1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2016 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_bit.h" 12 #include "xfs_shared.h" 13 #include "xfs_mount.h" 14 #include "xfs_defer.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_rmap_item.h" 18 #include "xfs_log.h" 19 #include "xfs_rmap.h" 20 #include "xfs_error.h" 21 #include "xfs_log_priv.h" 22 #include "xfs_log_recover.h" 23 24 kmem_zone_t *xfs_rui_zone; 25 kmem_zone_t *xfs_rud_zone; 26 27 static const struct xfs_item_ops xfs_rui_item_ops; 28 29 static inline struct xfs_rui_log_item *RUI_ITEM(struct xfs_log_item *lip) 30 { 31 return container_of(lip, struct xfs_rui_log_item, rui_item); 32 } 33 34 STATIC void 35 xfs_rui_item_free( 36 struct xfs_rui_log_item *ruip) 37 { 38 if (ruip->rui_format.rui_nextents > XFS_RUI_MAX_FAST_EXTENTS) 39 kmem_free(ruip); 40 else 41 kmem_cache_free(xfs_rui_zone, ruip); 42 } 43 44 /* 45 * Freeing the RUI requires that we remove it from the AIL if it has already 46 * been placed there. However, the RUI may not yet have been placed in the AIL 47 * when called by xfs_rui_release() from RUD processing due to the ordering of 48 * committed vs unpin operations in bulk insert operations. Hence the reference 49 * count to ensure only the last caller frees the RUI. 50 */ 51 STATIC void 52 xfs_rui_release( 53 struct xfs_rui_log_item *ruip) 54 { 55 ASSERT(atomic_read(&ruip->rui_refcount) > 0); 56 if (atomic_dec_and_test(&ruip->rui_refcount)) { 57 xfs_trans_ail_delete(&ruip->rui_item, SHUTDOWN_LOG_IO_ERROR); 58 xfs_rui_item_free(ruip); 59 } 60 } 61 62 STATIC void 63 xfs_rui_item_size( 64 struct xfs_log_item *lip, 65 int *nvecs, 66 int *nbytes) 67 { 68 struct xfs_rui_log_item *ruip = RUI_ITEM(lip); 69 70 *nvecs += 1; 71 *nbytes += xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents); 72 } 73 74 /* 75 * This is called to fill in the vector of log iovecs for the 76 * given rui log item. We use only 1 iovec, and we point that 77 * at the rui_log_format structure embedded in the rui item. 78 * It is at this point that we assert that all of the extent 79 * slots in the rui item have been filled. 80 */ 81 STATIC void 82 xfs_rui_item_format( 83 struct xfs_log_item *lip, 84 struct xfs_log_vec *lv) 85 { 86 struct xfs_rui_log_item *ruip = RUI_ITEM(lip); 87 struct xfs_log_iovec *vecp = NULL; 88 89 ASSERT(atomic_read(&ruip->rui_next_extent) == 90 ruip->rui_format.rui_nextents); 91 92 ruip->rui_format.rui_type = XFS_LI_RUI; 93 ruip->rui_format.rui_size = 1; 94 95 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUI_FORMAT, &ruip->rui_format, 96 xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents)); 97 } 98 99 /* 100 * The unpin operation is the last place an RUI is manipulated in the log. It is 101 * either inserted in the AIL or aborted in the event of a log I/O error. In 102 * either case, the RUI transaction has been successfully committed to make it 103 * this far. Therefore, we expect whoever committed the RUI to either construct 104 * and commit the RUD or drop the RUD's reference in the event of error. Simply 105 * drop the log's RUI reference now that the log is done with it. 106 */ 107 STATIC void 108 xfs_rui_item_unpin( 109 struct xfs_log_item *lip, 110 int remove) 111 { 112 struct xfs_rui_log_item *ruip = RUI_ITEM(lip); 113 114 xfs_rui_release(ruip); 115 } 116 117 /* 118 * The RUI has been either committed or aborted if the transaction has been 119 * cancelled. If the transaction was cancelled, an RUD isn't going to be 120 * constructed and thus we free the RUI here directly. 121 */ 122 STATIC void 123 xfs_rui_item_release( 124 struct xfs_log_item *lip) 125 { 126 xfs_rui_release(RUI_ITEM(lip)); 127 } 128 129 /* 130 * Allocate and initialize an rui item with the given number of extents. 131 */ 132 STATIC struct xfs_rui_log_item * 133 xfs_rui_init( 134 struct xfs_mount *mp, 135 uint nextents) 136 137 { 138 struct xfs_rui_log_item *ruip; 139 140 ASSERT(nextents > 0); 141 if (nextents > XFS_RUI_MAX_FAST_EXTENTS) 142 ruip = kmem_zalloc(xfs_rui_log_item_sizeof(nextents), 0); 143 else 144 ruip = kmem_cache_zalloc(xfs_rui_zone, 145 GFP_KERNEL | __GFP_NOFAIL); 146 147 xfs_log_item_init(mp, &ruip->rui_item, XFS_LI_RUI, &xfs_rui_item_ops); 148 ruip->rui_format.rui_nextents = nextents; 149 ruip->rui_format.rui_id = (uintptr_t)(void *)ruip; 150 atomic_set(&ruip->rui_next_extent, 0); 151 atomic_set(&ruip->rui_refcount, 2); 152 153 return ruip; 154 } 155 156 /* 157 * Copy an RUI format buffer from the given buf, and into the destination 158 * RUI format structure. The RUI/RUD items were designed not to need any 159 * special alignment handling. 160 */ 161 STATIC int 162 xfs_rui_copy_format( 163 struct xfs_log_iovec *buf, 164 struct xfs_rui_log_format *dst_rui_fmt) 165 { 166 struct xfs_rui_log_format *src_rui_fmt; 167 uint len; 168 169 src_rui_fmt = buf->i_addr; 170 len = xfs_rui_log_format_sizeof(src_rui_fmt->rui_nextents); 171 172 if (buf->i_len != len) { 173 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 174 return -EFSCORRUPTED; 175 } 176 177 memcpy(dst_rui_fmt, src_rui_fmt, len); 178 return 0; 179 } 180 181 static inline struct xfs_rud_log_item *RUD_ITEM(struct xfs_log_item *lip) 182 { 183 return container_of(lip, struct xfs_rud_log_item, rud_item); 184 } 185 186 STATIC void 187 xfs_rud_item_size( 188 struct xfs_log_item *lip, 189 int *nvecs, 190 int *nbytes) 191 { 192 *nvecs += 1; 193 *nbytes += sizeof(struct xfs_rud_log_format); 194 } 195 196 /* 197 * This is called to fill in the vector of log iovecs for the 198 * given rud log item. We use only 1 iovec, and we point that 199 * at the rud_log_format structure embedded in the rud item. 200 * It is at this point that we assert that all of the extent 201 * slots in the rud item have been filled. 202 */ 203 STATIC void 204 xfs_rud_item_format( 205 struct xfs_log_item *lip, 206 struct xfs_log_vec *lv) 207 { 208 struct xfs_rud_log_item *rudp = RUD_ITEM(lip); 209 struct xfs_log_iovec *vecp = NULL; 210 211 rudp->rud_format.rud_type = XFS_LI_RUD; 212 rudp->rud_format.rud_size = 1; 213 214 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUD_FORMAT, &rudp->rud_format, 215 sizeof(struct xfs_rud_log_format)); 216 } 217 218 /* 219 * The RUD is either committed or aborted if the transaction is cancelled. If 220 * the transaction is cancelled, drop our reference to the RUI and free the 221 * RUD. 222 */ 223 STATIC void 224 xfs_rud_item_release( 225 struct xfs_log_item *lip) 226 { 227 struct xfs_rud_log_item *rudp = RUD_ITEM(lip); 228 229 xfs_rui_release(rudp->rud_ruip); 230 kmem_cache_free(xfs_rud_zone, rudp); 231 } 232 233 static const struct xfs_item_ops xfs_rud_item_ops = { 234 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED, 235 .iop_size = xfs_rud_item_size, 236 .iop_format = xfs_rud_item_format, 237 .iop_release = xfs_rud_item_release, 238 }; 239 240 static struct xfs_rud_log_item * 241 xfs_trans_get_rud( 242 struct xfs_trans *tp, 243 struct xfs_rui_log_item *ruip) 244 { 245 struct xfs_rud_log_item *rudp; 246 247 rudp = kmem_cache_zalloc(xfs_rud_zone, GFP_KERNEL | __GFP_NOFAIL); 248 xfs_log_item_init(tp->t_mountp, &rudp->rud_item, XFS_LI_RUD, 249 &xfs_rud_item_ops); 250 rudp->rud_ruip = ruip; 251 rudp->rud_format.rud_rui_id = ruip->rui_format.rui_id; 252 253 xfs_trans_add_item(tp, &rudp->rud_item); 254 return rudp; 255 } 256 257 /* Set the map extent flags for this reverse mapping. */ 258 static void 259 xfs_trans_set_rmap_flags( 260 struct xfs_map_extent *rmap, 261 enum xfs_rmap_intent_type type, 262 int whichfork, 263 xfs_exntst_t state) 264 { 265 rmap->me_flags = 0; 266 if (state == XFS_EXT_UNWRITTEN) 267 rmap->me_flags |= XFS_RMAP_EXTENT_UNWRITTEN; 268 if (whichfork == XFS_ATTR_FORK) 269 rmap->me_flags |= XFS_RMAP_EXTENT_ATTR_FORK; 270 switch (type) { 271 case XFS_RMAP_MAP: 272 rmap->me_flags |= XFS_RMAP_EXTENT_MAP; 273 break; 274 case XFS_RMAP_MAP_SHARED: 275 rmap->me_flags |= XFS_RMAP_EXTENT_MAP_SHARED; 276 break; 277 case XFS_RMAP_UNMAP: 278 rmap->me_flags |= XFS_RMAP_EXTENT_UNMAP; 279 break; 280 case XFS_RMAP_UNMAP_SHARED: 281 rmap->me_flags |= XFS_RMAP_EXTENT_UNMAP_SHARED; 282 break; 283 case XFS_RMAP_CONVERT: 284 rmap->me_flags |= XFS_RMAP_EXTENT_CONVERT; 285 break; 286 case XFS_RMAP_CONVERT_SHARED: 287 rmap->me_flags |= XFS_RMAP_EXTENT_CONVERT_SHARED; 288 break; 289 case XFS_RMAP_ALLOC: 290 rmap->me_flags |= XFS_RMAP_EXTENT_ALLOC; 291 break; 292 case XFS_RMAP_FREE: 293 rmap->me_flags |= XFS_RMAP_EXTENT_FREE; 294 break; 295 default: 296 ASSERT(0); 297 } 298 } 299 300 /* 301 * Finish an rmap update and log it to the RUD. Note that the transaction is 302 * marked dirty regardless of whether the rmap update succeeds or fails to 303 * support the RUI/RUD lifecycle rules. 304 */ 305 static int 306 xfs_trans_log_finish_rmap_update( 307 struct xfs_trans *tp, 308 struct xfs_rud_log_item *rudp, 309 enum xfs_rmap_intent_type type, 310 uint64_t owner, 311 int whichfork, 312 xfs_fileoff_t startoff, 313 xfs_fsblock_t startblock, 314 xfs_filblks_t blockcount, 315 xfs_exntst_t state, 316 struct xfs_btree_cur **pcur) 317 { 318 int error; 319 320 error = xfs_rmap_finish_one(tp, type, owner, whichfork, startoff, 321 startblock, blockcount, state, pcur); 322 323 /* 324 * Mark the transaction dirty, even on error. This ensures the 325 * transaction is aborted, which: 326 * 327 * 1.) releases the RUI and frees the RUD 328 * 2.) shuts down the filesystem 329 */ 330 tp->t_flags |= XFS_TRANS_DIRTY; 331 set_bit(XFS_LI_DIRTY, &rudp->rud_item.li_flags); 332 333 return error; 334 } 335 336 /* Sort rmap intents by AG. */ 337 static int 338 xfs_rmap_update_diff_items( 339 void *priv, 340 struct list_head *a, 341 struct list_head *b) 342 { 343 struct xfs_mount *mp = priv; 344 struct xfs_rmap_intent *ra; 345 struct xfs_rmap_intent *rb; 346 347 ra = container_of(a, struct xfs_rmap_intent, ri_list); 348 rb = container_of(b, struct xfs_rmap_intent, ri_list); 349 return XFS_FSB_TO_AGNO(mp, ra->ri_bmap.br_startblock) - 350 XFS_FSB_TO_AGNO(mp, rb->ri_bmap.br_startblock); 351 } 352 353 /* Log rmap updates in the intent item. */ 354 STATIC void 355 xfs_rmap_update_log_item( 356 struct xfs_trans *tp, 357 struct xfs_rui_log_item *ruip, 358 struct xfs_rmap_intent *rmap) 359 { 360 uint next_extent; 361 struct xfs_map_extent *map; 362 363 tp->t_flags |= XFS_TRANS_DIRTY; 364 set_bit(XFS_LI_DIRTY, &ruip->rui_item.li_flags); 365 366 /* 367 * atomic_inc_return gives us the value after the increment; 368 * we want to use it as an array index so we need to subtract 1 from 369 * it. 370 */ 371 next_extent = atomic_inc_return(&ruip->rui_next_extent) - 1; 372 ASSERT(next_extent < ruip->rui_format.rui_nextents); 373 map = &ruip->rui_format.rui_extents[next_extent]; 374 map->me_owner = rmap->ri_owner; 375 map->me_startblock = rmap->ri_bmap.br_startblock; 376 map->me_startoff = rmap->ri_bmap.br_startoff; 377 map->me_len = rmap->ri_bmap.br_blockcount; 378 xfs_trans_set_rmap_flags(map, rmap->ri_type, rmap->ri_whichfork, 379 rmap->ri_bmap.br_state); 380 } 381 382 static struct xfs_log_item * 383 xfs_rmap_update_create_intent( 384 struct xfs_trans *tp, 385 struct list_head *items, 386 unsigned int count, 387 bool sort) 388 { 389 struct xfs_mount *mp = tp->t_mountp; 390 struct xfs_rui_log_item *ruip = xfs_rui_init(mp, count); 391 struct xfs_rmap_intent *rmap; 392 393 ASSERT(count > 0); 394 395 xfs_trans_add_item(tp, &ruip->rui_item); 396 if (sort) 397 list_sort(mp, items, xfs_rmap_update_diff_items); 398 list_for_each_entry(rmap, items, ri_list) 399 xfs_rmap_update_log_item(tp, ruip, rmap); 400 return &ruip->rui_item; 401 } 402 403 /* Get an RUD so we can process all the deferred rmap updates. */ 404 static struct xfs_log_item * 405 xfs_rmap_update_create_done( 406 struct xfs_trans *tp, 407 struct xfs_log_item *intent, 408 unsigned int count) 409 { 410 return &xfs_trans_get_rud(tp, RUI_ITEM(intent))->rud_item; 411 } 412 413 /* Process a deferred rmap update. */ 414 STATIC int 415 xfs_rmap_update_finish_item( 416 struct xfs_trans *tp, 417 struct xfs_log_item *done, 418 struct list_head *item, 419 struct xfs_btree_cur **state) 420 { 421 struct xfs_rmap_intent *rmap; 422 int error; 423 424 rmap = container_of(item, struct xfs_rmap_intent, ri_list); 425 error = xfs_trans_log_finish_rmap_update(tp, RUD_ITEM(done), 426 rmap->ri_type, rmap->ri_owner, rmap->ri_whichfork, 427 rmap->ri_bmap.br_startoff, rmap->ri_bmap.br_startblock, 428 rmap->ri_bmap.br_blockcount, rmap->ri_bmap.br_state, 429 state); 430 kmem_free(rmap); 431 return error; 432 } 433 434 /* Abort all pending RUIs. */ 435 STATIC void 436 xfs_rmap_update_abort_intent( 437 struct xfs_log_item *intent) 438 { 439 xfs_rui_release(RUI_ITEM(intent)); 440 } 441 442 /* Cancel a deferred rmap update. */ 443 STATIC void 444 xfs_rmap_update_cancel_item( 445 struct list_head *item) 446 { 447 struct xfs_rmap_intent *rmap; 448 449 rmap = container_of(item, struct xfs_rmap_intent, ri_list); 450 kmem_free(rmap); 451 } 452 453 const struct xfs_defer_op_type xfs_rmap_update_defer_type = { 454 .max_items = XFS_RUI_MAX_FAST_EXTENTS, 455 .create_intent = xfs_rmap_update_create_intent, 456 .abort_intent = xfs_rmap_update_abort_intent, 457 .create_done = xfs_rmap_update_create_done, 458 .finish_item = xfs_rmap_update_finish_item, 459 .finish_cleanup = xfs_rmap_finish_one_cleanup, 460 .cancel_item = xfs_rmap_update_cancel_item, 461 }; 462 463 /* 464 * Process an rmap update intent item that was recovered from the log. 465 * We need to update the rmapbt. 466 */ 467 STATIC int 468 xfs_rui_item_recover( 469 struct xfs_log_item *lip, 470 struct xfs_trans *parent_tp) 471 { 472 struct xfs_rui_log_item *ruip = RUI_ITEM(lip); 473 struct xfs_map_extent *rmap; 474 struct xfs_rud_log_item *rudp; 475 struct xfs_trans *tp; 476 struct xfs_btree_cur *rcur = NULL; 477 struct xfs_mount *mp = parent_tp->t_mountp; 478 xfs_fsblock_t startblock_fsb; 479 enum xfs_rmap_intent_type type; 480 xfs_exntst_t state; 481 bool op_ok; 482 int i; 483 int whichfork; 484 int error = 0; 485 486 /* 487 * First check the validity of the extents described by the 488 * RUI. If any are bad, then assume that all are bad and 489 * just toss the RUI. 490 */ 491 for (i = 0; i < ruip->rui_format.rui_nextents; i++) { 492 rmap = &ruip->rui_format.rui_extents[i]; 493 startblock_fsb = XFS_BB_TO_FSB(mp, 494 XFS_FSB_TO_DADDR(mp, rmap->me_startblock)); 495 switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) { 496 case XFS_RMAP_EXTENT_MAP: 497 case XFS_RMAP_EXTENT_MAP_SHARED: 498 case XFS_RMAP_EXTENT_UNMAP: 499 case XFS_RMAP_EXTENT_UNMAP_SHARED: 500 case XFS_RMAP_EXTENT_CONVERT: 501 case XFS_RMAP_EXTENT_CONVERT_SHARED: 502 case XFS_RMAP_EXTENT_ALLOC: 503 case XFS_RMAP_EXTENT_FREE: 504 op_ok = true; 505 break; 506 default: 507 op_ok = false; 508 break; 509 } 510 if (!op_ok || startblock_fsb == 0 || 511 rmap->me_len == 0 || 512 startblock_fsb >= mp->m_sb.sb_dblocks || 513 rmap->me_len >= mp->m_sb.sb_agblocks || 514 (rmap->me_flags & ~XFS_RMAP_EXTENT_FLAGS)) { 515 /* 516 * This will pull the RUI from the AIL and 517 * free the memory associated with it. 518 */ 519 xfs_rui_release(ruip); 520 return -EFSCORRUPTED; 521 } 522 } 523 524 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 525 mp->m_rmap_maxlevels, 0, XFS_TRANS_RESERVE, &tp); 526 if (error) 527 return error; 528 rudp = xfs_trans_get_rud(tp, ruip); 529 530 for (i = 0; i < ruip->rui_format.rui_nextents; i++) { 531 rmap = &ruip->rui_format.rui_extents[i]; 532 state = (rmap->me_flags & XFS_RMAP_EXTENT_UNWRITTEN) ? 533 XFS_EXT_UNWRITTEN : XFS_EXT_NORM; 534 whichfork = (rmap->me_flags & XFS_RMAP_EXTENT_ATTR_FORK) ? 535 XFS_ATTR_FORK : XFS_DATA_FORK; 536 switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) { 537 case XFS_RMAP_EXTENT_MAP: 538 type = XFS_RMAP_MAP; 539 break; 540 case XFS_RMAP_EXTENT_MAP_SHARED: 541 type = XFS_RMAP_MAP_SHARED; 542 break; 543 case XFS_RMAP_EXTENT_UNMAP: 544 type = XFS_RMAP_UNMAP; 545 break; 546 case XFS_RMAP_EXTENT_UNMAP_SHARED: 547 type = XFS_RMAP_UNMAP_SHARED; 548 break; 549 case XFS_RMAP_EXTENT_CONVERT: 550 type = XFS_RMAP_CONVERT; 551 break; 552 case XFS_RMAP_EXTENT_CONVERT_SHARED: 553 type = XFS_RMAP_CONVERT_SHARED; 554 break; 555 case XFS_RMAP_EXTENT_ALLOC: 556 type = XFS_RMAP_ALLOC; 557 break; 558 case XFS_RMAP_EXTENT_FREE: 559 type = XFS_RMAP_FREE; 560 break; 561 default: 562 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 563 error = -EFSCORRUPTED; 564 goto abort_error; 565 } 566 error = xfs_trans_log_finish_rmap_update(tp, rudp, type, 567 rmap->me_owner, whichfork, 568 rmap->me_startoff, rmap->me_startblock, 569 rmap->me_len, state, &rcur); 570 if (error) 571 goto abort_error; 572 573 } 574 575 xfs_rmap_finish_one_cleanup(tp, rcur, error); 576 error = xfs_trans_commit(tp); 577 return error; 578 579 abort_error: 580 xfs_rmap_finish_one_cleanup(tp, rcur, error); 581 xfs_trans_cancel(tp); 582 return error; 583 } 584 585 STATIC bool 586 xfs_rui_item_match( 587 struct xfs_log_item *lip, 588 uint64_t intent_id) 589 { 590 return RUI_ITEM(lip)->rui_format.rui_id == intent_id; 591 } 592 593 static const struct xfs_item_ops xfs_rui_item_ops = { 594 .iop_size = xfs_rui_item_size, 595 .iop_format = xfs_rui_item_format, 596 .iop_unpin = xfs_rui_item_unpin, 597 .iop_release = xfs_rui_item_release, 598 .iop_recover = xfs_rui_item_recover, 599 .iop_match = xfs_rui_item_match, 600 }; 601 602 /* 603 * This routine is called to create an in-core extent rmap update 604 * item from the rui format structure which was logged on disk. 605 * It allocates an in-core rui, copies the extents from the format 606 * structure into it, and adds the rui to the AIL with the given 607 * LSN. 608 */ 609 STATIC int 610 xlog_recover_rui_commit_pass2( 611 struct xlog *log, 612 struct list_head *buffer_list, 613 struct xlog_recover_item *item, 614 xfs_lsn_t lsn) 615 { 616 int error; 617 struct xfs_mount *mp = log->l_mp; 618 struct xfs_rui_log_item *ruip; 619 struct xfs_rui_log_format *rui_formatp; 620 621 rui_formatp = item->ri_buf[0].i_addr; 622 623 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents); 624 error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format); 625 if (error) { 626 xfs_rui_item_free(ruip); 627 return error; 628 } 629 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents); 630 /* 631 * Insert the intent into the AIL directly and drop one reference so 632 * that finishing or canceling the work will drop the other. 633 */ 634 xfs_trans_ail_insert(log->l_ailp, &ruip->rui_item, lsn); 635 xfs_rui_release(ruip); 636 return 0; 637 } 638 639 const struct xlog_recover_item_ops xlog_rui_item_ops = { 640 .item_type = XFS_LI_RUI, 641 .commit_pass2 = xlog_recover_rui_commit_pass2, 642 }; 643 644 /* 645 * This routine is called when an RUD format structure is found in a committed 646 * transaction in the log. Its purpose is to cancel the corresponding RUI if it 647 * was still in the log. To do this it searches the AIL for the RUI with an id 648 * equal to that in the RUD format structure. If we find it we drop the RUD 649 * reference, which removes the RUI from the AIL and frees it. 650 */ 651 STATIC int 652 xlog_recover_rud_commit_pass2( 653 struct xlog *log, 654 struct list_head *buffer_list, 655 struct xlog_recover_item *item, 656 xfs_lsn_t lsn) 657 { 658 struct xfs_rud_log_format *rud_formatp; 659 660 rud_formatp = item->ri_buf[0].i_addr; 661 ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format)); 662 663 xlog_recover_release_intent(log, XFS_LI_RUI, rud_formatp->rud_rui_id); 664 return 0; 665 } 666 667 const struct xlog_recover_item_ops xlog_rud_item_ops = { 668 .item_type = XFS_LI_RUD, 669 .commit_pass2 = xlog_recover_rud_commit_pass2, 670 }; 671