xref: /openbmc/linux/fs/xfs/xfs_rmap_item.c (revision 0317cd52)
1 /*
2  * Copyright (C) 2016 Oracle.  All Rights Reserved.
3  *
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it would be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write the Free Software Foundation,
18  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
19  */
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_format.h"
23 #include "xfs_log_format.h"
24 #include "xfs_trans_resv.h"
25 #include "xfs_bit.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_trans.h"
29 #include "xfs_trans_priv.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_rmap_item.h"
32 #include "xfs_log.h"
33 #include "xfs_rmap.h"
34 
35 
36 kmem_zone_t	*xfs_rui_zone;
37 kmem_zone_t	*xfs_rud_zone;
38 
39 static inline struct xfs_rui_log_item *RUI_ITEM(struct xfs_log_item *lip)
40 {
41 	return container_of(lip, struct xfs_rui_log_item, rui_item);
42 }
43 
44 void
45 xfs_rui_item_free(
46 	struct xfs_rui_log_item	*ruip)
47 {
48 	if (ruip->rui_format.rui_nextents > XFS_RUI_MAX_FAST_EXTENTS)
49 		kmem_free(ruip);
50 	else
51 		kmem_zone_free(xfs_rui_zone, ruip);
52 }
53 
54 /*
55  * This returns the number of iovecs needed to log the given rui item.
56  * We only need 1 iovec for an rui item.  It just logs the rui_log_format
57  * structure.
58  */
59 static inline int
60 xfs_rui_item_sizeof(
61 	struct xfs_rui_log_item *ruip)
62 {
63 	return sizeof(struct xfs_rui_log_format) +
64 			(ruip->rui_format.rui_nextents - 1) *
65 			sizeof(struct xfs_map_extent);
66 }
67 
68 STATIC void
69 xfs_rui_item_size(
70 	struct xfs_log_item	*lip,
71 	int			*nvecs,
72 	int			*nbytes)
73 {
74 	*nvecs += 1;
75 	*nbytes += xfs_rui_item_sizeof(RUI_ITEM(lip));
76 }
77 
78 /*
79  * This is called to fill in the vector of log iovecs for the
80  * given rui log item. We use only 1 iovec, and we point that
81  * at the rui_log_format structure embedded in the rui item.
82  * It is at this point that we assert that all of the extent
83  * slots in the rui item have been filled.
84  */
85 STATIC void
86 xfs_rui_item_format(
87 	struct xfs_log_item	*lip,
88 	struct xfs_log_vec	*lv)
89 {
90 	struct xfs_rui_log_item	*ruip = RUI_ITEM(lip);
91 	struct xfs_log_iovec	*vecp = NULL;
92 
93 	ASSERT(atomic_read(&ruip->rui_next_extent) ==
94 			ruip->rui_format.rui_nextents);
95 
96 	ruip->rui_format.rui_type = XFS_LI_RUI;
97 	ruip->rui_format.rui_size = 1;
98 
99 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUI_FORMAT, &ruip->rui_format,
100 			xfs_rui_item_sizeof(ruip));
101 }
102 
103 /*
104  * Pinning has no meaning for an rui item, so just return.
105  */
106 STATIC void
107 xfs_rui_item_pin(
108 	struct xfs_log_item	*lip)
109 {
110 }
111 
112 /*
113  * The unpin operation is the last place an RUI is manipulated in the log. It is
114  * either inserted in the AIL or aborted in the event of a log I/O error. In
115  * either case, the RUI transaction has been successfully committed to make it
116  * this far. Therefore, we expect whoever committed the RUI to either construct
117  * and commit the RUD or drop the RUD's reference in the event of error. Simply
118  * drop the log's RUI reference now that the log is done with it.
119  */
120 STATIC void
121 xfs_rui_item_unpin(
122 	struct xfs_log_item	*lip,
123 	int			remove)
124 {
125 	struct xfs_rui_log_item	*ruip = RUI_ITEM(lip);
126 
127 	xfs_rui_release(ruip);
128 }
129 
130 /*
131  * RUI items have no locking or pushing.  However, since RUIs are pulled from
132  * the AIL when their corresponding RUDs are committed to disk, their situation
133  * is very similar to being pinned.  Return XFS_ITEM_PINNED so that the caller
134  * will eventually flush the log.  This should help in getting the RUI out of
135  * the AIL.
136  */
137 STATIC uint
138 xfs_rui_item_push(
139 	struct xfs_log_item	*lip,
140 	struct list_head	*buffer_list)
141 {
142 	return XFS_ITEM_PINNED;
143 }
144 
145 /*
146  * The RUI has been either committed or aborted if the transaction has been
147  * cancelled. If the transaction was cancelled, an RUD isn't going to be
148  * constructed and thus we free the RUI here directly.
149  */
150 STATIC void
151 xfs_rui_item_unlock(
152 	struct xfs_log_item	*lip)
153 {
154 	if (lip->li_flags & XFS_LI_ABORTED)
155 		xfs_rui_item_free(RUI_ITEM(lip));
156 }
157 
158 /*
159  * The RUI is logged only once and cannot be moved in the log, so simply return
160  * the lsn at which it's been logged.
161  */
162 STATIC xfs_lsn_t
163 xfs_rui_item_committed(
164 	struct xfs_log_item	*lip,
165 	xfs_lsn_t		lsn)
166 {
167 	return lsn;
168 }
169 
170 /*
171  * The RUI dependency tracking op doesn't do squat.  It can't because
172  * it doesn't know where the free extent is coming from.  The dependency
173  * tracking has to be handled by the "enclosing" metadata object.  For
174  * example, for inodes, the inode is locked throughout the extent freeing
175  * so the dependency should be recorded there.
176  */
177 STATIC void
178 xfs_rui_item_committing(
179 	struct xfs_log_item	*lip,
180 	xfs_lsn_t		lsn)
181 {
182 }
183 
184 /*
185  * This is the ops vector shared by all rui log items.
186  */
187 static const struct xfs_item_ops xfs_rui_item_ops = {
188 	.iop_size	= xfs_rui_item_size,
189 	.iop_format	= xfs_rui_item_format,
190 	.iop_pin	= xfs_rui_item_pin,
191 	.iop_unpin	= xfs_rui_item_unpin,
192 	.iop_unlock	= xfs_rui_item_unlock,
193 	.iop_committed	= xfs_rui_item_committed,
194 	.iop_push	= xfs_rui_item_push,
195 	.iop_committing = xfs_rui_item_committing,
196 };
197 
198 /*
199  * Allocate and initialize an rui item with the given number of extents.
200  */
201 struct xfs_rui_log_item *
202 xfs_rui_init(
203 	struct xfs_mount		*mp,
204 	uint				nextents)
205 
206 {
207 	struct xfs_rui_log_item		*ruip;
208 	uint				size;
209 
210 	ASSERT(nextents > 0);
211 	if (nextents > XFS_RUI_MAX_FAST_EXTENTS) {
212 		size = (uint)(sizeof(struct xfs_rui_log_item) +
213 			((nextents - 1) * sizeof(struct xfs_map_extent)));
214 		ruip = kmem_zalloc(size, KM_SLEEP);
215 	} else {
216 		ruip = kmem_zone_zalloc(xfs_rui_zone, KM_SLEEP);
217 	}
218 
219 	xfs_log_item_init(mp, &ruip->rui_item, XFS_LI_RUI, &xfs_rui_item_ops);
220 	ruip->rui_format.rui_nextents = nextents;
221 	ruip->rui_format.rui_id = (uintptr_t)(void *)ruip;
222 	atomic_set(&ruip->rui_next_extent, 0);
223 	atomic_set(&ruip->rui_refcount, 2);
224 
225 	return ruip;
226 }
227 
228 /*
229  * Copy an RUI format buffer from the given buf, and into the destination
230  * RUI format structure.  The RUI/RUD items were designed not to need any
231  * special alignment handling.
232  */
233 int
234 xfs_rui_copy_format(
235 	struct xfs_log_iovec		*buf,
236 	struct xfs_rui_log_format	*dst_rui_fmt)
237 {
238 	struct xfs_rui_log_format	*src_rui_fmt;
239 	uint				len;
240 
241 	src_rui_fmt = buf->i_addr;
242 	len = sizeof(struct xfs_rui_log_format) +
243 			(src_rui_fmt->rui_nextents - 1) *
244 			sizeof(struct xfs_map_extent);
245 
246 	if (buf->i_len != len)
247 		return -EFSCORRUPTED;
248 
249 	memcpy((char *)dst_rui_fmt, (char *)src_rui_fmt, len);
250 	return 0;
251 }
252 
253 /*
254  * Freeing the RUI requires that we remove it from the AIL if it has already
255  * been placed there. However, the RUI may not yet have been placed in the AIL
256  * when called by xfs_rui_release() from RUD processing due to the ordering of
257  * committed vs unpin operations in bulk insert operations. Hence the reference
258  * count to ensure only the last caller frees the RUI.
259  */
260 void
261 xfs_rui_release(
262 	struct xfs_rui_log_item	*ruip)
263 {
264 	if (atomic_dec_and_test(&ruip->rui_refcount)) {
265 		xfs_trans_ail_remove(&ruip->rui_item, SHUTDOWN_LOG_IO_ERROR);
266 		xfs_rui_item_free(ruip);
267 	}
268 }
269 
270 static inline struct xfs_rud_log_item *RUD_ITEM(struct xfs_log_item *lip)
271 {
272 	return container_of(lip, struct xfs_rud_log_item, rud_item);
273 }
274 
275 STATIC void
276 xfs_rud_item_size(
277 	struct xfs_log_item	*lip,
278 	int			*nvecs,
279 	int			*nbytes)
280 {
281 	*nvecs += 1;
282 	*nbytes += sizeof(struct xfs_rud_log_format);
283 }
284 
285 /*
286  * This is called to fill in the vector of log iovecs for the
287  * given rud log item. We use only 1 iovec, and we point that
288  * at the rud_log_format structure embedded in the rud item.
289  * It is at this point that we assert that all of the extent
290  * slots in the rud item have been filled.
291  */
292 STATIC void
293 xfs_rud_item_format(
294 	struct xfs_log_item	*lip,
295 	struct xfs_log_vec	*lv)
296 {
297 	struct xfs_rud_log_item	*rudp = RUD_ITEM(lip);
298 	struct xfs_log_iovec	*vecp = NULL;
299 
300 	rudp->rud_format.rud_type = XFS_LI_RUD;
301 	rudp->rud_format.rud_size = 1;
302 
303 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUD_FORMAT, &rudp->rud_format,
304 			sizeof(struct xfs_rud_log_format));
305 }
306 
307 /*
308  * Pinning has no meaning for an rud item, so just return.
309  */
310 STATIC void
311 xfs_rud_item_pin(
312 	struct xfs_log_item	*lip)
313 {
314 }
315 
316 /*
317  * Since pinning has no meaning for an rud item, unpinning does
318  * not either.
319  */
320 STATIC void
321 xfs_rud_item_unpin(
322 	struct xfs_log_item	*lip,
323 	int			remove)
324 {
325 }
326 
327 /*
328  * There isn't much you can do to push on an rud item.  It is simply stuck
329  * waiting for the log to be flushed to disk.
330  */
331 STATIC uint
332 xfs_rud_item_push(
333 	struct xfs_log_item	*lip,
334 	struct list_head	*buffer_list)
335 {
336 	return XFS_ITEM_PINNED;
337 }
338 
339 /*
340  * The RUD is either committed or aborted if the transaction is cancelled. If
341  * the transaction is cancelled, drop our reference to the RUI and free the
342  * RUD.
343  */
344 STATIC void
345 xfs_rud_item_unlock(
346 	struct xfs_log_item	*lip)
347 {
348 	struct xfs_rud_log_item	*rudp = RUD_ITEM(lip);
349 
350 	if (lip->li_flags & XFS_LI_ABORTED) {
351 		xfs_rui_release(rudp->rud_ruip);
352 		kmem_zone_free(xfs_rud_zone, rudp);
353 	}
354 }
355 
356 /*
357  * When the rud item is committed to disk, all we need to do is delete our
358  * reference to our partner rui item and then free ourselves. Since we're
359  * freeing ourselves we must return -1 to keep the transaction code from
360  * further referencing this item.
361  */
362 STATIC xfs_lsn_t
363 xfs_rud_item_committed(
364 	struct xfs_log_item	*lip,
365 	xfs_lsn_t		lsn)
366 {
367 	struct xfs_rud_log_item	*rudp = RUD_ITEM(lip);
368 
369 	/*
370 	 * Drop the RUI reference regardless of whether the RUD has been
371 	 * aborted. Once the RUD transaction is constructed, it is the sole
372 	 * responsibility of the RUD to release the RUI (even if the RUI is
373 	 * aborted due to log I/O error).
374 	 */
375 	xfs_rui_release(rudp->rud_ruip);
376 	kmem_zone_free(xfs_rud_zone, rudp);
377 
378 	return (xfs_lsn_t)-1;
379 }
380 
381 /*
382  * The RUD dependency tracking op doesn't do squat.  It can't because
383  * it doesn't know where the free extent is coming from.  The dependency
384  * tracking has to be handled by the "enclosing" metadata object.  For
385  * example, for inodes, the inode is locked throughout the extent freeing
386  * so the dependency should be recorded there.
387  */
388 STATIC void
389 xfs_rud_item_committing(
390 	struct xfs_log_item	*lip,
391 	xfs_lsn_t		lsn)
392 {
393 }
394 
395 /*
396  * This is the ops vector shared by all rud log items.
397  */
398 static const struct xfs_item_ops xfs_rud_item_ops = {
399 	.iop_size	= xfs_rud_item_size,
400 	.iop_format	= xfs_rud_item_format,
401 	.iop_pin	= xfs_rud_item_pin,
402 	.iop_unpin	= xfs_rud_item_unpin,
403 	.iop_unlock	= xfs_rud_item_unlock,
404 	.iop_committed	= xfs_rud_item_committed,
405 	.iop_push	= xfs_rud_item_push,
406 	.iop_committing = xfs_rud_item_committing,
407 };
408 
409 /*
410  * Allocate and initialize an rud item with the given number of extents.
411  */
412 struct xfs_rud_log_item *
413 xfs_rud_init(
414 	struct xfs_mount		*mp,
415 	struct xfs_rui_log_item		*ruip)
416 
417 {
418 	struct xfs_rud_log_item	*rudp;
419 
420 	rudp = kmem_zone_zalloc(xfs_rud_zone, KM_SLEEP);
421 	xfs_log_item_init(mp, &rudp->rud_item, XFS_LI_RUD, &xfs_rud_item_ops);
422 	rudp->rud_ruip = ruip;
423 	rudp->rud_format.rud_rui_id = ruip->rui_format.rui_id;
424 
425 	return rudp;
426 }
427 
428 /*
429  * Process an rmap update intent item that was recovered from the log.
430  * We need to update the rmapbt.
431  */
432 int
433 xfs_rui_recover(
434 	struct xfs_mount		*mp,
435 	struct xfs_rui_log_item		*ruip)
436 {
437 	int				i;
438 	int				error = 0;
439 	struct xfs_map_extent		*rmap;
440 	xfs_fsblock_t			startblock_fsb;
441 	bool				op_ok;
442 	struct xfs_rud_log_item		*rudp;
443 	enum xfs_rmap_intent_type	type;
444 	int				whichfork;
445 	xfs_exntst_t			state;
446 	struct xfs_trans		*tp;
447 	struct xfs_btree_cur		*rcur = NULL;
448 
449 	ASSERT(!test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags));
450 
451 	/*
452 	 * First check the validity of the extents described by the
453 	 * RUI.  If any are bad, then assume that all are bad and
454 	 * just toss the RUI.
455 	 */
456 	for (i = 0; i < ruip->rui_format.rui_nextents; i++) {
457 		rmap = &ruip->rui_format.rui_extents[i];
458 		startblock_fsb = XFS_BB_TO_FSB(mp,
459 				   XFS_FSB_TO_DADDR(mp, rmap->me_startblock));
460 		switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) {
461 		case XFS_RMAP_EXTENT_MAP:
462 		case XFS_RMAP_EXTENT_UNMAP:
463 		case XFS_RMAP_EXTENT_CONVERT:
464 		case XFS_RMAP_EXTENT_ALLOC:
465 		case XFS_RMAP_EXTENT_FREE:
466 			op_ok = true;
467 			break;
468 		default:
469 			op_ok = false;
470 			break;
471 		}
472 		if (!op_ok || startblock_fsb == 0 ||
473 		    rmap->me_len == 0 ||
474 		    startblock_fsb >= mp->m_sb.sb_dblocks ||
475 		    rmap->me_len >= mp->m_sb.sb_agblocks ||
476 		    (rmap->me_flags & ~XFS_RMAP_EXTENT_FLAGS)) {
477 			/*
478 			 * This will pull the RUI from the AIL and
479 			 * free the memory associated with it.
480 			 */
481 			set_bit(XFS_RUI_RECOVERED, &ruip->rui_flags);
482 			xfs_rui_release(ruip);
483 			return -EIO;
484 		}
485 	}
486 
487 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
488 	if (error)
489 		return error;
490 	rudp = xfs_trans_get_rud(tp, ruip);
491 
492 	for (i = 0; i < ruip->rui_format.rui_nextents; i++) {
493 		rmap = &ruip->rui_format.rui_extents[i];
494 		state = (rmap->me_flags & XFS_RMAP_EXTENT_UNWRITTEN) ?
495 				XFS_EXT_UNWRITTEN : XFS_EXT_NORM;
496 		whichfork = (rmap->me_flags & XFS_RMAP_EXTENT_ATTR_FORK) ?
497 				XFS_ATTR_FORK : XFS_DATA_FORK;
498 		switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) {
499 		case XFS_RMAP_EXTENT_MAP:
500 			type = XFS_RMAP_MAP;
501 			break;
502 		case XFS_RMAP_EXTENT_UNMAP:
503 			type = XFS_RMAP_UNMAP;
504 			break;
505 		case XFS_RMAP_EXTENT_CONVERT:
506 			type = XFS_RMAP_CONVERT;
507 			break;
508 		case XFS_RMAP_EXTENT_ALLOC:
509 			type = XFS_RMAP_ALLOC;
510 			break;
511 		case XFS_RMAP_EXTENT_FREE:
512 			type = XFS_RMAP_FREE;
513 			break;
514 		default:
515 			error = -EFSCORRUPTED;
516 			goto abort_error;
517 		}
518 		error = xfs_trans_log_finish_rmap_update(tp, rudp, type,
519 				rmap->me_owner, whichfork,
520 				rmap->me_startoff, rmap->me_startblock,
521 				rmap->me_len, state, &rcur);
522 		if (error)
523 			goto abort_error;
524 
525 	}
526 
527 	xfs_rmap_finish_one_cleanup(tp, rcur, error);
528 	set_bit(XFS_RUI_RECOVERED, &ruip->rui_flags);
529 	error = xfs_trans_commit(tp);
530 	return error;
531 
532 abort_error:
533 	xfs_rmap_finish_one_cleanup(tp, rcur, error);
534 	xfs_trans_cancel(tp);
535 	return error;
536 }
537