1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2016 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_bit.h" 12 #include "xfs_shared.h" 13 #include "xfs_mount.h" 14 #include "xfs_defer.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_rmap_item.h" 18 #include "xfs_log.h" 19 #include "xfs_rmap.h" 20 #include "xfs_error.h" 21 #include "xfs_log_priv.h" 22 #include "xfs_log_recover.h" 23 24 kmem_zone_t *xfs_rui_zone; 25 kmem_zone_t *xfs_rud_zone; 26 27 static const struct xfs_item_ops xfs_rui_item_ops; 28 29 static inline struct xfs_rui_log_item *RUI_ITEM(struct xfs_log_item *lip) 30 { 31 return container_of(lip, struct xfs_rui_log_item, rui_item); 32 } 33 34 STATIC void 35 xfs_rui_item_free( 36 struct xfs_rui_log_item *ruip) 37 { 38 if (ruip->rui_format.rui_nextents > XFS_RUI_MAX_FAST_EXTENTS) 39 kmem_free(ruip); 40 else 41 kmem_cache_free(xfs_rui_zone, ruip); 42 } 43 44 /* 45 * Freeing the RUI requires that we remove it from the AIL if it has already 46 * been placed there. However, the RUI may not yet have been placed in the AIL 47 * when called by xfs_rui_release() from RUD processing due to the ordering of 48 * committed vs unpin operations in bulk insert operations. Hence the reference 49 * count to ensure only the last caller frees the RUI. 50 */ 51 STATIC void 52 xfs_rui_release( 53 struct xfs_rui_log_item *ruip) 54 { 55 ASSERT(atomic_read(&ruip->rui_refcount) > 0); 56 if (atomic_dec_and_test(&ruip->rui_refcount)) { 57 xfs_trans_ail_delete(&ruip->rui_item, SHUTDOWN_LOG_IO_ERROR); 58 xfs_rui_item_free(ruip); 59 } 60 } 61 62 STATIC void 63 xfs_rui_item_size( 64 struct xfs_log_item *lip, 65 int *nvecs, 66 int *nbytes) 67 { 68 struct xfs_rui_log_item *ruip = RUI_ITEM(lip); 69 70 *nvecs += 1; 71 *nbytes += xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents); 72 } 73 74 /* 75 * This is called to fill in the vector of log iovecs for the 76 * given rui log item. We use only 1 iovec, and we point that 77 * at the rui_log_format structure embedded in the rui item. 78 * It is at this point that we assert that all of the extent 79 * slots in the rui item have been filled. 80 */ 81 STATIC void 82 xfs_rui_item_format( 83 struct xfs_log_item *lip, 84 struct xfs_log_vec *lv) 85 { 86 struct xfs_rui_log_item *ruip = RUI_ITEM(lip); 87 struct xfs_log_iovec *vecp = NULL; 88 89 ASSERT(atomic_read(&ruip->rui_next_extent) == 90 ruip->rui_format.rui_nextents); 91 92 ruip->rui_format.rui_type = XFS_LI_RUI; 93 ruip->rui_format.rui_size = 1; 94 95 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUI_FORMAT, &ruip->rui_format, 96 xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents)); 97 } 98 99 /* 100 * The unpin operation is the last place an RUI is manipulated in the log. It is 101 * either inserted in the AIL or aborted in the event of a log I/O error. In 102 * either case, the RUI transaction has been successfully committed to make it 103 * this far. Therefore, we expect whoever committed the RUI to either construct 104 * and commit the RUD or drop the RUD's reference in the event of error. Simply 105 * drop the log's RUI reference now that the log is done with it. 106 */ 107 STATIC void 108 xfs_rui_item_unpin( 109 struct xfs_log_item *lip, 110 int remove) 111 { 112 struct xfs_rui_log_item *ruip = RUI_ITEM(lip); 113 114 xfs_rui_release(ruip); 115 } 116 117 /* 118 * The RUI has been either committed or aborted if the transaction has been 119 * cancelled. If the transaction was cancelled, an RUD isn't going to be 120 * constructed and thus we free the RUI here directly. 121 */ 122 STATIC void 123 xfs_rui_item_release( 124 struct xfs_log_item *lip) 125 { 126 xfs_rui_release(RUI_ITEM(lip)); 127 } 128 129 /* 130 * Allocate and initialize an rui item with the given number of extents. 131 */ 132 STATIC struct xfs_rui_log_item * 133 xfs_rui_init( 134 struct xfs_mount *mp, 135 uint nextents) 136 137 { 138 struct xfs_rui_log_item *ruip; 139 140 ASSERT(nextents > 0); 141 if (nextents > XFS_RUI_MAX_FAST_EXTENTS) 142 ruip = kmem_zalloc(xfs_rui_log_item_sizeof(nextents), 0); 143 else 144 ruip = kmem_zone_zalloc(xfs_rui_zone, 0); 145 146 xfs_log_item_init(mp, &ruip->rui_item, XFS_LI_RUI, &xfs_rui_item_ops); 147 ruip->rui_format.rui_nextents = nextents; 148 ruip->rui_format.rui_id = (uintptr_t)(void *)ruip; 149 atomic_set(&ruip->rui_next_extent, 0); 150 atomic_set(&ruip->rui_refcount, 2); 151 152 return ruip; 153 } 154 155 /* 156 * Copy an RUI format buffer from the given buf, and into the destination 157 * RUI format structure. The RUI/RUD items were designed not to need any 158 * special alignment handling. 159 */ 160 STATIC int 161 xfs_rui_copy_format( 162 struct xfs_log_iovec *buf, 163 struct xfs_rui_log_format *dst_rui_fmt) 164 { 165 struct xfs_rui_log_format *src_rui_fmt; 166 uint len; 167 168 src_rui_fmt = buf->i_addr; 169 len = xfs_rui_log_format_sizeof(src_rui_fmt->rui_nextents); 170 171 if (buf->i_len != len) { 172 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 173 return -EFSCORRUPTED; 174 } 175 176 memcpy(dst_rui_fmt, src_rui_fmt, len); 177 return 0; 178 } 179 180 static inline struct xfs_rud_log_item *RUD_ITEM(struct xfs_log_item *lip) 181 { 182 return container_of(lip, struct xfs_rud_log_item, rud_item); 183 } 184 185 STATIC void 186 xfs_rud_item_size( 187 struct xfs_log_item *lip, 188 int *nvecs, 189 int *nbytes) 190 { 191 *nvecs += 1; 192 *nbytes += sizeof(struct xfs_rud_log_format); 193 } 194 195 /* 196 * This is called to fill in the vector of log iovecs for the 197 * given rud log item. We use only 1 iovec, and we point that 198 * at the rud_log_format structure embedded in the rud item. 199 * It is at this point that we assert that all of the extent 200 * slots in the rud item have been filled. 201 */ 202 STATIC void 203 xfs_rud_item_format( 204 struct xfs_log_item *lip, 205 struct xfs_log_vec *lv) 206 { 207 struct xfs_rud_log_item *rudp = RUD_ITEM(lip); 208 struct xfs_log_iovec *vecp = NULL; 209 210 rudp->rud_format.rud_type = XFS_LI_RUD; 211 rudp->rud_format.rud_size = 1; 212 213 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUD_FORMAT, &rudp->rud_format, 214 sizeof(struct xfs_rud_log_format)); 215 } 216 217 /* 218 * The RUD is either committed or aborted if the transaction is cancelled. If 219 * the transaction is cancelled, drop our reference to the RUI and free the 220 * RUD. 221 */ 222 STATIC void 223 xfs_rud_item_release( 224 struct xfs_log_item *lip) 225 { 226 struct xfs_rud_log_item *rudp = RUD_ITEM(lip); 227 228 xfs_rui_release(rudp->rud_ruip); 229 kmem_cache_free(xfs_rud_zone, rudp); 230 } 231 232 static const struct xfs_item_ops xfs_rud_item_ops = { 233 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED, 234 .iop_size = xfs_rud_item_size, 235 .iop_format = xfs_rud_item_format, 236 .iop_release = xfs_rud_item_release, 237 }; 238 239 static struct xfs_rud_log_item * 240 xfs_trans_get_rud( 241 struct xfs_trans *tp, 242 struct xfs_rui_log_item *ruip) 243 { 244 struct xfs_rud_log_item *rudp; 245 246 rudp = kmem_zone_zalloc(xfs_rud_zone, 0); 247 xfs_log_item_init(tp->t_mountp, &rudp->rud_item, XFS_LI_RUD, 248 &xfs_rud_item_ops); 249 rudp->rud_ruip = ruip; 250 rudp->rud_format.rud_rui_id = ruip->rui_format.rui_id; 251 252 xfs_trans_add_item(tp, &rudp->rud_item); 253 return rudp; 254 } 255 256 /* Set the map extent flags for this reverse mapping. */ 257 static void 258 xfs_trans_set_rmap_flags( 259 struct xfs_map_extent *rmap, 260 enum xfs_rmap_intent_type type, 261 int whichfork, 262 xfs_exntst_t state) 263 { 264 rmap->me_flags = 0; 265 if (state == XFS_EXT_UNWRITTEN) 266 rmap->me_flags |= XFS_RMAP_EXTENT_UNWRITTEN; 267 if (whichfork == XFS_ATTR_FORK) 268 rmap->me_flags |= XFS_RMAP_EXTENT_ATTR_FORK; 269 switch (type) { 270 case XFS_RMAP_MAP: 271 rmap->me_flags |= XFS_RMAP_EXTENT_MAP; 272 break; 273 case XFS_RMAP_MAP_SHARED: 274 rmap->me_flags |= XFS_RMAP_EXTENT_MAP_SHARED; 275 break; 276 case XFS_RMAP_UNMAP: 277 rmap->me_flags |= XFS_RMAP_EXTENT_UNMAP; 278 break; 279 case XFS_RMAP_UNMAP_SHARED: 280 rmap->me_flags |= XFS_RMAP_EXTENT_UNMAP_SHARED; 281 break; 282 case XFS_RMAP_CONVERT: 283 rmap->me_flags |= XFS_RMAP_EXTENT_CONVERT; 284 break; 285 case XFS_RMAP_CONVERT_SHARED: 286 rmap->me_flags |= XFS_RMAP_EXTENT_CONVERT_SHARED; 287 break; 288 case XFS_RMAP_ALLOC: 289 rmap->me_flags |= XFS_RMAP_EXTENT_ALLOC; 290 break; 291 case XFS_RMAP_FREE: 292 rmap->me_flags |= XFS_RMAP_EXTENT_FREE; 293 break; 294 default: 295 ASSERT(0); 296 } 297 } 298 299 /* 300 * Finish an rmap update and log it to the RUD. Note that the transaction is 301 * marked dirty regardless of whether the rmap update succeeds or fails to 302 * support the RUI/RUD lifecycle rules. 303 */ 304 static int 305 xfs_trans_log_finish_rmap_update( 306 struct xfs_trans *tp, 307 struct xfs_rud_log_item *rudp, 308 enum xfs_rmap_intent_type type, 309 uint64_t owner, 310 int whichfork, 311 xfs_fileoff_t startoff, 312 xfs_fsblock_t startblock, 313 xfs_filblks_t blockcount, 314 xfs_exntst_t state, 315 struct xfs_btree_cur **pcur) 316 { 317 int error; 318 319 error = xfs_rmap_finish_one(tp, type, owner, whichfork, startoff, 320 startblock, blockcount, state, pcur); 321 322 /* 323 * Mark the transaction dirty, even on error. This ensures the 324 * transaction is aborted, which: 325 * 326 * 1.) releases the RUI and frees the RUD 327 * 2.) shuts down the filesystem 328 */ 329 tp->t_flags |= XFS_TRANS_DIRTY; 330 set_bit(XFS_LI_DIRTY, &rudp->rud_item.li_flags); 331 332 return error; 333 } 334 335 /* Sort rmap intents by AG. */ 336 static int 337 xfs_rmap_update_diff_items( 338 void *priv, 339 struct list_head *a, 340 struct list_head *b) 341 { 342 struct xfs_mount *mp = priv; 343 struct xfs_rmap_intent *ra; 344 struct xfs_rmap_intent *rb; 345 346 ra = container_of(a, struct xfs_rmap_intent, ri_list); 347 rb = container_of(b, struct xfs_rmap_intent, ri_list); 348 return XFS_FSB_TO_AGNO(mp, ra->ri_bmap.br_startblock) - 349 XFS_FSB_TO_AGNO(mp, rb->ri_bmap.br_startblock); 350 } 351 352 /* Log rmap updates in the intent item. */ 353 STATIC void 354 xfs_rmap_update_log_item( 355 struct xfs_trans *tp, 356 struct xfs_rui_log_item *ruip, 357 struct xfs_rmap_intent *rmap) 358 { 359 uint next_extent; 360 struct xfs_map_extent *map; 361 362 tp->t_flags |= XFS_TRANS_DIRTY; 363 set_bit(XFS_LI_DIRTY, &ruip->rui_item.li_flags); 364 365 /* 366 * atomic_inc_return gives us the value after the increment; 367 * we want to use it as an array index so we need to subtract 1 from 368 * it. 369 */ 370 next_extent = atomic_inc_return(&ruip->rui_next_extent) - 1; 371 ASSERT(next_extent < ruip->rui_format.rui_nextents); 372 map = &ruip->rui_format.rui_extents[next_extent]; 373 map->me_owner = rmap->ri_owner; 374 map->me_startblock = rmap->ri_bmap.br_startblock; 375 map->me_startoff = rmap->ri_bmap.br_startoff; 376 map->me_len = rmap->ri_bmap.br_blockcount; 377 xfs_trans_set_rmap_flags(map, rmap->ri_type, rmap->ri_whichfork, 378 rmap->ri_bmap.br_state); 379 } 380 381 static struct xfs_log_item * 382 xfs_rmap_update_create_intent( 383 struct xfs_trans *tp, 384 struct list_head *items, 385 unsigned int count, 386 bool sort) 387 { 388 struct xfs_mount *mp = tp->t_mountp; 389 struct xfs_rui_log_item *ruip = xfs_rui_init(mp, count); 390 struct xfs_rmap_intent *rmap; 391 392 ASSERT(count > 0); 393 394 xfs_trans_add_item(tp, &ruip->rui_item); 395 if (sort) 396 list_sort(mp, items, xfs_rmap_update_diff_items); 397 list_for_each_entry(rmap, items, ri_list) 398 xfs_rmap_update_log_item(tp, ruip, rmap); 399 return &ruip->rui_item; 400 } 401 402 /* Get an RUD so we can process all the deferred rmap updates. */ 403 static struct xfs_log_item * 404 xfs_rmap_update_create_done( 405 struct xfs_trans *tp, 406 struct xfs_log_item *intent, 407 unsigned int count) 408 { 409 return &xfs_trans_get_rud(tp, RUI_ITEM(intent))->rud_item; 410 } 411 412 /* Process a deferred rmap update. */ 413 STATIC int 414 xfs_rmap_update_finish_item( 415 struct xfs_trans *tp, 416 struct xfs_log_item *done, 417 struct list_head *item, 418 struct xfs_btree_cur **state) 419 { 420 struct xfs_rmap_intent *rmap; 421 int error; 422 423 rmap = container_of(item, struct xfs_rmap_intent, ri_list); 424 error = xfs_trans_log_finish_rmap_update(tp, RUD_ITEM(done), 425 rmap->ri_type, rmap->ri_owner, rmap->ri_whichfork, 426 rmap->ri_bmap.br_startoff, rmap->ri_bmap.br_startblock, 427 rmap->ri_bmap.br_blockcount, rmap->ri_bmap.br_state, 428 state); 429 kmem_free(rmap); 430 return error; 431 } 432 433 /* Abort all pending RUIs. */ 434 STATIC void 435 xfs_rmap_update_abort_intent( 436 struct xfs_log_item *intent) 437 { 438 xfs_rui_release(RUI_ITEM(intent)); 439 } 440 441 /* Cancel a deferred rmap update. */ 442 STATIC void 443 xfs_rmap_update_cancel_item( 444 struct list_head *item) 445 { 446 struct xfs_rmap_intent *rmap; 447 448 rmap = container_of(item, struct xfs_rmap_intent, ri_list); 449 kmem_free(rmap); 450 } 451 452 const struct xfs_defer_op_type xfs_rmap_update_defer_type = { 453 .max_items = XFS_RUI_MAX_FAST_EXTENTS, 454 .create_intent = xfs_rmap_update_create_intent, 455 .abort_intent = xfs_rmap_update_abort_intent, 456 .create_done = xfs_rmap_update_create_done, 457 .finish_item = xfs_rmap_update_finish_item, 458 .finish_cleanup = xfs_rmap_finish_one_cleanup, 459 .cancel_item = xfs_rmap_update_cancel_item, 460 }; 461 462 /* 463 * Process an rmap update intent item that was recovered from the log. 464 * We need to update the rmapbt. 465 */ 466 STATIC int 467 xfs_rui_item_recover( 468 struct xfs_log_item *lip, 469 struct xfs_trans *parent_tp) 470 { 471 struct xfs_rui_log_item *ruip = RUI_ITEM(lip); 472 struct xfs_map_extent *rmap; 473 struct xfs_rud_log_item *rudp; 474 struct xfs_trans *tp; 475 struct xfs_btree_cur *rcur = NULL; 476 struct xfs_mount *mp = parent_tp->t_mountp; 477 xfs_fsblock_t startblock_fsb; 478 enum xfs_rmap_intent_type type; 479 xfs_exntst_t state; 480 bool op_ok; 481 int i; 482 int whichfork; 483 int error = 0; 484 485 /* 486 * First check the validity of the extents described by the 487 * RUI. If any are bad, then assume that all are bad and 488 * just toss the RUI. 489 */ 490 for (i = 0; i < ruip->rui_format.rui_nextents; i++) { 491 rmap = &ruip->rui_format.rui_extents[i]; 492 startblock_fsb = XFS_BB_TO_FSB(mp, 493 XFS_FSB_TO_DADDR(mp, rmap->me_startblock)); 494 switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) { 495 case XFS_RMAP_EXTENT_MAP: 496 case XFS_RMAP_EXTENT_MAP_SHARED: 497 case XFS_RMAP_EXTENT_UNMAP: 498 case XFS_RMAP_EXTENT_UNMAP_SHARED: 499 case XFS_RMAP_EXTENT_CONVERT: 500 case XFS_RMAP_EXTENT_CONVERT_SHARED: 501 case XFS_RMAP_EXTENT_ALLOC: 502 case XFS_RMAP_EXTENT_FREE: 503 op_ok = true; 504 break; 505 default: 506 op_ok = false; 507 break; 508 } 509 if (!op_ok || startblock_fsb == 0 || 510 rmap->me_len == 0 || 511 startblock_fsb >= mp->m_sb.sb_dblocks || 512 rmap->me_len >= mp->m_sb.sb_agblocks || 513 (rmap->me_flags & ~XFS_RMAP_EXTENT_FLAGS)) { 514 /* 515 * This will pull the RUI from the AIL and 516 * free the memory associated with it. 517 */ 518 xfs_rui_release(ruip); 519 return -EFSCORRUPTED; 520 } 521 } 522 523 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 524 mp->m_rmap_maxlevels, 0, XFS_TRANS_RESERVE, &tp); 525 if (error) 526 return error; 527 rudp = xfs_trans_get_rud(tp, ruip); 528 529 for (i = 0; i < ruip->rui_format.rui_nextents; i++) { 530 rmap = &ruip->rui_format.rui_extents[i]; 531 state = (rmap->me_flags & XFS_RMAP_EXTENT_UNWRITTEN) ? 532 XFS_EXT_UNWRITTEN : XFS_EXT_NORM; 533 whichfork = (rmap->me_flags & XFS_RMAP_EXTENT_ATTR_FORK) ? 534 XFS_ATTR_FORK : XFS_DATA_FORK; 535 switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) { 536 case XFS_RMAP_EXTENT_MAP: 537 type = XFS_RMAP_MAP; 538 break; 539 case XFS_RMAP_EXTENT_MAP_SHARED: 540 type = XFS_RMAP_MAP_SHARED; 541 break; 542 case XFS_RMAP_EXTENT_UNMAP: 543 type = XFS_RMAP_UNMAP; 544 break; 545 case XFS_RMAP_EXTENT_UNMAP_SHARED: 546 type = XFS_RMAP_UNMAP_SHARED; 547 break; 548 case XFS_RMAP_EXTENT_CONVERT: 549 type = XFS_RMAP_CONVERT; 550 break; 551 case XFS_RMAP_EXTENT_CONVERT_SHARED: 552 type = XFS_RMAP_CONVERT_SHARED; 553 break; 554 case XFS_RMAP_EXTENT_ALLOC: 555 type = XFS_RMAP_ALLOC; 556 break; 557 case XFS_RMAP_EXTENT_FREE: 558 type = XFS_RMAP_FREE; 559 break; 560 default: 561 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 562 error = -EFSCORRUPTED; 563 goto abort_error; 564 } 565 error = xfs_trans_log_finish_rmap_update(tp, rudp, type, 566 rmap->me_owner, whichfork, 567 rmap->me_startoff, rmap->me_startblock, 568 rmap->me_len, state, &rcur); 569 if (error) 570 goto abort_error; 571 572 } 573 574 xfs_rmap_finish_one_cleanup(tp, rcur, error); 575 error = xfs_trans_commit(tp); 576 return error; 577 578 abort_error: 579 xfs_rmap_finish_one_cleanup(tp, rcur, error); 580 xfs_trans_cancel(tp); 581 return error; 582 } 583 584 STATIC bool 585 xfs_rui_item_match( 586 struct xfs_log_item *lip, 587 uint64_t intent_id) 588 { 589 return RUI_ITEM(lip)->rui_format.rui_id == intent_id; 590 } 591 592 static const struct xfs_item_ops xfs_rui_item_ops = { 593 .iop_size = xfs_rui_item_size, 594 .iop_format = xfs_rui_item_format, 595 .iop_unpin = xfs_rui_item_unpin, 596 .iop_release = xfs_rui_item_release, 597 .iop_recover = xfs_rui_item_recover, 598 .iop_match = xfs_rui_item_match, 599 }; 600 601 /* 602 * This routine is called to create an in-core extent rmap update 603 * item from the rui format structure which was logged on disk. 604 * It allocates an in-core rui, copies the extents from the format 605 * structure into it, and adds the rui to the AIL with the given 606 * LSN. 607 */ 608 STATIC int 609 xlog_recover_rui_commit_pass2( 610 struct xlog *log, 611 struct list_head *buffer_list, 612 struct xlog_recover_item *item, 613 xfs_lsn_t lsn) 614 { 615 int error; 616 struct xfs_mount *mp = log->l_mp; 617 struct xfs_rui_log_item *ruip; 618 struct xfs_rui_log_format *rui_formatp; 619 620 rui_formatp = item->ri_buf[0].i_addr; 621 622 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents); 623 error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format); 624 if (error) { 625 xfs_rui_item_free(ruip); 626 return error; 627 } 628 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents); 629 /* 630 * Insert the intent into the AIL directly and drop one reference so 631 * that finishing or canceling the work will drop the other. 632 */ 633 xfs_trans_ail_insert(log->l_ailp, &ruip->rui_item, lsn); 634 xfs_rui_release(ruip); 635 return 0; 636 } 637 638 const struct xlog_recover_item_ops xlog_rui_item_ops = { 639 .item_type = XFS_LI_RUI, 640 .commit_pass2 = xlog_recover_rui_commit_pass2, 641 }; 642 643 /* 644 * This routine is called when an RUD format structure is found in a committed 645 * transaction in the log. Its purpose is to cancel the corresponding RUI if it 646 * was still in the log. To do this it searches the AIL for the RUI with an id 647 * equal to that in the RUD format structure. If we find it we drop the RUD 648 * reference, which removes the RUI from the AIL and frees it. 649 */ 650 STATIC int 651 xlog_recover_rud_commit_pass2( 652 struct xlog *log, 653 struct list_head *buffer_list, 654 struct xlog_recover_item *item, 655 xfs_lsn_t lsn) 656 { 657 struct xfs_rud_log_format *rud_formatp; 658 659 rud_formatp = item->ri_buf[0].i_addr; 660 ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format)); 661 662 xlog_recover_release_intent(log, XFS_LI_RUI, rud_formatp->rud_rui_id); 663 return 0; 664 } 665 666 const struct xlog_recover_item_ops xlog_rud_item_ops = { 667 .item_type = XFS_LI_RUD, 668 .commit_pass2 = xlog_recover_rud_commit_pass2, 669 }; 670