1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2016 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_defer.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_bmap.h" 17 #include "xfs_bmap_util.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_btree.h" 21 #include "xfs_refcount_btree.h" 22 #include "xfs_refcount.h" 23 #include "xfs_bmap_btree.h" 24 #include "xfs_trans_space.h" 25 #include "xfs_bit.h" 26 #include "xfs_alloc.h" 27 #include "xfs_quota.h" 28 #include "xfs_reflink.h" 29 #include "xfs_iomap.h" 30 #include "xfs_sb.h" 31 #include "xfs_ag_resv.h" 32 33 /* 34 * Copy on Write of Shared Blocks 35 * 36 * XFS must preserve "the usual" file semantics even when two files share 37 * the same physical blocks. This means that a write to one file must not 38 * alter the blocks in a different file; the way that we'll do that is 39 * through the use of a copy-on-write mechanism. At a high level, that 40 * means that when we want to write to a shared block, we allocate a new 41 * block, write the data to the new block, and if that succeeds we map the 42 * new block into the file. 43 * 44 * XFS provides a "delayed allocation" mechanism that defers the allocation 45 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as 46 * possible. This reduces fragmentation by enabling the filesystem to ask 47 * for bigger chunks less often, which is exactly what we want for CoW. 48 * 49 * The delalloc mechanism begins when the kernel wants to make a block 50 * writable (write_begin or page_mkwrite). If the offset is not mapped, we 51 * create a delalloc mapping, which is a regular in-core extent, but without 52 * a real startblock. (For delalloc mappings, the startblock encodes both 53 * a flag that this is a delalloc mapping, and a worst-case estimate of how 54 * many blocks might be required to put the mapping into the BMBT.) delalloc 55 * mappings are a reservation against the free space in the filesystem; 56 * adjacent mappings can also be combined into fewer larger mappings. 57 * 58 * As an optimization, the CoW extent size hint (cowextsz) creates 59 * outsized aligned delalloc reservations in the hope of landing out of 60 * order nearby CoW writes in a single extent on disk, thereby reducing 61 * fragmentation and improving future performance. 62 * 63 * D: --RRRRRRSSSRRRRRRRR--- (data fork) 64 * C: ------DDDDDDD--------- (CoW fork) 65 * 66 * When dirty pages are being written out (typically in writepage), the 67 * delalloc reservations are converted into unwritten mappings by 68 * allocating blocks and replacing the delalloc mapping with real ones. 69 * A delalloc mapping can be replaced by several unwritten ones if the 70 * free space is fragmented. 71 * 72 * D: --RRRRRRSSSRRRRRRRR--- 73 * C: ------UUUUUUU--------- 74 * 75 * We want to adapt the delalloc mechanism for copy-on-write, since the 76 * write paths are similar. The first two steps (creating the reservation 77 * and allocating the blocks) are exactly the same as delalloc except that 78 * the mappings must be stored in a separate CoW fork because we do not want 79 * to disturb the mapping in the data fork until we're sure that the write 80 * succeeded. IO completion in this case is the process of removing the old 81 * mapping from the data fork and moving the new mapping from the CoW fork to 82 * the data fork. This will be discussed shortly. 83 * 84 * For now, unaligned directio writes will be bounced back to the page cache. 85 * Block-aligned directio writes will use the same mechanism as buffered 86 * writes. 87 * 88 * Just prior to submitting the actual disk write requests, we convert 89 * the extents representing the range of the file actually being written 90 * (as opposed to extra pieces created for the cowextsize hint) to real 91 * extents. This will become important in the next step: 92 * 93 * D: --RRRRRRSSSRRRRRRRR--- 94 * C: ------UUrrUUU--------- 95 * 96 * CoW remapping must be done after the data block write completes, 97 * because we don't want to destroy the old data fork map until we're sure 98 * the new block has been written. Since the new mappings are kept in a 99 * separate fork, we can simply iterate these mappings to find the ones 100 * that cover the file blocks that we just CoW'd. For each extent, simply 101 * unmap the corresponding range in the data fork, map the new range into 102 * the data fork, and remove the extent from the CoW fork. Because of 103 * the presence of the cowextsize hint, however, we must be careful 104 * only to remap the blocks that we've actually written out -- we must 105 * never remap delalloc reservations nor CoW staging blocks that have 106 * yet to be written. This corresponds exactly to the real extents in 107 * the CoW fork: 108 * 109 * D: --RRRRRRrrSRRRRRRRR--- 110 * C: ------UU--UUU--------- 111 * 112 * Since the remapping operation can be applied to an arbitrary file 113 * range, we record the need for the remap step as a flag in the ioend 114 * instead of declaring a new IO type. This is required for direct io 115 * because we only have ioend for the whole dio, and we have to be able to 116 * remember the presence of unwritten blocks and CoW blocks with a single 117 * ioend structure. Better yet, the more ground we can cover with one 118 * ioend, the better. 119 */ 120 121 /* 122 * Given an AG extent, find the lowest-numbered run of shared blocks 123 * within that range and return the range in fbno/flen. If 124 * find_end_of_shared is true, return the longest contiguous extent of 125 * shared blocks. If there are no shared extents, fbno and flen will 126 * be set to NULLAGBLOCK and 0, respectively. 127 */ 128 int 129 xfs_reflink_find_shared( 130 struct xfs_mount *mp, 131 struct xfs_trans *tp, 132 xfs_agnumber_t agno, 133 xfs_agblock_t agbno, 134 xfs_extlen_t aglen, 135 xfs_agblock_t *fbno, 136 xfs_extlen_t *flen, 137 bool find_end_of_shared) 138 { 139 struct xfs_buf *agbp; 140 struct xfs_btree_cur *cur; 141 int error; 142 143 error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp); 144 if (error) 145 return error; 146 147 cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno); 148 149 error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen, 150 find_end_of_shared); 151 152 xfs_btree_del_cursor(cur, error); 153 154 xfs_trans_brelse(tp, agbp); 155 return error; 156 } 157 158 /* 159 * Trim the mapping to the next block where there's a change in the 160 * shared/unshared status. More specifically, this means that we 161 * find the lowest-numbered extent of shared blocks that coincides with 162 * the given block mapping. If the shared extent overlaps the start of 163 * the mapping, trim the mapping to the end of the shared extent. If 164 * the shared region intersects the mapping, trim the mapping to the 165 * start of the shared extent. If there are no shared regions that 166 * overlap, just return the original extent. 167 */ 168 int 169 xfs_reflink_trim_around_shared( 170 struct xfs_inode *ip, 171 struct xfs_bmbt_irec *irec, 172 bool *shared) 173 { 174 xfs_agnumber_t agno; 175 xfs_agblock_t agbno; 176 xfs_extlen_t aglen; 177 xfs_agblock_t fbno; 178 xfs_extlen_t flen; 179 int error = 0; 180 181 /* Holes, unwritten, and delalloc extents cannot be shared */ 182 if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_real_extent(irec)) { 183 *shared = false; 184 return 0; 185 } 186 187 trace_xfs_reflink_trim_around_shared(ip, irec); 188 189 agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock); 190 agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock); 191 aglen = irec->br_blockcount; 192 193 error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno, 194 aglen, &fbno, &flen, true); 195 if (error) 196 return error; 197 198 *shared = false; 199 if (fbno == NULLAGBLOCK) { 200 /* No shared blocks at all. */ 201 return 0; 202 } else if (fbno == agbno) { 203 /* 204 * The start of this extent is shared. Truncate the 205 * mapping at the end of the shared region so that a 206 * subsequent iteration starts at the start of the 207 * unshared region. 208 */ 209 irec->br_blockcount = flen; 210 *shared = true; 211 return 0; 212 } else { 213 /* 214 * There's a shared extent midway through this extent. 215 * Truncate the mapping at the start of the shared 216 * extent so that a subsequent iteration starts at the 217 * start of the shared region. 218 */ 219 irec->br_blockcount = fbno - agbno; 220 return 0; 221 } 222 } 223 224 int 225 xfs_bmap_trim_cow( 226 struct xfs_inode *ip, 227 struct xfs_bmbt_irec *imap, 228 bool *shared) 229 { 230 /* We can't update any real extents in always COW mode. */ 231 if (xfs_is_always_cow_inode(ip) && 232 !isnullstartblock(imap->br_startblock)) { 233 *shared = true; 234 return 0; 235 } 236 237 /* Trim the mapping to the nearest shared extent boundary. */ 238 return xfs_reflink_trim_around_shared(ip, imap, shared); 239 } 240 241 static int 242 xfs_reflink_convert_cow_locked( 243 struct xfs_inode *ip, 244 xfs_fileoff_t offset_fsb, 245 xfs_filblks_t count_fsb) 246 { 247 struct xfs_iext_cursor icur; 248 struct xfs_bmbt_irec got; 249 struct xfs_btree_cur *dummy_cur = NULL; 250 int dummy_logflags; 251 int error = 0; 252 253 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got)) 254 return 0; 255 256 do { 257 if (got.br_startoff >= offset_fsb + count_fsb) 258 break; 259 if (got.br_state == XFS_EXT_NORM) 260 continue; 261 if (WARN_ON_ONCE(isnullstartblock(got.br_startblock))) 262 return -EIO; 263 264 xfs_trim_extent(&got, offset_fsb, count_fsb); 265 if (!got.br_blockcount) 266 continue; 267 268 got.br_state = XFS_EXT_NORM; 269 error = xfs_bmap_add_extent_unwritten_real(NULL, ip, 270 XFS_COW_FORK, &icur, &dummy_cur, &got, 271 &dummy_logflags); 272 if (error) 273 return error; 274 } while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got)); 275 276 return error; 277 } 278 279 /* Convert all of the unwritten CoW extents in a file's range to real ones. */ 280 int 281 xfs_reflink_convert_cow( 282 struct xfs_inode *ip, 283 xfs_off_t offset, 284 xfs_off_t count) 285 { 286 struct xfs_mount *mp = ip->i_mount; 287 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 288 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); 289 xfs_filblks_t count_fsb = end_fsb - offset_fsb; 290 int error; 291 292 ASSERT(count != 0); 293 294 xfs_ilock(ip, XFS_ILOCK_EXCL); 295 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb); 296 xfs_iunlock(ip, XFS_ILOCK_EXCL); 297 return error; 298 } 299 300 /* 301 * Find the extent that maps the given range in the COW fork. Even if the extent 302 * is not shared we might have a preallocation for it in the COW fork. If so we 303 * use it that rather than trigger a new allocation. 304 */ 305 static int 306 xfs_find_trim_cow_extent( 307 struct xfs_inode *ip, 308 struct xfs_bmbt_irec *imap, 309 struct xfs_bmbt_irec *cmap, 310 bool *shared, 311 bool *found) 312 { 313 xfs_fileoff_t offset_fsb = imap->br_startoff; 314 xfs_filblks_t count_fsb = imap->br_blockcount; 315 struct xfs_iext_cursor icur; 316 317 *found = false; 318 319 /* 320 * If we don't find an overlapping extent, trim the range we need to 321 * allocate to fit the hole we found. 322 */ 323 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap)) 324 cmap->br_startoff = offset_fsb + count_fsb; 325 if (cmap->br_startoff > offset_fsb) { 326 xfs_trim_extent(imap, imap->br_startoff, 327 cmap->br_startoff - imap->br_startoff); 328 return xfs_bmap_trim_cow(ip, imap, shared); 329 } 330 331 *shared = true; 332 if (isnullstartblock(cmap->br_startblock)) { 333 xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount); 334 return 0; 335 } 336 337 /* real extent found - no need to allocate */ 338 xfs_trim_extent(cmap, offset_fsb, count_fsb); 339 *found = true; 340 return 0; 341 } 342 343 /* Allocate all CoW reservations covering a range of blocks in a file. */ 344 int 345 xfs_reflink_allocate_cow( 346 struct xfs_inode *ip, 347 struct xfs_bmbt_irec *imap, 348 struct xfs_bmbt_irec *cmap, 349 bool *shared, 350 uint *lockmode, 351 bool convert_now) 352 { 353 struct xfs_mount *mp = ip->i_mount; 354 xfs_fileoff_t offset_fsb = imap->br_startoff; 355 xfs_filblks_t count_fsb = imap->br_blockcount; 356 struct xfs_trans *tp; 357 int nimaps, error = 0; 358 bool found; 359 xfs_filblks_t resaligned; 360 xfs_extlen_t resblks = 0; 361 362 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 363 if (!ip->i_cowfp) { 364 ASSERT(!xfs_is_reflink_inode(ip)); 365 xfs_ifork_init_cow(ip); 366 } 367 368 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found); 369 if (error || !*shared) 370 return error; 371 if (found) 372 goto convert; 373 374 resaligned = xfs_aligned_fsb_count(imap->br_startoff, 375 imap->br_blockcount, xfs_get_cowextsz_hint(ip)); 376 resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned); 377 378 xfs_iunlock(ip, *lockmode); 379 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp); 380 *lockmode = XFS_ILOCK_EXCL; 381 xfs_ilock(ip, *lockmode); 382 383 if (error) 384 return error; 385 386 error = xfs_qm_dqattach_locked(ip, false); 387 if (error) 388 goto out_trans_cancel; 389 390 /* 391 * Check for an overlapping extent again now that we dropped the ilock. 392 */ 393 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found); 394 if (error || !*shared) 395 goto out_trans_cancel; 396 if (found) { 397 xfs_trans_cancel(tp); 398 goto convert; 399 } 400 401 error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0, 402 XFS_QMOPT_RES_REGBLKS); 403 if (error) 404 goto out_trans_cancel; 405 406 xfs_trans_ijoin(tp, ip, 0); 407 408 /* Allocate the entire reservation as unwritten blocks. */ 409 nimaps = 1; 410 error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount, 411 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap, 412 &nimaps); 413 if (error) 414 goto out_unreserve; 415 416 xfs_inode_set_cowblocks_tag(ip); 417 error = xfs_trans_commit(tp); 418 if (error) 419 return error; 420 421 /* 422 * Allocation succeeded but the requested range was not even partially 423 * satisfied? Bail out! 424 */ 425 if (nimaps == 0) 426 return -ENOSPC; 427 convert: 428 xfs_trim_extent(cmap, offset_fsb, count_fsb); 429 /* 430 * COW fork extents are supposed to remain unwritten until we're ready 431 * to initiate a disk write. For direct I/O we are going to write the 432 * data and need the conversion, but for buffered writes we're done. 433 */ 434 if (!convert_now || cmap->br_state == XFS_EXT_NORM) 435 return 0; 436 trace_xfs_reflink_convert_cow(ip, cmap); 437 return xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb); 438 439 out_unreserve: 440 xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0, 441 XFS_QMOPT_RES_REGBLKS); 442 out_trans_cancel: 443 xfs_trans_cancel(tp); 444 return error; 445 } 446 447 /* 448 * Cancel CoW reservations for some block range of an inode. 449 * 450 * If cancel_real is true this function cancels all COW fork extents for the 451 * inode; if cancel_real is false, real extents are not cleared. 452 * 453 * Caller must have already joined the inode to the current transaction. The 454 * inode will be joined to the transaction returned to the caller. 455 */ 456 int 457 xfs_reflink_cancel_cow_blocks( 458 struct xfs_inode *ip, 459 struct xfs_trans **tpp, 460 xfs_fileoff_t offset_fsb, 461 xfs_fileoff_t end_fsb, 462 bool cancel_real) 463 { 464 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK); 465 struct xfs_bmbt_irec got, del; 466 struct xfs_iext_cursor icur; 467 int error = 0; 468 469 if (!xfs_inode_has_cow_data(ip)) 470 return 0; 471 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got)) 472 return 0; 473 474 /* Walk backwards until we're out of the I/O range... */ 475 while (got.br_startoff + got.br_blockcount > offset_fsb) { 476 del = got; 477 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb); 478 479 /* Extent delete may have bumped ext forward */ 480 if (!del.br_blockcount) { 481 xfs_iext_prev(ifp, &icur); 482 goto next_extent; 483 } 484 485 trace_xfs_reflink_cancel_cow(ip, &del); 486 487 if (isnullstartblock(del.br_startblock)) { 488 error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK, 489 &icur, &got, &del); 490 if (error) 491 break; 492 } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) { 493 ASSERT((*tpp)->t_firstblock == NULLFSBLOCK); 494 495 /* Free the CoW orphan record. */ 496 xfs_refcount_free_cow_extent(*tpp, del.br_startblock, 497 del.br_blockcount); 498 499 xfs_bmap_add_free(*tpp, del.br_startblock, 500 del.br_blockcount, NULL); 501 502 /* Roll the transaction */ 503 error = xfs_defer_finish(tpp); 504 if (error) 505 break; 506 507 /* Remove the mapping from the CoW fork. */ 508 xfs_bmap_del_extent_cow(ip, &icur, &got, &del); 509 510 /* Remove the quota reservation */ 511 error = xfs_trans_reserve_quota_nblks(NULL, ip, 512 -(long)del.br_blockcount, 0, 513 XFS_QMOPT_RES_REGBLKS); 514 if (error) 515 break; 516 } else { 517 /* Didn't do anything, push cursor back. */ 518 xfs_iext_prev(ifp, &icur); 519 } 520 next_extent: 521 if (!xfs_iext_get_extent(ifp, &icur, &got)) 522 break; 523 } 524 525 /* clear tag if cow fork is emptied */ 526 if (!ifp->if_bytes) 527 xfs_inode_clear_cowblocks_tag(ip); 528 return error; 529 } 530 531 /* 532 * Cancel CoW reservations for some byte range of an inode. 533 * 534 * If cancel_real is true this function cancels all COW fork extents for the 535 * inode; if cancel_real is false, real extents are not cleared. 536 */ 537 int 538 xfs_reflink_cancel_cow_range( 539 struct xfs_inode *ip, 540 xfs_off_t offset, 541 xfs_off_t count, 542 bool cancel_real) 543 { 544 struct xfs_trans *tp; 545 xfs_fileoff_t offset_fsb; 546 xfs_fileoff_t end_fsb; 547 int error; 548 549 trace_xfs_reflink_cancel_cow_range(ip, offset, count); 550 ASSERT(ip->i_cowfp); 551 552 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 553 if (count == NULLFILEOFF) 554 end_fsb = NULLFILEOFF; 555 else 556 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count); 557 558 /* Start a rolling transaction to remove the mappings */ 559 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write, 560 0, 0, 0, &tp); 561 if (error) 562 goto out; 563 564 xfs_ilock(ip, XFS_ILOCK_EXCL); 565 xfs_trans_ijoin(tp, ip, 0); 566 567 /* Scrape out the old CoW reservations */ 568 error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb, 569 cancel_real); 570 if (error) 571 goto out_cancel; 572 573 error = xfs_trans_commit(tp); 574 575 xfs_iunlock(ip, XFS_ILOCK_EXCL); 576 return error; 577 578 out_cancel: 579 xfs_trans_cancel(tp); 580 xfs_iunlock(ip, XFS_ILOCK_EXCL); 581 out: 582 trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_); 583 return error; 584 } 585 586 /* 587 * Remap part of the CoW fork into the data fork. 588 * 589 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb 590 * into the data fork; this function will remap what it can (at the end of the 591 * range) and update @end_fsb appropriately. Each remap gets its own 592 * transaction because we can end up merging and splitting bmbt blocks for 593 * every remap operation and we'd like to keep the block reservation 594 * requirements as low as possible. 595 */ 596 STATIC int 597 xfs_reflink_end_cow_extent( 598 struct xfs_inode *ip, 599 xfs_fileoff_t offset_fsb, 600 xfs_fileoff_t *end_fsb) 601 { 602 struct xfs_bmbt_irec got, del; 603 struct xfs_iext_cursor icur; 604 struct xfs_mount *mp = ip->i_mount; 605 struct xfs_trans *tp; 606 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK); 607 xfs_filblks_t rlen; 608 unsigned int resblks; 609 int error; 610 611 /* No COW extents? That's easy! */ 612 if (ifp->if_bytes == 0) { 613 *end_fsb = offset_fsb; 614 return 0; 615 } 616 617 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK); 618 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 619 XFS_TRANS_RESERVE, &tp); 620 if (error) 621 return error; 622 623 /* 624 * Lock the inode. We have to ijoin without automatic unlock because 625 * the lead transaction is the refcountbt record deletion; the data 626 * fork update follows as a deferred log item. 627 */ 628 xfs_ilock(ip, XFS_ILOCK_EXCL); 629 xfs_trans_ijoin(tp, ip, 0); 630 631 /* 632 * In case of racing, overlapping AIO writes no COW extents might be 633 * left by the time I/O completes for the loser of the race. In that 634 * case we are done. 635 */ 636 if (!xfs_iext_lookup_extent_before(ip, ifp, end_fsb, &icur, &got) || 637 got.br_startoff + got.br_blockcount <= offset_fsb) { 638 *end_fsb = offset_fsb; 639 goto out_cancel; 640 } 641 642 /* 643 * Structure copy @got into @del, then trim @del to the range that we 644 * were asked to remap. We preserve @got for the eventual CoW fork 645 * deletion; from now on @del represents the mapping that we're 646 * actually remapping. 647 */ 648 del = got; 649 xfs_trim_extent(&del, offset_fsb, *end_fsb - offset_fsb); 650 651 ASSERT(del.br_blockcount > 0); 652 653 /* 654 * Only remap real extents that contain data. With AIO, speculative 655 * preallocations can leak into the range we are called upon, and we 656 * need to skip them. 657 */ 658 if (!xfs_bmap_is_real_extent(&got)) { 659 *end_fsb = del.br_startoff; 660 goto out_cancel; 661 } 662 663 /* Unmap the old blocks in the data fork. */ 664 rlen = del.br_blockcount; 665 error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1); 666 if (error) 667 goto out_cancel; 668 669 /* Trim the extent to whatever got unmapped. */ 670 xfs_trim_extent(&del, del.br_startoff + rlen, del.br_blockcount - rlen); 671 trace_xfs_reflink_cow_remap(ip, &del); 672 673 /* Free the CoW orphan record. */ 674 xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount); 675 676 /* Map the new blocks into the data fork. */ 677 xfs_bmap_map_extent(tp, ip, &del); 678 679 /* Charge this new data fork mapping to the on-disk quota. */ 680 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT, 681 (long)del.br_blockcount); 682 683 /* Remove the mapping from the CoW fork. */ 684 xfs_bmap_del_extent_cow(ip, &icur, &got, &del); 685 686 error = xfs_trans_commit(tp); 687 xfs_iunlock(ip, XFS_ILOCK_EXCL); 688 if (error) 689 return error; 690 691 /* Update the caller about how much progress we made. */ 692 *end_fsb = del.br_startoff; 693 return 0; 694 695 out_cancel: 696 xfs_trans_cancel(tp); 697 xfs_iunlock(ip, XFS_ILOCK_EXCL); 698 return error; 699 } 700 701 /* 702 * Remap parts of a file's data fork after a successful CoW. 703 */ 704 int 705 xfs_reflink_end_cow( 706 struct xfs_inode *ip, 707 xfs_off_t offset, 708 xfs_off_t count) 709 { 710 xfs_fileoff_t offset_fsb; 711 xfs_fileoff_t end_fsb; 712 int error = 0; 713 714 trace_xfs_reflink_end_cow(ip, offset, count); 715 716 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 717 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count); 718 719 /* 720 * Walk backwards until we're out of the I/O range. The loop function 721 * repeatedly cycles the ILOCK to allocate one transaction per remapped 722 * extent. 723 * 724 * If we're being called by writeback then the the pages will still 725 * have PageWriteback set, which prevents races with reflink remapping 726 * and truncate. Reflink remapping prevents races with writeback by 727 * taking the iolock and mmaplock before flushing the pages and 728 * remapping, which means there won't be any further writeback or page 729 * cache dirtying until the reflink completes. 730 * 731 * We should never have two threads issuing writeback for the same file 732 * region. There are also have post-eof checks in the writeback 733 * preparation code so that we don't bother writing out pages that are 734 * about to be truncated. 735 * 736 * If we're being called as part of directio write completion, the dio 737 * count is still elevated, which reflink and truncate will wait for. 738 * Reflink remapping takes the iolock and mmaplock and waits for 739 * pending dio to finish, which should prevent any directio until the 740 * remap completes. Multiple concurrent directio writes to the same 741 * region are handled by end_cow processing only occurring for the 742 * threads which succeed; the outcome of multiple overlapping direct 743 * writes is not well defined anyway. 744 * 745 * It's possible that a buffered write and a direct write could collide 746 * here (the buffered write stumbles in after the dio flushes and 747 * invalidates the page cache and immediately queues writeback), but we 748 * have never supported this 100%. If either disk write succeeds the 749 * blocks will be remapped. 750 */ 751 while (end_fsb > offset_fsb && !error) 752 error = xfs_reflink_end_cow_extent(ip, offset_fsb, &end_fsb); 753 754 if (error) 755 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_); 756 return error; 757 } 758 759 /* 760 * Free leftover CoW reservations that didn't get cleaned out. 761 */ 762 int 763 xfs_reflink_recover_cow( 764 struct xfs_mount *mp) 765 { 766 xfs_agnumber_t agno; 767 int error = 0; 768 769 if (!xfs_sb_version_hasreflink(&mp->m_sb)) 770 return 0; 771 772 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 773 error = xfs_refcount_recover_cow_leftovers(mp, agno); 774 if (error) 775 break; 776 } 777 778 return error; 779 } 780 781 /* 782 * Reflinking (Block) Ranges of Two Files Together 783 * 784 * First, ensure that the reflink flag is set on both inodes. The flag is an 785 * optimization to avoid unnecessary refcount btree lookups in the write path. 786 * 787 * Now we can iteratively remap the range of extents (and holes) in src to the 788 * corresponding ranges in dest. Let drange and srange denote the ranges of 789 * logical blocks in dest and src touched by the reflink operation. 790 * 791 * While the length of drange is greater than zero, 792 * - Read src's bmbt at the start of srange ("imap") 793 * - If imap doesn't exist, make imap appear to start at the end of srange 794 * with zero length. 795 * - If imap starts before srange, advance imap to start at srange. 796 * - If imap goes beyond srange, truncate imap to end at the end of srange. 797 * - Punch (imap start - srange start + imap len) blocks from dest at 798 * offset (drange start). 799 * - If imap points to a real range of pblks, 800 * > Increase the refcount of the imap's pblks 801 * > Map imap's pblks into dest at the offset 802 * (drange start + imap start - srange start) 803 * - Advance drange and srange by (imap start - srange start + imap len) 804 * 805 * Finally, if the reflink made dest longer, update both the in-core and 806 * on-disk file sizes. 807 * 808 * ASCII Art Demonstration: 809 * 810 * Let's say we want to reflink this source file: 811 * 812 * ----SSSSSSS-SSSSS----SSSSSS (src file) 813 * <--------------------> 814 * 815 * into this destination file: 816 * 817 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file) 818 * <--------------------> 819 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest. 820 * Observe that the range has different logical offsets in either file. 821 * 822 * Consider that the first extent in the source file doesn't line up with our 823 * reflink range. Unmapping and remapping are separate operations, so we can 824 * unmap more blocks from the destination file than we remap. 825 * 826 * ----SSSSSSS-SSSSS----SSSSSS 827 * <-------> 828 * --DDDDD---------DDDDD--DDD 829 * <-------> 830 * 831 * Now remap the source extent into the destination file: 832 * 833 * ----SSSSSSS-SSSSS----SSSSSS 834 * <-------> 835 * --DDDDD--SSSSSSSDDDDD--DDD 836 * <-------> 837 * 838 * Do likewise with the second hole and extent in our range. Holes in the 839 * unmap range don't affect our operation. 840 * 841 * ----SSSSSSS-SSSSS----SSSSSS 842 * <----> 843 * --DDDDD--SSSSSSS-SSSSS-DDD 844 * <----> 845 * 846 * Finally, unmap and remap part of the third extent. This will increase the 847 * size of the destination file. 848 * 849 * ----SSSSSSS-SSSSS----SSSSSS 850 * <-----> 851 * --DDDDD--SSSSSSS-SSSSS----SSS 852 * <-----> 853 * 854 * Once we update the destination file's i_size, we're done. 855 */ 856 857 /* 858 * Ensure the reflink bit is set in both inodes. 859 */ 860 STATIC int 861 xfs_reflink_set_inode_flag( 862 struct xfs_inode *src, 863 struct xfs_inode *dest) 864 { 865 struct xfs_mount *mp = src->i_mount; 866 int error; 867 struct xfs_trans *tp; 868 869 if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest)) 870 return 0; 871 872 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); 873 if (error) 874 goto out_error; 875 876 /* Lock both files against IO */ 877 if (src->i_ino == dest->i_ino) 878 xfs_ilock(src, XFS_ILOCK_EXCL); 879 else 880 xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL); 881 882 if (!xfs_is_reflink_inode(src)) { 883 trace_xfs_reflink_set_inode_flag(src); 884 xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL); 885 src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK; 886 xfs_trans_log_inode(tp, src, XFS_ILOG_CORE); 887 xfs_ifork_init_cow(src); 888 } else 889 xfs_iunlock(src, XFS_ILOCK_EXCL); 890 891 if (src->i_ino == dest->i_ino) 892 goto commit_flags; 893 894 if (!xfs_is_reflink_inode(dest)) { 895 trace_xfs_reflink_set_inode_flag(dest); 896 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL); 897 dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK; 898 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE); 899 xfs_ifork_init_cow(dest); 900 } else 901 xfs_iunlock(dest, XFS_ILOCK_EXCL); 902 903 commit_flags: 904 error = xfs_trans_commit(tp); 905 if (error) 906 goto out_error; 907 return error; 908 909 out_error: 910 trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_); 911 return error; 912 } 913 914 /* 915 * Update destination inode size & cowextsize hint, if necessary. 916 */ 917 int 918 xfs_reflink_update_dest( 919 struct xfs_inode *dest, 920 xfs_off_t newlen, 921 xfs_extlen_t cowextsize, 922 unsigned int remap_flags) 923 { 924 struct xfs_mount *mp = dest->i_mount; 925 struct xfs_trans *tp; 926 int error; 927 928 if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0) 929 return 0; 930 931 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); 932 if (error) 933 goto out_error; 934 935 xfs_ilock(dest, XFS_ILOCK_EXCL); 936 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL); 937 938 if (newlen > i_size_read(VFS_I(dest))) { 939 trace_xfs_reflink_update_inode_size(dest, newlen); 940 i_size_write(VFS_I(dest), newlen); 941 dest->i_d.di_size = newlen; 942 } 943 944 if (cowextsize) { 945 dest->i_d.di_cowextsize = cowextsize; 946 dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; 947 } 948 949 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE); 950 951 error = xfs_trans_commit(tp); 952 if (error) 953 goto out_error; 954 return error; 955 956 out_error: 957 trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_); 958 return error; 959 } 960 961 /* 962 * Do we have enough reserve in this AG to handle a reflink? The refcount 963 * btree already reserved all the space it needs, but the rmap btree can grow 964 * infinitely, so we won't allow more reflinks when the AG is down to the 965 * btree reserves. 966 */ 967 static int 968 xfs_reflink_ag_has_free_space( 969 struct xfs_mount *mp, 970 xfs_agnumber_t agno) 971 { 972 struct xfs_perag *pag; 973 int error = 0; 974 975 if (!xfs_sb_version_hasrmapbt(&mp->m_sb)) 976 return 0; 977 978 pag = xfs_perag_get(mp, agno); 979 if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) || 980 xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA)) 981 error = -ENOSPC; 982 xfs_perag_put(pag); 983 return error; 984 } 985 986 /* 987 * Unmap a range of blocks from a file, then map other blocks into the hole. 988 * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount). 989 * The extent irec is mapped into dest at irec->br_startoff. 990 */ 991 STATIC int 992 xfs_reflink_remap_extent( 993 struct xfs_inode *ip, 994 struct xfs_bmbt_irec *irec, 995 xfs_fileoff_t destoff, 996 xfs_off_t new_isize) 997 { 998 struct xfs_mount *mp = ip->i_mount; 999 bool real_extent = xfs_bmap_is_real_extent(irec); 1000 struct xfs_trans *tp; 1001 unsigned int resblks; 1002 struct xfs_bmbt_irec uirec; 1003 xfs_filblks_t rlen; 1004 xfs_filblks_t unmap_len; 1005 xfs_off_t newlen; 1006 int error; 1007 1008 unmap_len = irec->br_startoff + irec->br_blockcount - destoff; 1009 trace_xfs_reflink_punch_range(ip, destoff, unmap_len); 1010 1011 /* No reflinking if we're low on space */ 1012 if (real_extent) { 1013 error = xfs_reflink_ag_has_free_space(mp, 1014 XFS_FSB_TO_AGNO(mp, irec->br_startblock)); 1015 if (error) 1016 goto out; 1017 } 1018 1019 /* Start a rolling transaction to switch the mappings */ 1020 resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK); 1021 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp); 1022 if (error) 1023 goto out; 1024 1025 xfs_ilock(ip, XFS_ILOCK_EXCL); 1026 xfs_trans_ijoin(tp, ip, 0); 1027 1028 /* If we're not just clearing space, then do we have enough quota? */ 1029 if (real_extent) { 1030 error = xfs_trans_reserve_quota_nblks(tp, ip, 1031 irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS); 1032 if (error) 1033 goto out_cancel; 1034 } 1035 1036 trace_xfs_reflink_remap(ip, irec->br_startoff, 1037 irec->br_blockcount, irec->br_startblock); 1038 1039 /* Unmap the old blocks in the data fork. */ 1040 rlen = unmap_len; 1041 while (rlen) { 1042 ASSERT(tp->t_firstblock == NULLFSBLOCK); 1043 error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1); 1044 if (error) 1045 goto out_cancel; 1046 1047 /* 1048 * Trim the extent to whatever got unmapped. 1049 * Remember, bunmapi works backwards. 1050 */ 1051 uirec.br_startblock = irec->br_startblock + rlen; 1052 uirec.br_startoff = irec->br_startoff + rlen; 1053 uirec.br_blockcount = unmap_len - rlen; 1054 unmap_len = rlen; 1055 1056 /* If this isn't a real mapping, we're done. */ 1057 if (!real_extent || uirec.br_blockcount == 0) 1058 goto next_extent; 1059 1060 trace_xfs_reflink_remap(ip, uirec.br_startoff, 1061 uirec.br_blockcount, uirec.br_startblock); 1062 1063 /* Update the refcount tree */ 1064 xfs_refcount_increase_extent(tp, &uirec); 1065 1066 /* Map the new blocks into the data fork. */ 1067 xfs_bmap_map_extent(tp, ip, &uirec); 1068 1069 /* Update quota accounting. */ 1070 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, 1071 uirec.br_blockcount); 1072 1073 /* Update dest isize if needed. */ 1074 newlen = XFS_FSB_TO_B(mp, 1075 uirec.br_startoff + uirec.br_blockcount); 1076 newlen = min_t(xfs_off_t, newlen, new_isize); 1077 if (newlen > i_size_read(VFS_I(ip))) { 1078 trace_xfs_reflink_update_inode_size(ip, newlen); 1079 i_size_write(VFS_I(ip), newlen); 1080 ip->i_d.di_size = newlen; 1081 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1082 } 1083 1084 next_extent: 1085 /* Process all the deferred stuff. */ 1086 error = xfs_defer_finish(&tp); 1087 if (error) 1088 goto out_cancel; 1089 } 1090 1091 error = xfs_trans_commit(tp); 1092 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1093 if (error) 1094 goto out; 1095 return 0; 1096 1097 out_cancel: 1098 xfs_trans_cancel(tp); 1099 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1100 out: 1101 trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_); 1102 return error; 1103 } 1104 1105 /* 1106 * Iteratively remap one file's extents (and holes) to another's. 1107 */ 1108 int 1109 xfs_reflink_remap_blocks( 1110 struct xfs_inode *src, 1111 loff_t pos_in, 1112 struct xfs_inode *dest, 1113 loff_t pos_out, 1114 loff_t remap_len, 1115 loff_t *remapped) 1116 { 1117 struct xfs_bmbt_irec imap; 1118 xfs_fileoff_t srcoff; 1119 xfs_fileoff_t destoff; 1120 xfs_filblks_t len; 1121 xfs_filblks_t range_len; 1122 xfs_filblks_t remapped_len = 0; 1123 xfs_off_t new_isize = pos_out + remap_len; 1124 int nimaps; 1125 int error = 0; 1126 1127 destoff = XFS_B_TO_FSBT(src->i_mount, pos_out); 1128 srcoff = XFS_B_TO_FSBT(src->i_mount, pos_in); 1129 len = XFS_B_TO_FSB(src->i_mount, remap_len); 1130 1131 /* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */ 1132 while (len) { 1133 uint lock_mode; 1134 1135 trace_xfs_reflink_remap_blocks_loop(src, srcoff, len, 1136 dest, destoff); 1137 1138 /* Read extent from the source file */ 1139 nimaps = 1; 1140 lock_mode = xfs_ilock_data_map_shared(src); 1141 error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0); 1142 xfs_iunlock(src, lock_mode); 1143 if (error) 1144 break; 1145 ASSERT(nimaps == 1); 1146 1147 trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_DATA_FORK, 1148 &imap); 1149 1150 /* Translate imap into the destination file. */ 1151 range_len = imap.br_startoff + imap.br_blockcount - srcoff; 1152 imap.br_startoff += destoff - srcoff; 1153 1154 /* Clear dest from destoff to the end of imap and map it in. */ 1155 error = xfs_reflink_remap_extent(dest, &imap, destoff, 1156 new_isize); 1157 if (error) 1158 break; 1159 1160 if (fatal_signal_pending(current)) { 1161 error = -EINTR; 1162 break; 1163 } 1164 1165 /* Advance drange/srange */ 1166 srcoff += range_len; 1167 destoff += range_len; 1168 len -= range_len; 1169 remapped_len += range_len; 1170 } 1171 1172 if (error) 1173 trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_); 1174 *remapped = min_t(loff_t, remap_len, 1175 XFS_FSB_TO_B(src->i_mount, remapped_len)); 1176 return error; 1177 } 1178 1179 /* 1180 * Grab the exclusive iolock for a data copy from src to dest, making sure to 1181 * abide vfs locking order (lowest pointer value goes first) and breaking the 1182 * layout leases before proceeding. The loop is needed because we cannot call 1183 * the blocking break_layout() with the iolocks held, and therefore have to 1184 * back out both locks. 1185 */ 1186 static int 1187 xfs_iolock_two_inodes_and_break_layout( 1188 struct inode *src, 1189 struct inode *dest) 1190 { 1191 int error; 1192 1193 if (src > dest) 1194 swap(src, dest); 1195 1196 retry: 1197 /* Wait to break both inodes' layouts before we start locking. */ 1198 error = break_layout(src, true); 1199 if (error) 1200 return error; 1201 if (src != dest) { 1202 error = break_layout(dest, true); 1203 if (error) 1204 return error; 1205 } 1206 1207 /* Lock one inode and make sure nobody got in and leased it. */ 1208 inode_lock(src); 1209 error = break_layout(src, false); 1210 if (error) { 1211 inode_unlock(src); 1212 if (error == -EWOULDBLOCK) 1213 goto retry; 1214 return error; 1215 } 1216 1217 if (src == dest) 1218 return 0; 1219 1220 /* Lock the other inode and make sure nobody got in and leased it. */ 1221 inode_lock_nested(dest, I_MUTEX_NONDIR2); 1222 error = break_layout(dest, false); 1223 if (error) { 1224 inode_unlock(src); 1225 inode_unlock(dest); 1226 if (error == -EWOULDBLOCK) 1227 goto retry; 1228 return error; 1229 } 1230 1231 return 0; 1232 } 1233 1234 /* Unlock both inodes after they've been prepped for a range clone. */ 1235 void 1236 xfs_reflink_remap_unlock( 1237 struct file *file_in, 1238 struct file *file_out) 1239 { 1240 struct inode *inode_in = file_inode(file_in); 1241 struct xfs_inode *src = XFS_I(inode_in); 1242 struct inode *inode_out = file_inode(file_out); 1243 struct xfs_inode *dest = XFS_I(inode_out); 1244 bool same_inode = (inode_in == inode_out); 1245 1246 xfs_iunlock(dest, XFS_MMAPLOCK_EXCL); 1247 if (!same_inode) 1248 xfs_iunlock(src, XFS_MMAPLOCK_EXCL); 1249 inode_unlock(inode_out); 1250 if (!same_inode) 1251 inode_unlock(inode_in); 1252 } 1253 1254 /* 1255 * If we're reflinking to a point past the destination file's EOF, we must 1256 * zero any speculative post-EOF preallocations that sit between the old EOF 1257 * and the destination file offset. 1258 */ 1259 static int 1260 xfs_reflink_zero_posteof( 1261 struct xfs_inode *ip, 1262 loff_t pos) 1263 { 1264 loff_t isize = i_size_read(VFS_I(ip)); 1265 1266 if (pos <= isize) 1267 return 0; 1268 1269 trace_xfs_zero_eof(ip, isize, pos - isize); 1270 return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL, 1271 &xfs_buffered_write_iomap_ops); 1272 } 1273 1274 /* 1275 * Prepare two files for range cloning. Upon a successful return both inodes 1276 * will have the iolock and mmaplock held, the page cache of the out file will 1277 * be truncated, and any leases on the out file will have been broken. This 1278 * function borrows heavily from xfs_file_aio_write_checks. 1279 * 1280 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't 1281 * checked that the bytes beyond EOF physically match. Hence we cannot use the 1282 * EOF block in the source dedupe range because it's not a complete block match, 1283 * hence can introduce a corruption into the file that has it's block replaced. 1284 * 1285 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be 1286 * "block aligned" for the purposes of cloning entire files. However, if the 1287 * source file range includes the EOF block and it lands within the existing EOF 1288 * of the destination file, then we can expose stale data from beyond the source 1289 * file EOF in the destination file. 1290 * 1291 * XFS doesn't support partial block sharing, so in both cases we have check 1292 * these cases ourselves. For dedupe, we can simply round the length to dedupe 1293 * down to the previous whole block and ignore the partial EOF block. While this 1294 * means we can't dedupe the last block of a file, this is an acceptible 1295 * tradeoff for simplicity on implementation. 1296 * 1297 * For cloning, we want to share the partial EOF block if it is also the new EOF 1298 * block of the destination file. If the partial EOF block lies inside the 1299 * existing destination EOF, then we have to abort the clone to avoid exposing 1300 * stale data in the destination file. Hence we reject these clone attempts with 1301 * -EINVAL in this case. 1302 */ 1303 int 1304 xfs_reflink_remap_prep( 1305 struct file *file_in, 1306 loff_t pos_in, 1307 struct file *file_out, 1308 loff_t pos_out, 1309 loff_t *len, 1310 unsigned int remap_flags) 1311 { 1312 struct inode *inode_in = file_inode(file_in); 1313 struct xfs_inode *src = XFS_I(inode_in); 1314 struct inode *inode_out = file_inode(file_out); 1315 struct xfs_inode *dest = XFS_I(inode_out); 1316 bool same_inode = (inode_in == inode_out); 1317 ssize_t ret; 1318 1319 /* Lock both files against IO */ 1320 ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out); 1321 if (ret) 1322 return ret; 1323 if (same_inode) 1324 xfs_ilock(src, XFS_MMAPLOCK_EXCL); 1325 else 1326 xfs_lock_two_inodes(src, XFS_MMAPLOCK_EXCL, dest, 1327 XFS_MMAPLOCK_EXCL); 1328 1329 /* Check file eligibility and prepare for block sharing. */ 1330 ret = -EINVAL; 1331 /* Don't reflink realtime inodes */ 1332 if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest)) 1333 goto out_unlock; 1334 1335 /* Don't share DAX file data for now. */ 1336 if (IS_DAX(inode_in) || IS_DAX(inode_out)) 1337 goto out_unlock; 1338 1339 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 1340 len, remap_flags); 1341 if (ret < 0 || *len == 0) 1342 goto out_unlock; 1343 1344 /* Attach dquots to dest inode before changing block map */ 1345 ret = xfs_qm_dqattach(dest); 1346 if (ret) 1347 goto out_unlock; 1348 1349 /* 1350 * Zero existing post-eof speculative preallocations in the destination 1351 * file. 1352 */ 1353 ret = xfs_reflink_zero_posteof(dest, pos_out); 1354 if (ret) 1355 goto out_unlock; 1356 1357 /* Set flags and remap blocks. */ 1358 ret = xfs_reflink_set_inode_flag(src, dest); 1359 if (ret) 1360 goto out_unlock; 1361 1362 /* 1363 * If pos_out > EOF, we may have dirtied blocks between EOF and 1364 * pos_out. In that case, we need to extend the flush and unmap to cover 1365 * from EOF to the end of the copy length. 1366 */ 1367 if (pos_out > XFS_ISIZE(dest)) { 1368 loff_t flen = *len + (pos_out - XFS_ISIZE(dest)); 1369 ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen); 1370 } else { 1371 ret = xfs_flush_unmap_range(dest, pos_out, *len); 1372 } 1373 if (ret) 1374 goto out_unlock; 1375 1376 return 1; 1377 out_unlock: 1378 xfs_reflink_remap_unlock(file_in, file_out); 1379 return ret; 1380 } 1381 1382 /* Does this inode need the reflink flag? */ 1383 int 1384 xfs_reflink_inode_has_shared_extents( 1385 struct xfs_trans *tp, 1386 struct xfs_inode *ip, 1387 bool *has_shared) 1388 { 1389 struct xfs_bmbt_irec got; 1390 struct xfs_mount *mp = ip->i_mount; 1391 struct xfs_ifork *ifp; 1392 xfs_agnumber_t agno; 1393 xfs_agblock_t agbno; 1394 xfs_extlen_t aglen; 1395 xfs_agblock_t rbno; 1396 xfs_extlen_t rlen; 1397 struct xfs_iext_cursor icur; 1398 bool found; 1399 int error; 1400 1401 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 1402 if (!(ifp->if_flags & XFS_IFEXTENTS)) { 1403 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK); 1404 if (error) 1405 return error; 1406 } 1407 1408 *has_shared = false; 1409 found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got); 1410 while (found) { 1411 if (isnullstartblock(got.br_startblock) || 1412 got.br_state != XFS_EXT_NORM) 1413 goto next; 1414 agno = XFS_FSB_TO_AGNO(mp, got.br_startblock); 1415 agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock); 1416 aglen = got.br_blockcount; 1417 1418 error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen, 1419 &rbno, &rlen, false); 1420 if (error) 1421 return error; 1422 /* Is there still a shared block here? */ 1423 if (rbno != NULLAGBLOCK) { 1424 *has_shared = true; 1425 return 0; 1426 } 1427 next: 1428 found = xfs_iext_next_extent(ifp, &icur, &got); 1429 } 1430 1431 return 0; 1432 } 1433 1434 /* 1435 * Clear the inode reflink flag if there are no shared extents. 1436 * 1437 * The caller is responsible for joining the inode to the transaction passed in. 1438 * The inode will be joined to the transaction that is returned to the caller. 1439 */ 1440 int 1441 xfs_reflink_clear_inode_flag( 1442 struct xfs_inode *ip, 1443 struct xfs_trans **tpp) 1444 { 1445 bool needs_flag; 1446 int error = 0; 1447 1448 ASSERT(xfs_is_reflink_inode(ip)); 1449 1450 error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag); 1451 if (error || needs_flag) 1452 return error; 1453 1454 /* 1455 * We didn't find any shared blocks so turn off the reflink flag. 1456 * First, get rid of any leftover CoW mappings. 1457 */ 1458 error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF, 1459 true); 1460 if (error) 1461 return error; 1462 1463 /* Clear the inode flag. */ 1464 trace_xfs_reflink_unset_inode_flag(ip); 1465 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1466 xfs_inode_clear_cowblocks_tag(ip); 1467 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE); 1468 1469 return error; 1470 } 1471 1472 /* 1473 * Clear the inode reflink flag if there are no shared extents and the size 1474 * hasn't changed. 1475 */ 1476 STATIC int 1477 xfs_reflink_try_clear_inode_flag( 1478 struct xfs_inode *ip) 1479 { 1480 struct xfs_mount *mp = ip->i_mount; 1481 struct xfs_trans *tp; 1482 int error = 0; 1483 1484 /* Start a rolling transaction to remove the mappings */ 1485 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp); 1486 if (error) 1487 return error; 1488 1489 xfs_ilock(ip, XFS_ILOCK_EXCL); 1490 xfs_trans_ijoin(tp, ip, 0); 1491 1492 error = xfs_reflink_clear_inode_flag(ip, &tp); 1493 if (error) 1494 goto cancel; 1495 1496 error = xfs_trans_commit(tp); 1497 if (error) 1498 goto out; 1499 1500 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1501 return 0; 1502 cancel: 1503 xfs_trans_cancel(tp); 1504 out: 1505 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1506 return error; 1507 } 1508 1509 /* 1510 * Pre-COW all shared blocks within a given byte range of a file and turn off 1511 * the reflink flag if we unshare all of the file's blocks. 1512 */ 1513 int 1514 xfs_reflink_unshare( 1515 struct xfs_inode *ip, 1516 xfs_off_t offset, 1517 xfs_off_t len) 1518 { 1519 struct inode *inode = VFS_I(ip); 1520 int error; 1521 1522 if (!xfs_is_reflink_inode(ip)) 1523 return 0; 1524 1525 trace_xfs_reflink_unshare(ip, offset, len); 1526 1527 inode_dio_wait(inode); 1528 1529 error = iomap_file_unshare(inode, offset, len, 1530 &xfs_buffered_write_iomap_ops); 1531 if (error) 1532 goto out; 1533 error = filemap_write_and_wait(inode->i_mapping); 1534 if (error) 1535 goto out; 1536 1537 /* Turn off the reflink flag if possible. */ 1538 error = xfs_reflink_try_clear_inode_flag(ip); 1539 if (error) 1540 goto out; 1541 return 0; 1542 1543 out: 1544 trace_xfs_reflink_unshare_error(ip, error, _RET_IP_); 1545 return error; 1546 } 1547