xref: /openbmc/linux/fs/xfs/xfs_rmap_item.c (revision 98ddec80)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_buf_item.h"
18 #include "xfs_rmap_item.h"
19 #include "xfs_log.h"
20 #include "xfs_rmap.h"
21 
22 
23 kmem_zone_t	*xfs_rui_zone;
24 kmem_zone_t	*xfs_rud_zone;
25 
26 static inline struct xfs_rui_log_item *RUI_ITEM(struct xfs_log_item *lip)
27 {
28 	return container_of(lip, struct xfs_rui_log_item, rui_item);
29 }
30 
31 void
32 xfs_rui_item_free(
33 	struct xfs_rui_log_item	*ruip)
34 {
35 	if (ruip->rui_format.rui_nextents > XFS_RUI_MAX_FAST_EXTENTS)
36 		kmem_free(ruip);
37 	else
38 		kmem_zone_free(xfs_rui_zone, ruip);
39 }
40 
41 /*
42  * Freeing the RUI requires that we remove it from the AIL if it has already
43  * been placed there. However, the RUI may not yet have been placed in the AIL
44  * when called by xfs_rui_release() from RUD processing due to the ordering of
45  * committed vs unpin operations in bulk insert operations. Hence the reference
46  * count to ensure only the last caller frees the RUI.
47  */
48 void
49 xfs_rui_release(
50 	struct xfs_rui_log_item	*ruip)
51 {
52 	ASSERT(atomic_read(&ruip->rui_refcount) > 0);
53 	if (atomic_dec_and_test(&ruip->rui_refcount)) {
54 		xfs_trans_ail_remove(&ruip->rui_item, SHUTDOWN_LOG_IO_ERROR);
55 		xfs_rui_item_free(ruip);
56 	}
57 }
58 
59 STATIC void
60 xfs_rui_item_size(
61 	struct xfs_log_item	*lip,
62 	int			*nvecs,
63 	int			*nbytes)
64 {
65 	struct xfs_rui_log_item	*ruip = RUI_ITEM(lip);
66 
67 	*nvecs += 1;
68 	*nbytes += xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents);
69 }
70 
71 /*
72  * This is called to fill in the vector of log iovecs for the
73  * given rui log item. We use only 1 iovec, and we point that
74  * at the rui_log_format structure embedded in the rui item.
75  * It is at this point that we assert that all of the extent
76  * slots in the rui item have been filled.
77  */
78 STATIC void
79 xfs_rui_item_format(
80 	struct xfs_log_item	*lip,
81 	struct xfs_log_vec	*lv)
82 {
83 	struct xfs_rui_log_item	*ruip = RUI_ITEM(lip);
84 	struct xfs_log_iovec	*vecp = NULL;
85 
86 	ASSERT(atomic_read(&ruip->rui_next_extent) ==
87 			ruip->rui_format.rui_nextents);
88 
89 	ruip->rui_format.rui_type = XFS_LI_RUI;
90 	ruip->rui_format.rui_size = 1;
91 
92 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUI_FORMAT, &ruip->rui_format,
93 			xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents));
94 }
95 
96 /*
97  * Pinning has no meaning for an rui item, so just return.
98  */
99 STATIC void
100 xfs_rui_item_pin(
101 	struct xfs_log_item	*lip)
102 {
103 }
104 
105 /*
106  * The unpin operation is the last place an RUI is manipulated in the log. It is
107  * either inserted in the AIL or aborted in the event of a log I/O error. In
108  * either case, the RUI transaction has been successfully committed to make it
109  * this far. Therefore, we expect whoever committed the RUI to either construct
110  * and commit the RUD or drop the RUD's reference in the event of error. Simply
111  * drop the log's RUI reference now that the log is done with it.
112  */
113 STATIC void
114 xfs_rui_item_unpin(
115 	struct xfs_log_item	*lip,
116 	int			remove)
117 {
118 	struct xfs_rui_log_item	*ruip = RUI_ITEM(lip);
119 
120 	xfs_rui_release(ruip);
121 }
122 
123 /*
124  * RUI items have no locking or pushing.  However, since RUIs are pulled from
125  * the AIL when their corresponding RUDs are committed to disk, their situation
126  * is very similar to being pinned.  Return XFS_ITEM_PINNED so that the caller
127  * will eventually flush the log.  This should help in getting the RUI out of
128  * the AIL.
129  */
130 STATIC uint
131 xfs_rui_item_push(
132 	struct xfs_log_item	*lip,
133 	struct list_head	*buffer_list)
134 {
135 	return XFS_ITEM_PINNED;
136 }
137 
138 /*
139  * The RUI has been either committed or aborted if the transaction has been
140  * cancelled. If the transaction was cancelled, an RUD isn't going to be
141  * constructed and thus we free the RUI here directly.
142  */
143 STATIC void
144 xfs_rui_item_unlock(
145 	struct xfs_log_item	*lip)
146 {
147 	if (test_bit(XFS_LI_ABORTED, &lip->li_flags))
148 		xfs_rui_release(RUI_ITEM(lip));
149 }
150 
151 /*
152  * The RUI is logged only once and cannot be moved in the log, so simply return
153  * the lsn at which it's been logged.
154  */
155 STATIC xfs_lsn_t
156 xfs_rui_item_committed(
157 	struct xfs_log_item	*lip,
158 	xfs_lsn_t		lsn)
159 {
160 	return lsn;
161 }
162 
163 /*
164  * The RUI dependency tracking op doesn't do squat.  It can't because
165  * it doesn't know where the free extent is coming from.  The dependency
166  * tracking has to be handled by the "enclosing" metadata object.  For
167  * example, for inodes, the inode is locked throughout the extent freeing
168  * so the dependency should be recorded there.
169  */
170 STATIC void
171 xfs_rui_item_committing(
172 	struct xfs_log_item	*lip,
173 	xfs_lsn_t		lsn)
174 {
175 }
176 
177 /*
178  * This is the ops vector shared by all rui log items.
179  */
180 static const struct xfs_item_ops xfs_rui_item_ops = {
181 	.iop_size	= xfs_rui_item_size,
182 	.iop_format	= xfs_rui_item_format,
183 	.iop_pin	= xfs_rui_item_pin,
184 	.iop_unpin	= xfs_rui_item_unpin,
185 	.iop_unlock	= xfs_rui_item_unlock,
186 	.iop_committed	= xfs_rui_item_committed,
187 	.iop_push	= xfs_rui_item_push,
188 	.iop_committing = xfs_rui_item_committing,
189 };
190 
191 /*
192  * Allocate and initialize an rui item with the given number of extents.
193  */
194 struct xfs_rui_log_item *
195 xfs_rui_init(
196 	struct xfs_mount		*mp,
197 	uint				nextents)
198 
199 {
200 	struct xfs_rui_log_item		*ruip;
201 
202 	ASSERT(nextents > 0);
203 	if (nextents > XFS_RUI_MAX_FAST_EXTENTS)
204 		ruip = kmem_zalloc(xfs_rui_log_item_sizeof(nextents), KM_SLEEP);
205 	else
206 		ruip = kmem_zone_zalloc(xfs_rui_zone, KM_SLEEP);
207 
208 	xfs_log_item_init(mp, &ruip->rui_item, XFS_LI_RUI, &xfs_rui_item_ops);
209 	ruip->rui_format.rui_nextents = nextents;
210 	ruip->rui_format.rui_id = (uintptr_t)(void *)ruip;
211 	atomic_set(&ruip->rui_next_extent, 0);
212 	atomic_set(&ruip->rui_refcount, 2);
213 
214 	return ruip;
215 }
216 
217 /*
218  * Copy an RUI format buffer from the given buf, and into the destination
219  * RUI format structure.  The RUI/RUD items were designed not to need any
220  * special alignment handling.
221  */
222 int
223 xfs_rui_copy_format(
224 	struct xfs_log_iovec		*buf,
225 	struct xfs_rui_log_format	*dst_rui_fmt)
226 {
227 	struct xfs_rui_log_format	*src_rui_fmt;
228 	uint				len;
229 
230 	src_rui_fmt = buf->i_addr;
231 	len = xfs_rui_log_format_sizeof(src_rui_fmt->rui_nextents);
232 
233 	if (buf->i_len != len)
234 		return -EFSCORRUPTED;
235 
236 	memcpy(dst_rui_fmt, src_rui_fmt, len);
237 	return 0;
238 }
239 
240 static inline struct xfs_rud_log_item *RUD_ITEM(struct xfs_log_item *lip)
241 {
242 	return container_of(lip, struct xfs_rud_log_item, rud_item);
243 }
244 
245 STATIC void
246 xfs_rud_item_size(
247 	struct xfs_log_item	*lip,
248 	int			*nvecs,
249 	int			*nbytes)
250 {
251 	*nvecs += 1;
252 	*nbytes += sizeof(struct xfs_rud_log_format);
253 }
254 
255 /*
256  * This is called to fill in the vector of log iovecs for the
257  * given rud log item. We use only 1 iovec, and we point that
258  * at the rud_log_format structure embedded in the rud item.
259  * It is at this point that we assert that all of the extent
260  * slots in the rud item have been filled.
261  */
262 STATIC void
263 xfs_rud_item_format(
264 	struct xfs_log_item	*lip,
265 	struct xfs_log_vec	*lv)
266 {
267 	struct xfs_rud_log_item	*rudp = RUD_ITEM(lip);
268 	struct xfs_log_iovec	*vecp = NULL;
269 
270 	rudp->rud_format.rud_type = XFS_LI_RUD;
271 	rudp->rud_format.rud_size = 1;
272 
273 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUD_FORMAT, &rudp->rud_format,
274 			sizeof(struct xfs_rud_log_format));
275 }
276 
277 /*
278  * Pinning has no meaning for an rud item, so just return.
279  */
280 STATIC void
281 xfs_rud_item_pin(
282 	struct xfs_log_item	*lip)
283 {
284 }
285 
286 /*
287  * Since pinning has no meaning for an rud item, unpinning does
288  * not either.
289  */
290 STATIC void
291 xfs_rud_item_unpin(
292 	struct xfs_log_item	*lip,
293 	int			remove)
294 {
295 }
296 
297 /*
298  * There isn't much you can do to push on an rud item.  It is simply stuck
299  * waiting for the log to be flushed to disk.
300  */
301 STATIC uint
302 xfs_rud_item_push(
303 	struct xfs_log_item	*lip,
304 	struct list_head	*buffer_list)
305 {
306 	return XFS_ITEM_PINNED;
307 }
308 
309 /*
310  * The RUD is either committed or aborted if the transaction is cancelled. If
311  * the transaction is cancelled, drop our reference to the RUI and free the
312  * RUD.
313  */
314 STATIC void
315 xfs_rud_item_unlock(
316 	struct xfs_log_item	*lip)
317 {
318 	struct xfs_rud_log_item	*rudp = RUD_ITEM(lip);
319 
320 	if (test_bit(XFS_LI_ABORTED, &lip->li_flags)) {
321 		xfs_rui_release(rudp->rud_ruip);
322 		kmem_zone_free(xfs_rud_zone, rudp);
323 	}
324 }
325 
326 /*
327  * When the rud item is committed to disk, all we need to do is delete our
328  * reference to our partner rui item and then free ourselves. Since we're
329  * freeing ourselves we must return -1 to keep the transaction code from
330  * further referencing this item.
331  */
332 STATIC xfs_lsn_t
333 xfs_rud_item_committed(
334 	struct xfs_log_item	*lip,
335 	xfs_lsn_t		lsn)
336 {
337 	struct xfs_rud_log_item	*rudp = RUD_ITEM(lip);
338 
339 	/*
340 	 * Drop the RUI reference regardless of whether the RUD has been
341 	 * aborted. Once the RUD transaction is constructed, it is the sole
342 	 * responsibility of the RUD to release the RUI (even if the RUI is
343 	 * aborted due to log I/O error).
344 	 */
345 	xfs_rui_release(rudp->rud_ruip);
346 	kmem_zone_free(xfs_rud_zone, rudp);
347 
348 	return (xfs_lsn_t)-1;
349 }
350 
351 /*
352  * The RUD dependency tracking op doesn't do squat.  It can't because
353  * it doesn't know where the free extent is coming from.  The dependency
354  * tracking has to be handled by the "enclosing" metadata object.  For
355  * example, for inodes, the inode is locked throughout the extent freeing
356  * so the dependency should be recorded there.
357  */
358 STATIC void
359 xfs_rud_item_committing(
360 	struct xfs_log_item	*lip,
361 	xfs_lsn_t		lsn)
362 {
363 }
364 
365 /*
366  * This is the ops vector shared by all rud log items.
367  */
368 static const struct xfs_item_ops xfs_rud_item_ops = {
369 	.iop_size	= xfs_rud_item_size,
370 	.iop_format	= xfs_rud_item_format,
371 	.iop_pin	= xfs_rud_item_pin,
372 	.iop_unpin	= xfs_rud_item_unpin,
373 	.iop_unlock	= xfs_rud_item_unlock,
374 	.iop_committed	= xfs_rud_item_committed,
375 	.iop_push	= xfs_rud_item_push,
376 	.iop_committing = xfs_rud_item_committing,
377 };
378 
379 /*
380  * Allocate and initialize an rud item with the given number of extents.
381  */
382 struct xfs_rud_log_item *
383 xfs_rud_init(
384 	struct xfs_mount		*mp,
385 	struct xfs_rui_log_item		*ruip)
386 
387 {
388 	struct xfs_rud_log_item	*rudp;
389 
390 	rudp = kmem_zone_zalloc(xfs_rud_zone, KM_SLEEP);
391 	xfs_log_item_init(mp, &rudp->rud_item, XFS_LI_RUD, &xfs_rud_item_ops);
392 	rudp->rud_ruip = ruip;
393 	rudp->rud_format.rud_rui_id = ruip->rui_format.rui_id;
394 
395 	return rudp;
396 }
397 
398 /*
399  * Process an rmap update intent item that was recovered from the log.
400  * We need to update the rmapbt.
401  */
402 int
403 xfs_rui_recover(
404 	struct xfs_mount		*mp,
405 	struct xfs_rui_log_item		*ruip)
406 {
407 	int				i;
408 	int				error = 0;
409 	struct xfs_map_extent		*rmap;
410 	xfs_fsblock_t			startblock_fsb;
411 	bool				op_ok;
412 	struct xfs_rud_log_item		*rudp;
413 	enum xfs_rmap_intent_type	type;
414 	int				whichfork;
415 	xfs_exntst_t			state;
416 	struct xfs_trans		*tp;
417 	struct xfs_btree_cur		*rcur = NULL;
418 
419 	ASSERT(!test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags));
420 
421 	/*
422 	 * First check the validity of the extents described by the
423 	 * RUI.  If any are bad, then assume that all are bad and
424 	 * just toss the RUI.
425 	 */
426 	for (i = 0; i < ruip->rui_format.rui_nextents; i++) {
427 		rmap = &ruip->rui_format.rui_extents[i];
428 		startblock_fsb = XFS_BB_TO_FSB(mp,
429 				   XFS_FSB_TO_DADDR(mp, rmap->me_startblock));
430 		switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) {
431 		case XFS_RMAP_EXTENT_MAP:
432 		case XFS_RMAP_EXTENT_MAP_SHARED:
433 		case XFS_RMAP_EXTENT_UNMAP:
434 		case XFS_RMAP_EXTENT_UNMAP_SHARED:
435 		case XFS_RMAP_EXTENT_CONVERT:
436 		case XFS_RMAP_EXTENT_CONVERT_SHARED:
437 		case XFS_RMAP_EXTENT_ALLOC:
438 		case XFS_RMAP_EXTENT_FREE:
439 			op_ok = true;
440 			break;
441 		default:
442 			op_ok = false;
443 			break;
444 		}
445 		if (!op_ok || startblock_fsb == 0 ||
446 		    rmap->me_len == 0 ||
447 		    startblock_fsb >= mp->m_sb.sb_dblocks ||
448 		    rmap->me_len >= mp->m_sb.sb_agblocks ||
449 		    (rmap->me_flags & ~XFS_RMAP_EXTENT_FLAGS)) {
450 			/*
451 			 * This will pull the RUI from the AIL and
452 			 * free the memory associated with it.
453 			 */
454 			set_bit(XFS_RUI_RECOVERED, &ruip->rui_flags);
455 			xfs_rui_release(ruip);
456 			return -EIO;
457 		}
458 	}
459 
460 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate,
461 			mp->m_rmap_maxlevels, 0, XFS_TRANS_RESERVE, &tp);
462 	if (error)
463 		return error;
464 	rudp = xfs_trans_get_rud(tp, ruip);
465 
466 	for (i = 0; i < ruip->rui_format.rui_nextents; i++) {
467 		rmap = &ruip->rui_format.rui_extents[i];
468 		state = (rmap->me_flags & XFS_RMAP_EXTENT_UNWRITTEN) ?
469 				XFS_EXT_UNWRITTEN : XFS_EXT_NORM;
470 		whichfork = (rmap->me_flags & XFS_RMAP_EXTENT_ATTR_FORK) ?
471 				XFS_ATTR_FORK : XFS_DATA_FORK;
472 		switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) {
473 		case XFS_RMAP_EXTENT_MAP:
474 			type = XFS_RMAP_MAP;
475 			break;
476 		case XFS_RMAP_EXTENT_MAP_SHARED:
477 			type = XFS_RMAP_MAP_SHARED;
478 			break;
479 		case XFS_RMAP_EXTENT_UNMAP:
480 			type = XFS_RMAP_UNMAP;
481 			break;
482 		case XFS_RMAP_EXTENT_UNMAP_SHARED:
483 			type = XFS_RMAP_UNMAP_SHARED;
484 			break;
485 		case XFS_RMAP_EXTENT_CONVERT:
486 			type = XFS_RMAP_CONVERT;
487 			break;
488 		case XFS_RMAP_EXTENT_CONVERT_SHARED:
489 			type = XFS_RMAP_CONVERT_SHARED;
490 			break;
491 		case XFS_RMAP_EXTENT_ALLOC:
492 			type = XFS_RMAP_ALLOC;
493 			break;
494 		case XFS_RMAP_EXTENT_FREE:
495 			type = XFS_RMAP_FREE;
496 			break;
497 		default:
498 			error = -EFSCORRUPTED;
499 			goto abort_error;
500 		}
501 		error = xfs_trans_log_finish_rmap_update(tp, rudp, type,
502 				rmap->me_owner, whichfork,
503 				rmap->me_startoff, rmap->me_startblock,
504 				rmap->me_len, state, &rcur);
505 		if (error)
506 			goto abort_error;
507 
508 	}
509 
510 	xfs_rmap_finish_one_cleanup(tp, rcur, error);
511 	set_bit(XFS_RUI_RECOVERED, &ruip->rui_flags);
512 	error = xfs_trans_commit(tp);
513 	return error;
514 
515 abort_error:
516 	xfs_rmap_finish_one_cleanup(tp, rcur, error);
517 	xfs_trans_cancel(tp);
518 	return error;
519 }
520