xref: /openbmc/linux/fs/xfs/xfs_rmap_item.c (revision 113094f7)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_rmap_item.h"
18 #include "xfs_log.h"
19 #include "xfs_rmap.h"
20 
21 
22 kmem_zone_t	*xfs_rui_zone;
23 kmem_zone_t	*xfs_rud_zone;
24 
25 static inline struct xfs_rui_log_item *RUI_ITEM(struct xfs_log_item *lip)
26 {
27 	return container_of(lip, struct xfs_rui_log_item, rui_item);
28 }
29 
30 void
31 xfs_rui_item_free(
32 	struct xfs_rui_log_item	*ruip)
33 {
34 	if (ruip->rui_format.rui_nextents > XFS_RUI_MAX_FAST_EXTENTS)
35 		kmem_free(ruip);
36 	else
37 		kmem_zone_free(xfs_rui_zone, ruip);
38 }
39 
40 /*
41  * Freeing the RUI requires that we remove it from the AIL if it has already
42  * been placed there. However, the RUI may not yet have been placed in the AIL
43  * when called by xfs_rui_release() from RUD processing due to the ordering of
44  * committed vs unpin operations in bulk insert operations. Hence the reference
45  * count to ensure only the last caller frees the RUI.
46  */
47 void
48 xfs_rui_release(
49 	struct xfs_rui_log_item	*ruip)
50 {
51 	ASSERT(atomic_read(&ruip->rui_refcount) > 0);
52 	if (atomic_dec_and_test(&ruip->rui_refcount)) {
53 		xfs_trans_ail_remove(&ruip->rui_item, SHUTDOWN_LOG_IO_ERROR);
54 		xfs_rui_item_free(ruip);
55 	}
56 }
57 
58 STATIC void
59 xfs_rui_item_size(
60 	struct xfs_log_item	*lip,
61 	int			*nvecs,
62 	int			*nbytes)
63 {
64 	struct xfs_rui_log_item	*ruip = RUI_ITEM(lip);
65 
66 	*nvecs += 1;
67 	*nbytes += xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents);
68 }
69 
70 /*
71  * This is called to fill in the vector of log iovecs for the
72  * given rui log item. We use only 1 iovec, and we point that
73  * at the rui_log_format structure embedded in the rui item.
74  * It is at this point that we assert that all of the extent
75  * slots in the rui item have been filled.
76  */
77 STATIC void
78 xfs_rui_item_format(
79 	struct xfs_log_item	*lip,
80 	struct xfs_log_vec	*lv)
81 {
82 	struct xfs_rui_log_item	*ruip = RUI_ITEM(lip);
83 	struct xfs_log_iovec	*vecp = NULL;
84 
85 	ASSERT(atomic_read(&ruip->rui_next_extent) ==
86 			ruip->rui_format.rui_nextents);
87 
88 	ruip->rui_format.rui_type = XFS_LI_RUI;
89 	ruip->rui_format.rui_size = 1;
90 
91 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUI_FORMAT, &ruip->rui_format,
92 			xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents));
93 }
94 
95 /*
96  * The unpin operation is the last place an RUI is manipulated in the log. It is
97  * either inserted in the AIL or aborted in the event of a log I/O error. In
98  * either case, the RUI transaction has been successfully committed to make it
99  * this far. Therefore, we expect whoever committed the RUI to either construct
100  * and commit the RUD or drop the RUD's reference in the event of error. Simply
101  * drop the log's RUI reference now that the log is done with it.
102  */
103 STATIC void
104 xfs_rui_item_unpin(
105 	struct xfs_log_item	*lip,
106 	int			remove)
107 {
108 	struct xfs_rui_log_item	*ruip = RUI_ITEM(lip);
109 
110 	xfs_rui_release(ruip);
111 }
112 
113 /*
114  * The RUI has been either committed or aborted if the transaction has been
115  * cancelled. If the transaction was cancelled, an RUD isn't going to be
116  * constructed and thus we free the RUI here directly.
117  */
118 STATIC void
119 xfs_rui_item_release(
120 	struct xfs_log_item	*lip)
121 {
122 	xfs_rui_release(RUI_ITEM(lip));
123 }
124 
125 static const struct xfs_item_ops xfs_rui_item_ops = {
126 	.iop_size	= xfs_rui_item_size,
127 	.iop_format	= xfs_rui_item_format,
128 	.iop_unpin	= xfs_rui_item_unpin,
129 	.iop_release	= xfs_rui_item_release,
130 };
131 
132 /*
133  * Allocate and initialize an rui item with the given number of extents.
134  */
135 struct xfs_rui_log_item *
136 xfs_rui_init(
137 	struct xfs_mount		*mp,
138 	uint				nextents)
139 
140 {
141 	struct xfs_rui_log_item		*ruip;
142 
143 	ASSERT(nextents > 0);
144 	if (nextents > XFS_RUI_MAX_FAST_EXTENTS)
145 		ruip = kmem_zalloc(xfs_rui_log_item_sizeof(nextents), KM_SLEEP);
146 	else
147 		ruip = kmem_zone_zalloc(xfs_rui_zone, KM_SLEEP);
148 
149 	xfs_log_item_init(mp, &ruip->rui_item, XFS_LI_RUI, &xfs_rui_item_ops);
150 	ruip->rui_format.rui_nextents = nextents;
151 	ruip->rui_format.rui_id = (uintptr_t)(void *)ruip;
152 	atomic_set(&ruip->rui_next_extent, 0);
153 	atomic_set(&ruip->rui_refcount, 2);
154 
155 	return ruip;
156 }
157 
158 /*
159  * Copy an RUI format buffer from the given buf, and into the destination
160  * RUI format structure.  The RUI/RUD items were designed not to need any
161  * special alignment handling.
162  */
163 int
164 xfs_rui_copy_format(
165 	struct xfs_log_iovec		*buf,
166 	struct xfs_rui_log_format	*dst_rui_fmt)
167 {
168 	struct xfs_rui_log_format	*src_rui_fmt;
169 	uint				len;
170 
171 	src_rui_fmt = buf->i_addr;
172 	len = xfs_rui_log_format_sizeof(src_rui_fmt->rui_nextents);
173 
174 	if (buf->i_len != len)
175 		return -EFSCORRUPTED;
176 
177 	memcpy(dst_rui_fmt, src_rui_fmt, len);
178 	return 0;
179 }
180 
181 static inline struct xfs_rud_log_item *RUD_ITEM(struct xfs_log_item *lip)
182 {
183 	return container_of(lip, struct xfs_rud_log_item, rud_item);
184 }
185 
186 STATIC void
187 xfs_rud_item_size(
188 	struct xfs_log_item	*lip,
189 	int			*nvecs,
190 	int			*nbytes)
191 {
192 	*nvecs += 1;
193 	*nbytes += sizeof(struct xfs_rud_log_format);
194 }
195 
196 /*
197  * This is called to fill in the vector of log iovecs for the
198  * given rud log item. We use only 1 iovec, and we point that
199  * at the rud_log_format structure embedded in the rud item.
200  * It is at this point that we assert that all of the extent
201  * slots in the rud item have been filled.
202  */
203 STATIC void
204 xfs_rud_item_format(
205 	struct xfs_log_item	*lip,
206 	struct xfs_log_vec	*lv)
207 {
208 	struct xfs_rud_log_item	*rudp = RUD_ITEM(lip);
209 	struct xfs_log_iovec	*vecp = NULL;
210 
211 	rudp->rud_format.rud_type = XFS_LI_RUD;
212 	rudp->rud_format.rud_size = 1;
213 
214 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUD_FORMAT, &rudp->rud_format,
215 			sizeof(struct xfs_rud_log_format));
216 }
217 
218 /*
219  * The RUD is either committed or aborted if the transaction is cancelled. If
220  * the transaction is cancelled, drop our reference to the RUI and free the
221  * RUD.
222  */
223 STATIC void
224 xfs_rud_item_release(
225 	struct xfs_log_item	*lip)
226 {
227 	struct xfs_rud_log_item	*rudp = RUD_ITEM(lip);
228 
229 	xfs_rui_release(rudp->rud_ruip);
230 	kmem_zone_free(xfs_rud_zone, rudp);
231 }
232 
233 static const struct xfs_item_ops xfs_rud_item_ops = {
234 	.flags		= XFS_ITEM_RELEASE_WHEN_COMMITTED,
235 	.iop_size	= xfs_rud_item_size,
236 	.iop_format	= xfs_rud_item_format,
237 	.iop_release	= xfs_rud_item_release,
238 };
239 
240 static struct xfs_rud_log_item *
241 xfs_trans_get_rud(
242 	struct xfs_trans		*tp,
243 	struct xfs_rui_log_item		*ruip)
244 {
245 	struct xfs_rud_log_item		*rudp;
246 
247 	rudp = kmem_zone_zalloc(xfs_rud_zone, KM_SLEEP);
248 	xfs_log_item_init(tp->t_mountp, &rudp->rud_item, XFS_LI_RUD,
249 			  &xfs_rud_item_ops);
250 	rudp->rud_ruip = ruip;
251 	rudp->rud_format.rud_rui_id = ruip->rui_format.rui_id;
252 
253 	xfs_trans_add_item(tp, &rudp->rud_item);
254 	return rudp;
255 }
256 
257 /* Set the map extent flags for this reverse mapping. */
258 static void
259 xfs_trans_set_rmap_flags(
260 	struct xfs_map_extent		*rmap,
261 	enum xfs_rmap_intent_type	type,
262 	int				whichfork,
263 	xfs_exntst_t			state)
264 {
265 	rmap->me_flags = 0;
266 	if (state == XFS_EXT_UNWRITTEN)
267 		rmap->me_flags |= XFS_RMAP_EXTENT_UNWRITTEN;
268 	if (whichfork == XFS_ATTR_FORK)
269 		rmap->me_flags |= XFS_RMAP_EXTENT_ATTR_FORK;
270 	switch (type) {
271 	case XFS_RMAP_MAP:
272 		rmap->me_flags |= XFS_RMAP_EXTENT_MAP;
273 		break;
274 	case XFS_RMAP_MAP_SHARED:
275 		rmap->me_flags |= XFS_RMAP_EXTENT_MAP_SHARED;
276 		break;
277 	case XFS_RMAP_UNMAP:
278 		rmap->me_flags |= XFS_RMAP_EXTENT_UNMAP;
279 		break;
280 	case XFS_RMAP_UNMAP_SHARED:
281 		rmap->me_flags |= XFS_RMAP_EXTENT_UNMAP_SHARED;
282 		break;
283 	case XFS_RMAP_CONVERT:
284 		rmap->me_flags |= XFS_RMAP_EXTENT_CONVERT;
285 		break;
286 	case XFS_RMAP_CONVERT_SHARED:
287 		rmap->me_flags |= XFS_RMAP_EXTENT_CONVERT_SHARED;
288 		break;
289 	case XFS_RMAP_ALLOC:
290 		rmap->me_flags |= XFS_RMAP_EXTENT_ALLOC;
291 		break;
292 	case XFS_RMAP_FREE:
293 		rmap->me_flags |= XFS_RMAP_EXTENT_FREE;
294 		break;
295 	default:
296 		ASSERT(0);
297 	}
298 }
299 
300 /*
301  * Finish an rmap update and log it to the RUD. Note that the transaction is
302  * marked dirty regardless of whether the rmap update succeeds or fails to
303  * support the RUI/RUD lifecycle rules.
304  */
305 static int
306 xfs_trans_log_finish_rmap_update(
307 	struct xfs_trans		*tp,
308 	struct xfs_rud_log_item		*rudp,
309 	enum xfs_rmap_intent_type	type,
310 	uint64_t			owner,
311 	int				whichfork,
312 	xfs_fileoff_t			startoff,
313 	xfs_fsblock_t			startblock,
314 	xfs_filblks_t			blockcount,
315 	xfs_exntst_t			state,
316 	struct xfs_btree_cur		**pcur)
317 {
318 	int				error;
319 
320 	error = xfs_rmap_finish_one(tp, type, owner, whichfork, startoff,
321 			startblock, blockcount, state, pcur);
322 
323 	/*
324 	 * Mark the transaction dirty, even on error. This ensures the
325 	 * transaction is aborted, which:
326 	 *
327 	 * 1.) releases the RUI and frees the RUD
328 	 * 2.) shuts down the filesystem
329 	 */
330 	tp->t_flags |= XFS_TRANS_DIRTY;
331 	set_bit(XFS_LI_DIRTY, &rudp->rud_item.li_flags);
332 
333 	return error;
334 }
335 
336 /* Sort rmap intents by AG. */
337 static int
338 xfs_rmap_update_diff_items(
339 	void				*priv,
340 	struct list_head		*a,
341 	struct list_head		*b)
342 {
343 	struct xfs_mount		*mp = priv;
344 	struct xfs_rmap_intent		*ra;
345 	struct xfs_rmap_intent		*rb;
346 
347 	ra = container_of(a, struct xfs_rmap_intent, ri_list);
348 	rb = container_of(b, struct xfs_rmap_intent, ri_list);
349 	return  XFS_FSB_TO_AGNO(mp, ra->ri_bmap.br_startblock) -
350 		XFS_FSB_TO_AGNO(mp, rb->ri_bmap.br_startblock);
351 }
352 
353 /* Get an RUI. */
354 STATIC void *
355 xfs_rmap_update_create_intent(
356 	struct xfs_trans		*tp,
357 	unsigned int			count)
358 {
359 	struct xfs_rui_log_item		*ruip;
360 
361 	ASSERT(tp != NULL);
362 	ASSERT(count > 0);
363 
364 	ruip = xfs_rui_init(tp->t_mountp, count);
365 	ASSERT(ruip != NULL);
366 
367 	/*
368 	 * Get a log_item_desc to point at the new item.
369 	 */
370 	xfs_trans_add_item(tp, &ruip->rui_item);
371 	return ruip;
372 }
373 
374 /* Log rmap updates in the intent item. */
375 STATIC void
376 xfs_rmap_update_log_item(
377 	struct xfs_trans		*tp,
378 	void				*intent,
379 	struct list_head		*item)
380 {
381 	struct xfs_rui_log_item		*ruip = intent;
382 	struct xfs_rmap_intent		*rmap;
383 	uint				next_extent;
384 	struct xfs_map_extent		*map;
385 
386 	rmap = container_of(item, struct xfs_rmap_intent, ri_list);
387 
388 	tp->t_flags |= XFS_TRANS_DIRTY;
389 	set_bit(XFS_LI_DIRTY, &ruip->rui_item.li_flags);
390 
391 	/*
392 	 * atomic_inc_return gives us the value after the increment;
393 	 * we want to use it as an array index so we need to subtract 1 from
394 	 * it.
395 	 */
396 	next_extent = atomic_inc_return(&ruip->rui_next_extent) - 1;
397 	ASSERT(next_extent < ruip->rui_format.rui_nextents);
398 	map = &ruip->rui_format.rui_extents[next_extent];
399 	map->me_owner = rmap->ri_owner;
400 	map->me_startblock = rmap->ri_bmap.br_startblock;
401 	map->me_startoff = rmap->ri_bmap.br_startoff;
402 	map->me_len = rmap->ri_bmap.br_blockcount;
403 	xfs_trans_set_rmap_flags(map, rmap->ri_type, rmap->ri_whichfork,
404 			rmap->ri_bmap.br_state);
405 }
406 
407 /* Get an RUD so we can process all the deferred rmap updates. */
408 STATIC void *
409 xfs_rmap_update_create_done(
410 	struct xfs_trans		*tp,
411 	void				*intent,
412 	unsigned int			count)
413 {
414 	return xfs_trans_get_rud(tp, intent);
415 }
416 
417 /* Process a deferred rmap update. */
418 STATIC int
419 xfs_rmap_update_finish_item(
420 	struct xfs_trans		*tp,
421 	struct list_head		*item,
422 	void				*done_item,
423 	void				**state)
424 {
425 	struct xfs_rmap_intent		*rmap;
426 	int				error;
427 
428 	rmap = container_of(item, struct xfs_rmap_intent, ri_list);
429 	error = xfs_trans_log_finish_rmap_update(tp, done_item,
430 			rmap->ri_type,
431 			rmap->ri_owner, rmap->ri_whichfork,
432 			rmap->ri_bmap.br_startoff,
433 			rmap->ri_bmap.br_startblock,
434 			rmap->ri_bmap.br_blockcount,
435 			rmap->ri_bmap.br_state,
436 			(struct xfs_btree_cur **)state);
437 	kmem_free(rmap);
438 	return error;
439 }
440 
441 /* Clean up after processing deferred rmaps. */
442 STATIC void
443 xfs_rmap_update_finish_cleanup(
444 	struct xfs_trans	*tp,
445 	void			*state,
446 	int			error)
447 {
448 	struct xfs_btree_cur	*rcur = state;
449 
450 	xfs_rmap_finish_one_cleanup(tp, rcur, error);
451 }
452 
453 /* Abort all pending RUIs. */
454 STATIC void
455 xfs_rmap_update_abort_intent(
456 	void				*intent)
457 {
458 	xfs_rui_release(intent);
459 }
460 
461 /* Cancel a deferred rmap update. */
462 STATIC void
463 xfs_rmap_update_cancel_item(
464 	struct list_head		*item)
465 {
466 	struct xfs_rmap_intent		*rmap;
467 
468 	rmap = container_of(item, struct xfs_rmap_intent, ri_list);
469 	kmem_free(rmap);
470 }
471 
472 const struct xfs_defer_op_type xfs_rmap_update_defer_type = {
473 	.max_items	= XFS_RUI_MAX_FAST_EXTENTS,
474 	.diff_items	= xfs_rmap_update_diff_items,
475 	.create_intent	= xfs_rmap_update_create_intent,
476 	.abort_intent	= xfs_rmap_update_abort_intent,
477 	.log_item	= xfs_rmap_update_log_item,
478 	.create_done	= xfs_rmap_update_create_done,
479 	.finish_item	= xfs_rmap_update_finish_item,
480 	.finish_cleanup = xfs_rmap_update_finish_cleanup,
481 	.cancel_item	= xfs_rmap_update_cancel_item,
482 };
483 
484 /*
485  * Process an rmap update intent item that was recovered from the log.
486  * We need to update the rmapbt.
487  */
488 int
489 xfs_rui_recover(
490 	struct xfs_mount		*mp,
491 	struct xfs_rui_log_item		*ruip)
492 {
493 	int				i;
494 	int				error = 0;
495 	struct xfs_map_extent		*rmap;
496 	xfs_fsblock_t			startblock_fsb;
497 	bool				op_ok;
498 	struct xfs_rud_log_item		*rudp;
499 	enum xfs_rmap_intent_type	type;
500 	int				whichfork;
501 	xfs_exntst_t			state;
502 	struct xfs_trans		*tp;
503 	struct xfs_btree_cur		*rcur = NULL;
504 
505 	ASSERT(!test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags));
506 
507 	/*
508 	 * First check the validity of the extents described by the
509 	 * RUI.  If any are bad, then assume that all are bad and
510 	 * just toss the RUI.
511 	 */
512 	for (i = 0; i < ruip->rui_format.rui_nextents; i++) {
513 		rmap = &ruip->rui_format.rui_extents[i];
514 		startblock_fsb = XFS_BB_TO_FSB(mp,
515 				   XFS_FSB_TO_DADDR(mp, rmap->me_startblock));
516 		switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) {
517 		case XFS_RMAP_EXTENT_MAP:
518 		case XFS_RMAP_EXTENT_MAP_SHARED:
519 		case XFS_RMAP_EXTENT_UNMAP:
520 		case XFS_RMAP_EXTENT_UNMAP_SHARED:
521 		case XFS_RMAP_EXTENT_CONVERT:
522 		case XFS_RMAP_EXTENT_CONVERT_SHARED:
523 		case XFS_RMAP_EXTENT_ALLOC:
524 		case XFS_RMAP_EXTENT_FREE:
525 			op_ok = true;
526 			break;
527 		default:
528 			op_ok = false;
529 			break;
530 		}
531 		if (!op_ok || startblock_fsb == 0 ||
532 		    rmap->me_len == 0 ||
533 		    startblock_fsb >= mp->m_sb.sb_dblocks ||
534 		    rmap->me_len >= mp->m_sb.sb_agblocks ||
535 		    (rmap->me_flags & ~XFS_RMAP_EXTENT_FLAGS)) {
536 			/*
537 			 * This will pull the RUI from the AIL and
538 			 * free the memory associated with it.
539 			 */
540 			set_bit(XFS_RUI_RECOVERED, &ruip->rui_flags);
541 			xfs_rui_release(ruip);
542 			return -EIO;
543 		}
544 	}
545 
546 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate,
547 			mp->m_rmap_maxlevels, 0, XFS_TRANS_RESERVE, &tp);
548 	if (error)
549 		return error;
550 	rudp = xfs_trans_get_rud(tp, ruip);
551 
552 	for (i = 0; i < ruip->rui_format.rui_nextents; i++) {
553 		rmap = &ruip->rui_format.rui_extents[i];
554 		state = (rmap->me_flags & XFS_RMAP_EXTENT_UNWRITTEN) ?
555 				XFS_EXT_UNWRITTEN : XFS_EXT_NORM;
556 		whichfork = (rmap->me_flags & XFS_RMAP_EXTENT_ATTR_FORK) ?
557 				XFS_ATTR_FORK : XFS_DATA_FORK;
558 		switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) {
559 		case XFS_RMAP_EXTENT_MAP:
560 			type = XFS_RMAP_MAP;
561 			break;
562 		case XFS_RMAP_EXTENT_MAP_SHARED:
563 			type = XFS_RMAP_MAP_SHARED;
564 			break;
565 		case XFS_RMAP_EXTENT_UNMAP:
566 			type = XFS_RMAP_UNMAP;
567 			break;
568 		case XFS_RMAP_EXTENT_UNMAP_SHARED:
569 			type = XFS_RMAP_UNMAP_SHARED;
570 			break;
571 		case XFS_RMAP_EXTENT_CONVERT:
572 			type = XFS_RMAP_CONVERT;
573 			break;
574 		case XFS_RMAP_EXTENT_CONVERT_SHARED:
575 			type = XFS_RMAP_CONVERT_SHARED;
576 			break;
577 		case XFS_RMAP_EXTENT_ALLOC:
578 			type = XFS_RMAP_ALLOC;
579 			break;
580 		case XFS_RMAP_EXTENT_FREE:
581 			type = XFS_RMAP_FREE;
582 			break;
583 		default:
584 			error = -EFSCORRUPTED;
585 			goto abort_error;
586 		}
587 		error = xfs_trans_log_finish_rmap_update(tp, rudp, type,
588 				rmap->me_owner, whichfork,
589 				rmap->me_startoff, rmap->me_startblock,
590 				rmap->me_len, state, &rcur);
591 		if (error)
592 			goto abort_error;
593 
594 	}
595 
596 	xfs_rmap_finish_one_cleanup(tp, rcur, error);
597 	set_bit(XFS_RUI_RECOVERED, &ruip->rui_flags);
598 	error = xfs_trans_commit(tp);
599 	return error;
600 
601 abort_error:
602 	xfs_rmap_finish_one_cleanup(tp, rcur, error);
603 	xfs_trans_cancel(tp);
604 	return error;
605 }
606