xref: /openbmc/linux/fs/xfs/xfs_rmap_item.c (revision e33bbe69149b802c0c77bfb822685772f85388ca)
1 /*
2  * Copyright (C) 2016 Oracle.  All Rights Reserved.
3  *
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it would be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write the Free Software Foundation,
18  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
19  */
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_format.h"
23 #include "xfs_log_format.h"
24 #include "xfs_trans_resv.h"
25 #include "xfs_bit.h"
26 #include "xfs_shared.h"
27 #include "xfs_mount.h"
28 #include "xfs_defer.h"
29 #include "xfs_trans.h"
30 #include "xfs_trans_priv.h"
31 #include "xfs_buf_item.h"
32 #include "xfs_rmap_item.h"
33 #include "xfs_log.h"
34 #include "xfs_rmap.h"
35 
36 
37 kmem_zone_t	*xfs_rui_zone;
38 kmem_zone_t	*xfs_rud_zone;
39 
40 static inline struct xfs_rui_log_item *RUI_ITEM(struct xfs_log_item *lip)
41 {
42 	return container_of(lip, struct xfs_rui_log_item, rui_item);
43 }
44 
45 void
46 xfs_rui_item_free(
47 	struct xfs_rui_log_item	*ruip)
48 {
49 	if (ruip->rui_format.rui_nextents > XFS_RUI_MAX_FAST_EXTENTS)
50 		kmem_free(ruip);
51 	else
52 		kmem_zone_free(xfs_rui_zone, ruip);
53 }
54 
55 /*
56  * Freeing the RUI requires that we remove it from the AIL if it has already
57  * been placed there. However, the RUI may not yet have been placed in the AIL
58  * when called by xfs_rui_release() from RUD processing due to the ordering of
59  * committed vs unpin operations in bulk insert operations. Hence the reference
60  * count to ensure only the last caller frees the RUI.
61  */
62 void
63 xfs_rui_release(
64 	struct xfs_rui_log_item	*ruip)
65 {
66 	ASSERT(atomic_read(&ruip->rui_refcount) > 0);
67 	if (atomic_dec_and_test(&ruip->rui_refcount)) {
68 		xfs_trans_ail_remove(&ruip->rui_item, SHUTDOWN_LOG_IO_ERROR);
69 		xfs_rui_item_free(ruip);
70 	}
71 }
72 
73 STATIC void
74 xfs_rui_item_size(
75 	struct xfs_log_item	*lip,
76 	int			*nvecs,
77 	int			*nbytes)
78 {
79 	struct xfs_rui_log_item	*ruip = RUI_ITEM(lip);
80 
81 	*nvecs += 1;
82 	*nbytes += xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents);
83 }
84 
85 /*
86  * This is called to fill in the vector of log iovecs for the
87  * given rui log item. We use only 1 iovec, and we point that
88  * at the rui_log_format structure embedded in the rui item.
89  * It is at this point that we assert that all of the extent
90  * slots in the rui item have been filled.
91  */
92 STATIC void
93 xfs_rui_item_format(
94 	struct xfs_log_item	*lip,
95 	struct xfs_log_vec	*lv)
96 {
97 	struct xfs_rui_log_item	*ruip = RUI_ITEM(lip);
98 	struct xfs_log_iovec	*vecp = NULL;
99 
100 	ASSERT(atomic_read(&ruip->rui_next_extent) ==
101 			ruip->rui_format.rui_nextents);
102 
103 	ruip->rui_format.rui_type = XFS_LI_RUI;
104 	ruip->rui_format.rui_size = 1;
105 
106 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUI_FORMAT, &ruip->rui_format,
107 			xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents));
108 }
109 
110 /*
111  * Pinning has no meaning for an rui item, so just return.
112  */
113 STATIC void
114 xfs_rui_item_pin(
115 	struct xfs_log_item	*lip)
116 {
117 }
118 
119 /*
120  * The unpin operation is the last place an RUI is manipulated in the log. It is
121  * either inserted in the AIL or aborted in the event of a log I/O error. In
122  * either case, the RUI transaction has been successfully committed to make it
123  * this far. Therefore, we expect whoever committed the RUI to either construct
124  * and commit the RUD or drop the RUD's reference in the event of error. Simply
125  * drop the log's RUI reference now that the log is done with it.
126  */
127 STATIC void
128 xfs_rui_item_unpin(
129 	struct xfs_log_item	*lip,
130 	int			remove)
131 {
132 	struct xfs_rui_log_item	*ruip = RUI_ITEM(lip);
133 
134 	xfs_rui_release(ruip);
135 }
136 
137 /*
138  * RUI items have no locking or pushing.  However, since RUIs are pulled from
139  * the AIL when their corresponding RUDs are committed to disk, their situation
140  * is very similar to being pinned.  Return XFS_ITEM_PINNED so that the caller
141  * will eventually flush the log.  This should help in getting the RUI out of
142  * the AIL.
143  */
144 STATIC uint
145 xfs_rui_item_push(
146 	struct xfs_log_item	*lip,
147 	struct list_head	*buffer_list)
148 {
149 	return XFS_ITEM_PINNED;
150 }
151 
152 /*
153  * The RUI has been either committed or aborted if the transaction has been
154  * cancelled. If the transaction was cancelled, an RUD isn't going to be
155  * constructed and thus we free the RUI here directly.
156  */
157 STATIC void
158 xfs_rui_item_unlock(
159 	struct xfs_log_item	*lip)
160 {
161 	if (lip->li_flags & XFS_LI_ABORTED)
162 		xfs_rui_release(RUI_ITEM(lip));
163 }
164 
165 /*
166  * The RUI is logged only once and cannot be moved in the log, so simply return
167  * the lsn at which it's been logged.
168  */
169 STATIC xfs_lsn_t
170 xfs_rui_item_committed(
171 	struct xfs_log_item	*lip,
172 	xfs_lsn_t		lsn)
173 {
174 	return lsn;
175 }
176 
177 /*
178  * The RUI dependency tracking op doesn't do squat.  It can't because
179  * it doesn't know where the free extent is coming from.  The dependency
180  * tracking has to be handled by the "enclosing" metadata object.  For
181  * example, for inodes, the inode is locked throughout the extent freeing
182  * so the dependency should be recorded there.
183  */
184 STATIC void
185 xfs_rui_item_committing(
186 	struct xfs_log_item	*lip,
187 	xfs_lsn_t		lsn)
188 {
189 }
190 
191 /*
192  * This is the ops vector shared by all rui log items.
193  */
194 static const struct xfs_item_ops xfs_rui_item_ops = {
195 	.iop_size	= xfs_rui_item_size,
196 	.iop_format	= xfs_rui_item_format,
197 	.iop_pin	= xfs_rui_item_pin,
198 	.iop_unpin	= xfs_rui_item_unpin,
199 	.iop_unlock	= xfs_rui_item_unlock,
200 	.iop_committed	= xfs_rui_item_committed,
201 	.iop_push	= xfs_rui_item_push,
202 	.iop_committing = xfs_rui_item_committing,
203 };
204 
205 /*
206  * Allocate and initialize an rui item with the given number of extents.
207  */
208 struct xfs_rui_log_item *
209 xfs_rui_init(
210 	struct xfs_mount		*mp,
211 	uint				nextents)
212 
213 {
214 	struct xfs_rui_log_item		*ruip;
215 
216 	ASSERT(nextents > 0);
217 	if (nextents > XFS_RUI_MAX_FAST_EXTENTS)
218 		ruip = kmem_zalloc(xfs_rui_log_item_sizeof(nextents), KM_SLEEP);
219 	else
220 		ruip = kmem_zone_zalloc(xfs_rui_zone, KM_SLEEP);
221 
222 	xfs_log_item_init(mp, &ruip->rui_item, XFS_LI_RUI, &xfs_rui_item_ops);
223 	ruip->rui_format.rui_nextents = nextents;
224 	ruip->rui_format.rui_id = (uintptr_t)(void *)ruip;
225 	atomic_set(&ruip->rui_next_extent, 0);
226 	atomic_set(&ruip->rui_refcount, 2);
227 
228 	return ruip;
229 }
230 
231 /*
232  * Copy an RUI format buffer from the given buf, and into the destination
233  * RUI format structure.  The RUI/RUD items were designed not to need any
234  * special alignment handling.
235  */
236 int
237 xfs_rui_copy_format(
238 	struct xfs_log_iovec		*buf,
239 	struct xfs_rui_log_format	*dst_rui_fmt)
240 {
241 	struct xfs_rui_log_format	*src_rui_fmt;
242 	uint				len;
243 
244 	src_rui_fmt = buf->i_addr;
245 	len = xfs_rui_log_format_sizeof(src_rui_fmt->rui_nextents);
246 
247 	if (buf->i_len != len)
248 		return -EFSCORRUPTED;
249 
250 	memcpy(dst_rui_fmt, src_rui_fmt, len);
251 	return 0;
252 }
253 
254 static inline struct xfs_rud_log_item *RUD_ITEM(struct xfs_log_item *lip)
255 {
256 	return container_of(lip, struct xfs_rud_log_item, rud_item);
257 }
258 
259 STATIC void
260 xfs_rud_item_size(
261 	struct xfs_log_item	*lip,
262 	int			*nvecs,
263 	int			*nbytes)
264 {
265 	*nvecs += 1;
266 	*nbytes += sizeof(struct xfs_rud_log_format);
267 }
268 
269 /*
270  * This is called to fill in the vector of log iovecs for the
271  * given rud log item. We use only 1 iovec, and we point that
272  * at the rud_log_format structure embedded in the rud item.
273  * It is at this point that we assert that all of the extent
274  * slots in the rud item have been filled.
275  */
276 STATIC void
277 xfs_rud_item_format(
278 	struct xfs_log_item	*lip,
279 	struct xfs_log_vec	*lv)
280 {
281 	struct xfs_rud_log_item	*rudp = RUD_ITEM(lip);
282 	struct xfs_log_iovec	*vecp = NULL;
283 
284 	rudp->rud_format.rud_type = XFS_LI_RUD;
285 	rudp->rud_format.rud_size = 1;
286 
287 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUD_FORMAT, &rudp->rud_format,
288 			sizeof(struct xfs_rud_log_format));
289 }
290 
291 /*
292  * Pinning has no meaning for an rud item, so just return.
293  */
294 STATIC void
295 xfs_rud_item_pin(
296 	struct xfs_log_item	*lip)
297 {
298 }
299 
300 /*
301  * Since pinning has no meaning for an rud item, unpinning does
302  * not either.
303  */
304 STATIC void
305 xfs_rud_item_unpin(
306 	struct xfs_log_item	*lip,
307 	int			remove)
308 {
309 }
310 
311 /*
312  * There isn't much you can do to push on an rud item.  It is simply stuck
313  * waiting for the log to be flushed to disk.
314  */
315 STATIC uint
316 xfs_rud_item_push(
317 	struct xfs_log_item	*lip,
318 	struct list_head	*buffer_list)
319 {
320 	return XFS_ITEM_PINNED;
321 }
322 
323 /*
324  * The RUD is either committed or aborted if the transaction is cancelled. If
325  * the transaction is cancelled, drop our reference to the RUI and free the
326  * RUD.
327  */
328 STATIC void
329 xfs_rud_item_unlock(
330 	struct xfs_log_item	*lip)
331 {
332 	struct xfs_rud_log_item	*rudp = RUD_ITEM(lip);
333 
334 	if (lip->li_flags & XFS_LI_ABORTED) {
335 		xfs_rui_release(rudp->rud_ruip);
336 		kmem_zone_free(xfs_rud_zone, rudp);
337 	}
338 }
339 
340 /*
341  * When the rud item is committed to disk, all we need to do is delete our
342  * reference to our partner rui item and then free ourselves. Since we're
343  * freeing ourselves we must return -1 to keep the transaction code from
344  * further referencing this item.
345  */
346 STATIC xfs_lsn_t
347 xfs_rud_item_committed(
348 	struct xfs_log_item	*lip,
349 	xfs_lsn_t		lsn)
350 {
351 	struct xfs_rud_log_item	*rudp = RUD_ITEM(lip);
352 
353 	/*
354 	 * Drop the RUI reference regardless of whether the RUD has been
355 	 * aborted. Once the RUD transaction is constructed, it is the sole
356 	 * responsibility of the RUD to release the RUI (even if the RUI is
357 	 * aborted due to log I/O error).
358 	 */
359 	xfs_rui_release(rudp->rud_ruip);
360 	kmem_zone_free(xfs_rud_zone, rudp);
361 
362 	return (xfs_lsn_t)-1;
363 }
364 
365 /*
366  * The RUD dependency tracking op doesn't do squat.  It can't because
367  * it doesn't know where the free extent is coming from.  The dependency
368  * tracking has to be handled by the "enclosing" metadata object.  For
369  * example, for inodes, the inode is locked throughout the extent freeing
370  * so the dependency should be recorded there.
371  */
372 STATIC void
373 xfs_rud_item_committing(
374 	struct xfs_log_item	*lip,
375 	xfs_lsn_t		lsn)
376 {
377 }
378 
379 /*
380  * This is the ops vector shared by all rud log items.
381  */
382 static const struct xfs_item_ops xfs_rud_item_ops = {
383 	.iop_size	= xfs_rud_item_size,
384 	.iop_format	= xfs_rud_item_format,
385 	.iop_pin	= xfs_rud_item_pin,
386 	.iop_unpin	= xfs_rud_item_unpin,
387 	.iop_unlock	= xfs_rud_item_unlock,
388 	.iop_committed	= xfs_rud_item_committed,
389 	.iop_push	= xfs_rud_item_push,
390 	.iop_committing = xfs_rud_item_committing,
391 };
392 
393 /*
394  * Allocate and initialize an rud item with the given number of extents.
395  */
396 struct xfs_rud_log_item *
397 xfs_rud_init(
398 	struct xfs_mount		*mp,
399 	struct xfs_rui_log_item		*ruip)
400 
401 {
402 	struct xfs_rud_log_item	*rudp;
403 
404 	rudp = kmem_zone_zalloc(xfs_rud_zone, KM_SLEEP);
405 	xfs_log_item_init(mp, &rudp->rud_item, XFS_LI_RUD, &xfs_rud_item_ops);
406 	rudp->rud_ruip = ruip;
407 	rudp->rud_format.rud_rui_id = ruip->rui_format.rui_id;
408 
409 	return rudp;
410 }
411 
412 /*
413  * Process an rmap update intent item that was recovered from the log.
414  * We need to update the rmapbt.
415  */
416 int
417 xfs_rui_recover(
418 	struct xfs_mount		*mp,
419 	struct xfs_rui_log_item		*ruip)
420 {
421 	int				i;
422 	int				error = 0;
423 	struct xfs_map_extent		*rmap;
424 	xfs_fsblock_t			startblock_fsb;
425 	bool				op_ok;
426 	struct xfs_rud_log_item		*rudp;
427 	enum xfs_rmap_intent_type	type;
428 	int				whichfork;
429 	xfs_exntst_t			state;
430 	struct xfs_trans		*tp;
431 	struct xfs_btree_cur		*rcur = NULL;
432 
433 	ASSERT(!test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags));
434 
435 	/*
436 	 * First check the validity of the extents described by the
437 	 * RUI.  If any are bad, then assume that all are bad and
438 	 * just toss the RUI.
439 	 */
440 	for (i = 0; i < ruip->rui_format.rui_nextents; i++) {
441 		rmap = &ruip->rui_format.rui_extents[i];
442 		startblock_fsb = XFS_BB_TO_FSB(mp,
443 				   XFS_FSB_TO_DADDR(mp, rmap->me_startblock));
444 		switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) {
445 		case XFS_RMAP_EXTENT_MAP:
446 		case XFS_RMAP_EXTENT_MAP_SHARED:
447 		case XFS_RMAP_EXTENT_UNMAP:
448 		case XFS_RMAP_EXTENT_UNMAP_SHARED:
449 		case XFS_RMAP_EXTENT_CONVERT:
450 		case XFS_RMAP_EXTENT_CONVERT_SHARED:
451 		case XFS_RMAP_EXTENT_ALLOC:
452 		case XFS_RMAP_EXTENT_FREE:
453 			op_ok = true;
454 			break;
455 		default:
456 			op_ok = false;
457 			break;
458 		}
459 		if (!op_ok || startblock_fsb == 0 ||
460 		    rmap->me_len == 0 ||
461 		    startblock_fsb >= mp->m_sb.sb_dblocks ||
462 		    rmap->me_len >= mp->m_sb.sb_agblocks ||
463 		    (rmap->me_flags & ~XFS_RMAP_EXTENT_FLAGS)) {
464 			/*
465 			 * This will pull the RUI from the AIL and
466 			 * free the memory associated with it.
467 			 */
468 			set_bit(XFS_RUI_RECOVERED, &ruip->rui_flags);
469 			xfs_rui_release(ruip);
470 			return -EIO;
471 		}
472 	}
473 
474 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate,
475 			mp->m_rmap_maxlevels, 0, XFS_TRANS_RESERVE, &tp);
476 	if (error)
477 		return error;
478 	rudp = xfs_trans_get_rud(tp, ruip);
479 
480 	for (i = 0; i < ruip->rui_format.rui_nextents; i++) {
481 		rmap = &ruip->rui_format.rui_extents[i];
482 		state = (rmap->me_flags & XFS_RMAP_EXTENT_UNWRITTEN) ?
483 				XFS_EXT_UNWRITTEN : XFS_EXT_NORM;
484 		whichfork = (rmap->me_flags & XFS_RMAP_EXTENT_ATTR_FORK) ?
485 				XFS_ATTR_FORK : XFS_DATA_FORK;
486 		switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) {
487 		case XFS_RMAP_EXTENT_MAP:
488 			type = XFS_RMAP_MAP;
489 			break;
490 		case XFS_RMAP_EXTENT_MAP_SHARED:
491 			type = XFS_RMAP_MAP_SHARED;
492 			break;
493 		case XFS_RMAP_EXTENT_UNMAP:
494 			type = XFS_RMAP_UNMAP;
495 			break;
496 		case XFS_RMAP_EXTENT_UNMAP_SHARED:
497 			type = XFS_RMAP_UNMAP_SHARED;
498 			break;
499 		case XFS_RMAP_EXTENT_CONVERT:
500 			type = XFS_RMAP_CONVERT;
501 			break;
502 		case XFS_RMAP_EXTENT_CONVERT_SHARED:
503 			type = XFS_RMAP_CONVERT_SHARED;
504 			break;
505 		case XFS_RMAP_EXTENT_ALLOC:
506 			type = XFS_RMAP_ALLOC;
507 			break;
508 		case XFS_RMAP_EXTENT_FREE:
509 			type = XFS_RMAP_FREE;
510 			break;
511 		default:
512 			error = -EFSCORRUPTED;
513 			goto abort_error;
514 		}
515 		error = xfs_trans_log_finish_rmap_update(tp, rudp, type,
516 				rmap->me_owner, whichfork,
517 				rmap->me_startoff, rmap->me_startblock,
518 				rmap->me_len, state, &rcur);
519 		if (error)
520 			goto abort_error;
521 
522 	}
523 
524 	xfs_rmap_finish_one_cleanup(tp, rcur, error);
525 	set_bit(XFS_RUI_RECOVERED, &ruip->rui_flags);
526 	error = xfs_trans_commit(tp);
527 	return error;
528 
529 abort_error:
530 	xfs_rmap_finish_one_cleanup(tp, rcur, error);
531 	xfs_trans_cancel(tp);
532 	return error;
533 }
534