silicon Graphics, Inc."); 2147 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled"); 2148 MODULE_LICENSE("GPL"); 2149