xref: /openbmc/linux/fs/xfs/xfs_reflink.c (revision cbabf03c)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_btree.h"
21 #include "xfs_refcount_btree.h"
22 #include "xfs_refcount.h"
23 #include "xfs_bmap_btree.h"
24 #include "xfs_trans_space.h"
25 #include "xfs_bit.h"
26 #include "xfs_alloc.h"
27 #include "xfs_quota.h"
28 #include "xfs_reflink.h"
29 #include "xfs_iomap.h"
30 #include "xfs_ag.h"
31 #include "xfs_ag_resv.h"
32 
33 /*
34  * Copy on Write of Shared Blocks
35  *
36  * XFS must preserve "the usual" file semantics even when two files share
37  * the same physical blocks.  This means that a write to one file must not
38  * alter the blocks in a different file; the way that we'll do that is
39  * through the use of a copy-on-write mechanism.  At a high level, that
40  * means that when we want to write to a shared block, we allocate a new
41  * block, write the data to the new block, and if that succeeds we map the
42  * new block into the file.
43  *
44  * XFS provides a "delayed allocation" mechanism that defers the allocation
45  * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
46  * possible.  This reduces fragmentation by enabling the filesystem to ask
47  * for bigger chunks less often, which is exactly what we want for CoW.
48  *
49  * The delalloc mechanism begins when the kernel wants to make a block
50  * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
51  * create a delalloc mapping, which is a regular in-core extent, but without
52  * a real startblock.  (For delalloc mappings, the startblock encodes both
53  * a flag that this is a delalloc mapping, and a worst-case estimate of how
54  * many blocks might be required to put the mapping into the BMBT.)  delalloc
55  * mappings are a reservation against the free space in the filesystem;
56  * adjacent mappings can also be combined into fewer larger mappings.
57  *
58  * As an optimization, the CoW extent size hint (cowextsz) creates
59  * outsized aligned delalloc reservations in the hope of landing out of
60  * order nearby CoW writes in a single extent on disk, thereby reducing
61  * fragmentation and improving future performance.
62  *
63  * D: --RRRRRRSSSRRRRRRRR--- (data fork)
64  * C: ------DDDDDDD--------- (CoW fork)
65  *
66  * When dirty pages are being written out (typically in writepage), the
67  * delalloc reservations are converted into unwritten mappings by
68  * allocating blocks and replacing the delalloc mapping with real ones.
69  * A delalloc mapping can be replaced by several unwritten ones if the
70  * free space is fragmented.
71  *
72  * D: --RRRRRRSSSRRRRRRRR---
73  * C: ------UUUUUUU---------
74  *
75  * We want to adapt the delalloc mechanism for copy-on-write, since the
76  * write paths are similar.  The first two steps (creating the reservation
77  * and allocating the blocks) are exactly the same as delalloc except that
78  * the mappings must be stored in a separate CoW fork because we do not want
79  * to disturb the mapping in the data fork until we're sure that the write
80  * succeeded.  IO completion in this case is the process of removing the old
81  * mapping from the data fork and moving the new mapping from the CoW fork to
82  * the data fork.  This will be discussed shortly.
83  *
84  * For now, unaligned directio writes will be bounced back to the page cache.
85  * Block-aligned directio writes will use the same mechanism as buffered
86  * writes.
87  *
88  * Just prior to submitting the actual disk write requests, we convert
89  * the extents representing the range of the file actually being written
90  * (as opposed to extra pieces created for the cowextsize hint) to real
91  * extents.  This will become important in the next step:
92  *
93  * D: --RRRRRRSSSRRRRRRRR---
94  * C: ------UUrrUUU---------
95  *
96  * CoW remapping must be done after the data block write completes,
97  * because we don't want to destroy the old data fork map until we're sure
98  * the new block has been written.  Since the new mappings are kept in a
99  * separate fork, we can simply iterate these mappings to find the ones
100  * that cover the file blocks that we just CoW'd.  For each extent, simply
101  * unmap the corresponding range in the data fork, map the new range into
102  * the data fork, and remove the extent from the CoW fork.  Because of
103  * the presence of the cowextsize hint, however, we must be careful
104  * only to remap the blocks that we've actually written out --  we must
105  * never remap delalloc reservations nor CoW staging blocks that have
106  * yet to be written.  This corresponds exactly to the real extents in
107  * the CoW fork:
108  *
109  * D: --RRRRRRrrSRRRRRRRR---
110  * C: ------UU--UUU---------
111  *
112  * Since the remapping operation can be applied to an arbitrary file
113  * range, we record the need for the remap step as a flag in the ioend
114  * instead of declaring a new IO type.  This is required for direct io
115  * because we only have ioend for the whole dio, and we have to be able to
116  * remember the presence of unwritten blocks and CoW blocks with a single
117  * ioend structure.  Better yet, the more ground we can cover with one
118  * ioend, the better.
119  */
120 
121 /*
122  * Given an AG extent, find the lowest-numbered run of shared blocks
123  * within that range and return the range in fbno/flen.  If
124  * find_end_of_shared is true, return the longest contiguous extent of
125  * shared blocks.  If there are no shared extents, fbno and flen will
126  * be set to NULLAGBLOCK and 0, respectively.
127  */
128 int
129 xfs_reflink_find_shared(
130 	struct xfs_mount	*mp,
131 	struct xfs_trans	*tp,
132 	xfs_agnumber_t		agno,
133 	xfs_agblock_t		agbno,
134 	xfs_extlen_t		aglen,
135 	xfs_agblock_t		*fbno,
136 	xfs_extlen_t		*flen,
137 	bool			find_end_of_shared)
138 {
139 	struct xfs_buf		*agbp;
140 	struct xfs_btree_cur	*cur;
141 	int			error;
142 
143 	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
144 	if (error)
145 		return error;
146 
147 	cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agbp->b_pag);
148 
149 	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
150 			find_end_of_shared);
151 
152 	xfs_btree_del_cursor(cur, error);
153 
154 	xfs_trans_brelse(tp, agbp);
155 	return error;
156 }
157 
158 /*
159  * Trim the mapping to the next block where there's a change in the
160  * shared/unshared status.  More specifically, this means that we
161  * find the lowest-numbered extent of shared blocks that coincides with
162  * the given block mapping.  If the shared extent overlaps the start of
163  * the mapping, trim the mapping to the end of the shared extent.  If
164  * the shared region intersects the mapping, trim the mapping to the
165  * start of the shared extent.  If there are no shared regions that
166  * overlap, just return the original extent.
167  */
168 int
169 xfs_reflink_trim_around_shared(
170 	struct xfs_inode	*ip,
171 	struct xfs_bmbt_irec	*irec,
172 	bool			*shared)
173 {
174 	xfs_agnumber_t		agno;
175 	xfs_agblock_t		agbno;
176 	xfs_extlen_t		aglen;
177 	xfs_agblock_t		fbno;
178 	xfs_extlen_t		flen;
179 	int			error = 0;
180 
181 	/* Holes, unwritten, and delalloc extents cannot be shared */
182 	if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) {
183 		*shared = false;
184 		return 0;
185 	}
186 
187 	trace_xfs_reflink_trim_around_shared(ip, irec);
188 
189 	agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
190 	agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
191 	aglen = irec->br_blockcount;
192 
193 	error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
194 			aglen, &fbno, &flen, true);
195 	if (error)
196 		return error;
197 
198 	*shared = false;
199 	if (fbno == NULLAGBLOCK) {
200 		/* No shared blocks at all. */
201 		return 0;
202 	} else if (fbno == agbno) {
203 		/*
204 		 * The start of this extent is shared.  Truncate the
205 		 * mapping at the end of the shared region so that a
206 		 * subsequent iteration starts at the start of the
207 		 * unshared region.
208 		 */
209 		irec->br_blockcount = flen;
210 		*shared = true;
211 		return 0;
212 	} else {
213 		/*
214 		 * There's a shared extent midway through this extent.
215 		 * Truncate the mapping at the start of the shared
216 		 * extent so that a subsequent iteration starts at the
217 		 * start of the shared region.
218 		 */
219 		irec->br_blockcount = fbno - agbno;
220 		return 0;
221 	}
222 }
223 
224 int
225 xfs_bmap_trim_cow(
226 	struct xfs_inode	*ip,
227 	struct xfs_bmbt_irec	*imap,
228 	bool			*shared)
229 {
230 	/* We can't update any real extents in always COW mode. */
231 	if (xfs_is_always_cow_inode(ip) &&
232 	    !isnullstartblock(imap->br_startblock)) {
233 		*shared = true;
234 		return 0;
235 	}
236 
237 	/* Trim the mapping to the nearest shared extent boundary. */
238 	return xfs_reflink_trim_around_shared(ip, imap, shared);
239 }
240 
241 static int
242 xfs_reflink_convert_cow_locked(
243 	struct xfs_inode	*ip,
244 	xfs_fileoff_t		offset_fsb,
245 	xfs_filblks_t		count_fsb)
246 {
247 	struct xfs_iext_cursor	icur;
248 	struct xfs_bmbt_irec	got;
249 	struct xfs_btree_cur	*dummy_cur = NULL;
250 	int			dummy_logflags;
251 	int			error = 0;
252 
253 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
254 		return 0;
255 
256 	do {
257 		if (got.br_startoff >= offset_fsb + count_fsb)
258 			break;
259 		if (got.br_state == XFS_EXT_NORM)
260 			continue;
261 		if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
262 			return -EIO;
263 
264 		xfs_trim_extent(&got, offset_fsb, count_fsb);
265 		if (!got.br_blockcount)
266 			continue;
267 
268 		got.br_state = XFS_EXT_NORM;
269 		error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
270 				XFS_COW_FORK, &icur, &dummy_cur, &got,
271 				&dummy_logflags);
272 		if (error)
273 			return error;
274 	} while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
275 
276 	return error;
277 }
278 
279 /* Convert all of the unwritten CoW extents in a file's range to real ones. */
280 int
281 xfs_reflink_convert_cow(
282 	struct xfs_inode	*ip,
283 	xfs_off_t		offset,
284 	xfs_off_t		count)
285 {
286 	struct xfs_mount	*mp = ip->i_mount;
287 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
288 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
289 	xfs_filblks_t		count_fsb = end_fsb - offset_fsb;
290 	int			error;
291 
292 	ASSERT(count != 0);
293 
294 	xfs_ilock(ip, XFS_ILOCK_EXCL);
295 	error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
296 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
297 	return error;
298 }
299 
300 /*
301  * Find the extent that maps the given range in the COW fork. Even if the extent
302  * is not shared we might have a preallocation for it in the COW fork. If so we
303  * use it that rather than trigger a new allocation.
304  */
305 static int
306 xfs_find_trim_cow_extent(
307 	struct xfs_inode	*ip,
308 	struct xfs_bmbt_irec	*imap,
309 	struct xfs_bmbt_irec	*cmap,
310 	bool			*shared,
311 	bool			*found)
312 {
313 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
314 	xfs_filblks_t		count_fsb = imap->br_blockcount;
315 	struct xfs_iext_cursor	icur;
316 
317 	*found = false;
318 
319 	/*
320 	 * If we don't find an overlapping extent, trim the range we need to
321 	 * allocate to fit the hole we found.
322 	 */
323 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap))
324 		cmap->br_startoff = offset_fsb + count_fsb;
325 	if (cmap->br_startoff > offset_fsb) {
326 		xfs_trim_extent(imap, imap->br_startoff,
327 				cmap->br_startoff - imap->br_startoff);
328 		return xfs_bmap_trim_cow(ip, imap, shared);
329 	}
330 
331 	*shared = true;
332 	if (isnullstartblock(cmap->br_startblock)) {
333 		xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount);
334 		return 0;
335 	}
336 
337 	/* real extent found - no need to allocate */
338 	xfs_trim_extent(cmap, offset_fsb, count_fsb);
339 	*found = true;
340 	return 0;
341 }
342 
343 /* Allocate all CoW reservations covering a range of blocks in a file. */
344 int
345 xfs_reflink_allocate_cow(
346 	struct xfs_inode	*ip,
347 	struct xfs_bmbt_irec	*imap,
348 	struct xfs_bmbt_irec	*cmap,
349 	bool			*shared,
350 	uint			*lockmode,
351 	bool			convert_now)
352 {
353 	struct xfs_mount	*mp = ip->i_mount;
354 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
355 	xfs_filblks_t		count_fsb = imap->br_blockcount;
356 	struct xfs_trans	*tp;
357 	int			nimaps, error = 0;
358 	bool			found;
359 	xfs_filblks_t		resaligned;
360 	xfs_extlen_t		resblks = 0;
361 
362 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
363 	if (!ip->i_cowfp) {
364 		ASSERT(!xfs_is_reflink_inode(ip));
365 		xfs_ifork_init_cow(ip);
366 	}
367 
368 	error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
369 	if (error || !*shared)
370 		return error;
371 	if (found)
372 		goto convert;
373 
374 	resaligned = xfs_aligned_fsb_count(imap->br_startoff,
375 		imap->br_blockcount, xfs_get_cowextsz_hint(ip));
376 	resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
377 
378 	xfs_iunlock(ip, *lockmode);
379 	*lockmode = 0;
380 
381 	error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0,
382 			false, &tp);
383 	if (error)
384 		return error;
385 
386 	*lockmode = XFS_ILOCK_EXCL;
387 
388 	/*
389 	 * Check for an overlapping extent again now that we dropped the ilock.
390 	 */
391 	error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
392 	if (error || !*shared)
393 		goto out_trans_cancel;
394 	if (found) {
395 		xfs_trans_cancel(tp);
396 		goto convert;
397 	}
398 
399 	/* Allocate the entire reservation as unwritten blocks. */
400 	nimaps = 1;
401 	error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
402 			XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap,
403 			&nimaps);
404 	if (error)
405 		goto out_trans_cancel;
406 
407 	xfs_inode_set_cowblocks_tag(ip);
408 	error = xfs_trans_commit(tp);
409 	if (error)
410 		return error;
411 
412 	/*
413 	 * Allocation succeeded but the requested range was not even partially
414 	 * satisfied?  Bail out!
415 	 */
416 	if (nimaps == 0)
417 		return -ENOSPC;
418 convert:
419 	xfs_trim_extent(cmap, offset_fsb, count_fsb);
420 	/*
421 	 * COW fork extents are supposed to remain unwritten until we're ready
422 	 * to initiate a disk write.  For direct I/O we are going to write the
423 	 * data and need the conversion, but for buffered writes we're done.
424 	 */
425 	if (!convert_now || cmap->br_state == XFS_EXT_NORM)
426 		return 0;
427 	trace_xfs_reflink_convert_cow(ip, cmap);
428 	error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
429 	if (!error)
430 		cmap->br_state = XFS_EXT_NORM;
431 	return error;
432 
433 out_trans_cancel:
434 	xfs_trans_cancel(tp);
435 	return error;
436 }
437 
438 /*
439  * Cancel CoW reservations for some block range of an inode.
440  *
441  * If cancel_real is true this function cancels all COW fork extents for the
442  * inode; if cancel_real is false, real extents are not cleared.
443  *
444  * Caller must have already joined the inode to the current transaction. The
445  * inode will be joined to the transaction returned to the caller.
446  */
447 int
448 xfs_reflink_cancel_cow_blocks(
449 	struct xfs_inode		*ip,
450 	struct xfs_trans		**tpp,
451 	xfs_fileoff_t			offset_fsb,
452 	xfs_fileoff_t			end_fsb,
453 	bool				cancel_real)
454 {
455 	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
456 	struct xfs_bmbt_irec		got, del;
457 	struct xfs_iext_cursor		icur;
458 	int				error = 0;
459 
460 	if (!xfs_inode_has_cow_data(ip))
461 		return 0;
462 	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
463 		return 0;
464 
465 	/* Walk backwards until we're out of the I/O range... */
466 	while (got.br_startoff + got.br_blockcount > offset_fsb) {
467 		del = got;
468 		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
469 
470 		/* Extent delete may have bumped ext forward */
471 		if (!del.br_blockcount) {
472 			xfs_iext_prev(ifp, &icur);
473 			goto next_extent;
474 		}
475 
476 		trace_xfs_reflink_cancel_cow(ip, &del);
477 
478 		if (isnullstartblock(del.br_startblock)) {
479 			error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
480 					&icur, &got, &del);
481 			if (error)
482 				break;
483 		} else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
484 			ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
485 
486 			/* Free the CoW orphan record. */
487 			xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
488 					del.br_blockcount);
489 
490 			xfs_free_extent_later(*tpp, del.br_startblock,
491 					  del.br_blockcount, NULL);
492 
493 			/* Roll the transaction */
494 			error = xfs_defer_finish(tpp);
495 			if (error)
496 				break;
497 
498 			/* Remove the mapping from the CoW fork. */
499 			xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
500 
501 			/* Remove the quota reservation */
502 			error = xfs_quota_unreserve_blkres(ip,
503 					del.br_blockcount);
504 			if (error)
505 				break;
506 		} else {
507 			/* Didn't do anything, push cursor back. */
508 			xfs_iext_prev(ifp, &icur);
509 		}
510 next_extent:
511 		if (!xfs_iext_get_extent(ifp, &icur, &got))
512 			break;
513 	}
514 
515 	/* clear tag if cow fork is emptied */
516 	if (!ifp->if_bytes)
517 		xfs_inode_clear_cowblocks_tag(ip);
518 	return error;
519 }
520 
521 /*
522  * Cancel CoW reservations for some byte range of an inode.
523  *
524  * If cancel_real is true this function cancels all COW fork extents for the
525  * inode; if cancel_real is false, real extents are not cleared.
526  */
527 int
528 xfs_reflink_cancel_cow_range(
529 	struct xfs_inode	*ip,
530 	xfs_off_t		offset,
531 	xfs_off_t		count,
532 	bool			cancel_real)
533 {
534 	struct xfs_trans	*tp;
535 	xfs_fileoff_t		offset_fsb;
536 	xfs_fileoff_t		end_fsb;
537 	int			error;
538 
539 	trace_xfs_reflink_cancel_cow_range(ip, offset, count);
540 	ASSERT(ip->i_cowfp);
541 
542 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
543 	if (count == NULLFILEOFF)
544 		end_fsb = NULLFILEOFF;
545 	else
546 		end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
547 
548 	/* Start a rolling transaction to remove the mappings */
549 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
550 			0, 0, 0, &tp);
551 	if (error)
552 		goto out;
553 
554 	xfs_ilock(ip, XFS_ILOCK_EXCL);
555 	xfs_trans_ijoin(tp, ip, 0);
556 
557 	/* Scrape out the old CoW reservations */
558 	error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
559 			cancel_real);
560 	if (error)
561 		goto out_cancel;
562 
563 	error = xfs_trans_commit(tp);
564 
565 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
566 	return error;
567 
568 out_cancel:
569 	xfs_trans_cancel(tp);
570 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
571 out:
572 	trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
573 	return error;
574 }
575 
576 /*
577  * Remap part of the CoW fork into the data fork.
578  *
579  * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
580  * into the data fork; this function will remap what it can (at the end of the
581  * range) and update @end_fsb appropriately.  Each remap gets its own
582  * transaction because we can end up merging and splitting bmbt blocks for
583  * every remap operation and we'd like to keep the block reservation
584  * requirements as low as possible.
585  */
586 STATIC int
587 xfs_reflink_end_cow_extent(
588 	struct xfs_inode	*ip,
589 	xfs_fileoff_t		offset_fsb,
590 	xfs_fileoff_t		*end_fsb)
591 {
592 	struct xfs_bmbt_irec	got, del;
593 	struct xfs_iext_cursor	icur;
594 	struct xfs_mount	*mp = ip->i_mount;
595 	struct xfs_trans	*tp;
596 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
597 	xfs_filblks_t		rlen;
598 	unsigned int		resblks;
599 	int			error;
600 
601 	/* No COW extents?  That's easy! */
602 	if (ifp->if_bytes == 0) {
603 		*end_fsb = offset_fsb;
604 		return 0;
605 	}
606 
607 	resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
608 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
609 			XFS_TRANS_RESERVE, &tp);
610 	if (error)
611 		return error;
612 
613 	/*
614 	 * Lock the inode.  We have to ijoin without automatic unlock because
615 	 * the lead transaction is the refcountbt record deletion; the data
616 	 * fork update follows as a deferred log item.
617 	 */
618 	xfs_ilock(ip, XFS_ILOCK_EXCL);
619 	xfs_trans_ijoin(tp, ip, 0);
620 
621 	error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
622 			XFS_IEXT_REFLINK_END_COW_CNT);
623 	if (error)
624 		goto out_cancel;
625 
626 	/*
627 	 * In case of racing, overlapping AIO writes no COW extents might be
628 	 * left by the time I/O completes for the loser of the race.  In that
629 	 * case we are done.
630 	 */
631 	if (!xfs_iext_lookup_extent_before(ip, ifp, end_fsb, &icur, &got) ||
632 	    got.br_startoff + got.br_blockcount <= offset_fsb) {
633 		*end_fsb = offset_fsb;
634 		goto out_cancel;
635 	}
636 
637 	/*
638 	 * Structure copy @got into @del, then trim @del to the range that we
639 	 * were asked to remap.  We preserve @got for the eventual CoW fork
640 	 * deletion; from now on @del represents the mapping that we're
641 	 * actually remapping.
642 	 */
643 	del = got;
644 	xfs_trim_extent(&del, offset_fsb, *end_fsb - offset_fsb);
645 
646 	ASSERT(del.br_blockcount > 0);
647 
648 	/*
649 	 * Only remap real extents that contain data.  With AIO, speculative
650 	 * preallocations can leak into the range we are called upon, and we
651 	 * need to skip them.
652 	 */
653 	if (!xfs_bmap_is_written_extent(&got)) {
654 		*end_fsb = del.br_startoff;
655 		goto out_cancel;
656 	}
657 
658 	/* Unmap the old blocks in the data fork. */
659 	rlen = del.br_blockcount;
660 	error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
661 	if (error)
662 		goto out_cancel;
663 
664 	/* Trim the extent to whatever got unmapped. */
665 	xfs_trim_extent(&del, del.br_startoff + rlen, del.br_blockcount - rlen);
666 	trace_xfs_reflink_cow_remap(ip, &del);
667 
668 	/* Free the CoW orphan record. */
669 	xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
670 
671 	/* Map the new blocks into the data fork. */
672 	xfs_bmap_map_extent(tp, ip, &del);
673 
674 	/* Charge this new data fork mapping to the on-disk quota. */
675 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
676 			(long)del.br_blockcount);
677 
678 	/* Remove the mapping from the CoW fork. */
679 	xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
680 
681 	error = xfs_trans_commit(tp);
682 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
683 	if (error)
684 		return error;
685 
686 	/* Update the caller about how much progress we made. */
687 	*end_fsb = del.br_startoff;
688 	return 0;
689 
690 out_cancel:
691 	xfs_trans_cancel(tp);
692 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
693 	return error;
694 }
695 
696 /*
697  * Remap parts of a file's data fork after a successful CoW.
698  */
699 int
700 xfs_reflink_end_cow(
701 	struct xfs_inode		*ip,
702 	xfs_off_t			offset,
703 	xfs_off_t			count)
704 {
705 	xfs_fileoff_t			offset_fsb;
706 	xfs_fileoff_t			end_fsb;
707 	int				error = 0;
708 
709 	trace_xfs_reflink_end_cow(ip, offset, count);
710 
711 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
712 	end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
713 
714 	/*
715 	 * Walk backwards until we're out of the I/O range.  The loop function
716 	 * repeatedly cycles the ILOCK to allocate one transaction per remapped
717 	 * extent.
718 	 *
719 	 * If we're being called by writeback then the pages will still
720 	 * have PageWriteback set, which prevents races with reflink remapping
721 	 * and truncate.  Reflink remapping prevents races with writeback by
722 	 * taking the iolock and mmaplock before flushing the pages and
723 	 * remapping, which means there won't be any further writeback or page
724 	 * cache dirtying until the reflink completes.
725 	 *
726 	 * We should never have two threads issuing writeback for the same file
727 	 * region.  There are also have post-eof checks in the writeback
728 	 * preparation code so that we don't bother writing out pages that are
729 	 * about to be truncated.
730 	 *
731 	 * If we're being called as part of directio write completion, the dio
732 	 * count is still elevated, which reflink and truncate will wait for.
733 	 * Reflink remapping takes the iolock and mmaplock and waits for
734 	 * pending dio to finish, which should prevent any directio until the
735 	 * remap completes.  Multiple concurrent directio writes to the same
736 	 * region are handled by end_cow processing only occurring for the
737 	 * threads which succeed; the outcome of multiple overlapping direct
738 	 * writes is not well defined anyway.
739 	 *
740 	 * It's possible that a buffered write and a direct write could collide
741 	 * here (the buffered write stumbles in after the dio flushes and
742 	 * invalidates the page cache and immediately queues writeback), but we
743 	 * have never supported this 100%.  If either disk write succeeds the
744 	 * blocks will be remapped.
745 	 */
746 	while (end_fsb > offset_fsb && !error)
747 		error = xfs_reflink_end_cow_extent(ip, offset_fsb, &end_fsb);
748 
749 	if (error)
750 		trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
751 	return error;
752 }
753 
754 /*
755  * Free all CoW staging blocks that are still referenced by the ondisk refcount
756  * metadata.  The ondisk metadata does not track which inode created the
757  * staging extent, so callers must ensure that there are no cached inodes with
758  * live CoW staging extents.
759  */
760 int
761 xfs_reflink_recover_cow(
762 	struct xfs_mount	*mp)
763 {
764 	struct xfs_perag	*pag;
765 	xfs_agnumber_t		agno;
766 	int			error = 0;
767 
768 	if (!xfs_has_reflink(mp))
769 		return 0;
770 
771 	for_each_perag(mp, agno, pag) {
772 		error = xfs_refcount_recover_cow_leftovers(mp, pag);
773 		if (error) {
774 			xfs_perag_put(pag);
775 			break;
776 		}
777 	}
778 
779 	return error;
780 }
781 
782 /*
783  * Reflinking (Block) Ranges of Two Files Together
784  *
785  * First, ensure that the reflink flag is set on both inodes.  The flag is an
786  * optimization to avoid unnecessary refcount btree lookups in the write path.
787  *
788  * Now we can iteratively remap the range of extents (and holes) in src to the
789  * corresponding ranges in dest.  Let drange and srange denote the ranges of
790  * logical blocks in dest and src touched by the reflink operation.
791  *
792  * While the length of drange is greater than zero,
793  *    - Read src's bmbt at the start of srange ("imap")
794  *    - If imap doesn't exist, make imap appear to start at the end of srange
795  *      with zero length.
796  *    - If imap starts before srange, advance imap to start at srange.
797  *    - If imap goes beyond srange, truncate imap to end at the end of srange.
798  *    - Punch (imap start - srange start + imap len) blocks from dest at
799  *      offset (drange start).
800  *    - If imap points to a real range of pblks,
801  *         > Increase the refcount of the imap's pblks
802  *         > Map imap's pblks into dest at the offset
803  *           (drange start + imap start - srange start)
804  *    - Advance drange and srange by (imap start - srange start + imap len)
805  *
806  * Finally, if the reflink made dest longer, update both the in-core and
807  * on-disk file sizes.
808  *
809  * ASCII Art Demonstration:
810  *
811  * Let's say we want to reflink this source file:
812  *
813  * ----SSSSSSS-SSSSS----SSSSSS (src file)
814  *   <-------------------->
815  *
816  * into this destination file:
817  *
818  * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
819  *        <-------------------->
820  * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
821  * Observe that the range has different logical offsets in either file.
822  *
823  * Consider that the first extent in the source file doesn't line up with our
824  * reflink range.  Unmapping  and remapping are separate operations, so we can
825  * unmap more blocks from the destination file than we remap.
826  *
827  * ----SSSSSSS-SSSSS----SSSSSS
828  *   <------->
829  * --DDDDD---------DDDDD--DDD
830  *        <------->
831  *
832  * Now remap the source extent into the destination file:
833  *
834  * ----SSSSSSS-SSSSS----SSSSSS
835  *   <------->
836  * --DDDDD--SSSSSSSDDDDD--DDD
837  *        <------->
838  *
839  * Do likewise with the second hole and extent in our range.  Holes in the
840  * unmap range don't affect our operation.
841  *
842  * ----SSSSSSS-SSSSS----SSSSSS
843  *            <---->
844  * --DDDDD--SSSSSSS-SSSSS-DDD
845  *                 <---->
846  *
847  * Finally, unmap and remap part of the third extent.  This will increase the
848  * size of the destination file.
849  *
850  * ----SSSSSSS-SSSSS----SSSSSS
851  *                  <----->
852  * --DDDDD--SSSSSSS-SSSSS----SSS
853  *                       <----->
854  *
855  * Once we update the destination file's i_size, we're done.
856  */
857 
858 /*
859  * Ensure the reflink bit is set in both inodes.
860  */
861 STATIC int
862 xfs_reflink_set_inode_flag(
863 	struct xfs_inode	*src,
864 	struct xfs_inode	*dest)
865 {
866 	struct xfs_mount	*mp = src->i_mount;
867 	int			error;
868 	struct xfs_trans	*tp;
869 
870 	if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
871 		return 0;
872 
873 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
874 	if (error)
875 		goto out_error;
876 
877 	/* Lock both files against IO */
878 	if (src->i_ino == dest->i_ino)
879 		xfs_ilock(src, XFS_ILOCK_EXCL);
880 	else
881 		xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
882 
883 	if (!xfs_is_reflink_inode(src)) {
884 		trace_xfs_reflink_set_inode_flag(src);
885 		xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
886 		src->i_diflags2 |= XFS_DIFLAG2_REFLINK;
887 		xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
888 		xfs_ifork_init_cow(src);
889 	} else
890 		xfs_iunlock(src, XFS_ILOCK_EXCL);
891 
892 	if (src->i_ino == dest->i_ino)
893 		goto commit_flags;
894 
895 	if (!xfs_is_reflink_inode(dest)) {
896 		trace_xfs_reflink_set_inode_flag(dest);
897 		xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
898 		dest->i_diflags2 |= XFS_DIFLAG2_REFLINK;
899 		xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
900 		xfs_ifork_init_cow(dest);
901 	} else
902 		xfs_iunlock(dest, XFS_ILOCK_EXCL);
903 
904 commit_flags:
905 	error = xfs_trans_commit(tp);
906 	if (error)
907 		goto out_error;
908 	return error;
909 
910 out_error:
911 	trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
912 	return error;
913 }
914 
915 /*
916  * Update destination inode size & cowextsize hint, if necessary.
917  */
918 int
919 xfs_reflink_update_dest(
920 	struct xfs_inode	*dest,
921 	xfs_off_t		newlen,
922 	xfs_extlen_t		cowextsize,
923 	unsigned int		remap_flags)
924 {
925 	struct xfs_mount	*mp = dest->i_mount;
926 	struct xfs_trans	*tp;
927 	int			error;
928 
929 	if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
930 		return 0;
931 
932 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
933 	if (error)
934 		goto out_error;
935 
936 	xfs_ilock(dest, XFS_ILOCK_EXCL);
937 	xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
938 
939 	if (newlen > i_size_read(VFS_I(dest))) {
940 		trace_xfs_reflink_update_inode_size(dest, newlen);
941 		i_size_write(VFS_I(dest), newlen);
942 		dest->i_disk_size = newlen;
943 	}
944 
945 	if (cowextsize) {
946 		dest->i_cowextsize = cowextsize;
947 		dest->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
948 	}
949 
950 	xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
951 
952 	error = xfs_trans_commit(tp);
953 	if (error)
954 		goto out_error;
955 	return error;
956 
957 out_error:
958 	trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
959 	return error;
960 }
961 
962 /*
963  * Do we have enough reserve in this AG to handle a reflink?  The refcount
964  * btree already reserved all the space it needs, but the rmap btree can grow
965  * infinitely, so we won't allow more reflinks when the AG is down to the
966  * btree reserves.
967  */
968 static int
969 xfs_reflink_ag_has_free_space(
970 	struct xfs_mount	*mp,
971 	xfs_agnumber_t		agno)
972 {
973 	struct xfs_perag	*pag;
974 	int			error = 0;
975 
976 	if (!xfs_has_rmapbt(mp))
977 		return 0;
978 
979 	pag = xfs_perag_get(mp, agno);
980 	if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
981 	    xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
982 		error = -ENOSPC;
983 	xfs_perag_put(pag);
984 	return error;
985 }
986 
987 /*
988  * Remap the given extent into the file.  The dmap blockcount will be set to
989  * the number of blocks that were actually remapped.
990  */
991 STATIC int
992 xfs_reflink_remap_extent(
993 	struct xfs_inode	*ip,
994 	struct xfs_bmbt_irec	*dmap,
995 	xfs_off_t		new_isize)
996 {
997 	struct xfs_bmbt_irec	smap;
998 	struct xfs_mount	*mp = ip->i_mount;
999 	struct xfs_trans	*tp;
1000 	xfs_off_t		newlen;
1001 	int64_t			qdelta = 0;
1002 	unsigned int		resblks;
1003 	bool			quota_reserved = true;
1004 	bool			smap_real;
1005 	bool			dmap_written = xfs_bmap_is_written_extent(dmap);
1006 	int			iext_delta = 0;
1007 	int			nimaps;
1008 	int			error;
1009 
1010 	/*
1011 	 * Start a rolling transaction to switch the mappings.
1012 	 *
1013 	 * Adding a written extent to the extent map can cause a bmbt split,
1014 	 * and removing a mapped extent from the extent can cause a bmbt split.
1015 	 * The two operations cannot both cause a split since they operate on
1016 	 * the same index in the bmap btree, so we only need a reservation for
1017 	 * one bmbt split if either thing is happening.  However, we haven't
1018 	 * locked the inode yet, so we reserve assuming this is the case.
1019 	 *
1020 	 * The first allocation call tries to reserve enough space to handle
1021 	 * mapping dmap into a sparse part of the file plus the bmbt split.  We
1022 	 * haven't locked the inode or read the existing mapping yet, so we do
1023 	 * not know for sure that we need the space.  This should succeed most
1024 	 * of the time.
1025 	 *
1026 	 * If the first attempt fails, try again but reserving only enough
1027 	 * space to handle a bmbt split.  This is the hard minimum requirement,
1028 	 * and we revisit quota reservations later when we know more about what
1029 	 * we're remapping.
1030 	 */
1031 	resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
1032 	error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1033 			resblks + dmap->br_blockcount, 0, false, &tp);
1034 	if (error == -EDQUOT || error == -ENOSPC) {
1035 		quota_reserved = false;
1036 		error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1037 				resblks, 0, false, &tp);
1038 	}
1039 	if (error)
1040 		goto out;
1041 
1042 	/*
1043 	 * Read what's currently mapped in the destination file into smap.
1044 	 * If smap isn't a hole, we will have to remove it before we can add
1045 	 * dmap to the destination file.
1046 	 */
1047 	nimaps = 1;
1048 	error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount,
1049 			&smap, &nimaps, 0);
1050 	if (error)
1051 		goto out_cancel;
1052 	ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff);
1053 	smap_real = xfs_bmap_is_real_extent(&smap);
1054 
1055 	/*
1056 	 * We can only remap as many blocks as the smaller of the two extent
1057 	 * maps, because we can only remap one extent at a time.
1058 	 */
1059 	dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount);
1060 	ASSERT(dmap->br_blockcount == smap.br_blockcount);
1061 
1062 	trace_xfs_reflink_remap_extent_dest(ip, &smap);
1063 
1064 	/*
1065 	 * Two extents mapped to the same physical block must not have
1066 	 * different states; that's filesystem corruption.  Move on to the next
1067 	 * extent if they're both holes or both the same physical extent.
1068 	 */
1069 	if (dmap->br_startblock == smap.br_startblock) {
1070 		if (dmap->br_state != smap.br_state)
1071 			error = -EFSCORRUPTED;
1072 		goto out_cancel;
1073 	}
1074 
1075 	/* If both extents are unwritten, leave them alone. */
1076 	if (dmap->br_state == XFS_EXT_UNWRITTEN &&
1077 	    smap.br_state == XFS_EXT_UNWRITTEN)
1078 		goto out_cancel;
1079 
1080 	/* No reflinking if the AG of the dest mapping is low on space. */
1081 	if (dmap_written) {
1082 		error = xfs_reflink_ag_has_free_space(mp,
1083 				XFS_FSB_TO_AGNO(mp, dmap->br_startblock));
1084 		if (error)
1085 			goto out_cancel;
1086 	}
1087 
1088 	/*
1089 	 * Increase quota reservation if we think the quota block counter for
1090 	 * this file could increase.
1091 	 *
1092 	 * If we are mapping a written extent into the file, we need to have
1093 	 * enough quota block count reservation to handle the blocks in that
1094 	 * extent.  We log only the delta to the quota block counts, so if the
1095 	 * extent we're unmapping also has blocks allocated to it, we don't
1096 	 * need a quota reservation for the extent itself.
1097 	 *
1098 	 * Note that if we're replacing a delalloc reservation with a written
1099 	 * extent, we have to take the full quota reservation because removing
1100 	 * the delalloc reservation gives the block count back to the quota
1101 	 * count.  This is suboptimal, but the VFS flushed the dest range
1102 	 * before we started.  That should have removed all the delalloc
1103 	 * reservations, but we code defensively.
1104 	 *
1105 	 * xfs_trans_alloc_inode above already tried to grab an even larger
1106 	 * quota reservation, and kicked off a blockgc scan if it couldn't.
1107 	 * If we can't get a potentially smaller quota reservation now, we're
1108 	 * done.
1109 	 */
1110 	if (!quota_reserved && !smap_real && dmap_written) {
1111 		error = xfs_trans_reserve_quota_nblks(tp, ip,
1112 				dmap->br_blockcount, 0, false);
1113 		if (error)
1114 			goto out_cancel;
1115 	}
1116 
1117 	if (smap_real)
1118 		++iext_delta;
1119 
1120 	if (dmap_written)
1121 		++iext_delta;
1122 
1123 	error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, iext_delta);
1124 	if (error)
1125 		goto out_cancel;
1126 
1127 	if (smap_real) {
1128 		/*
1129 		 * If the extent we're unmapping is backed by storage (written
1130 		 * or not), unmap the extent and drop its refcount.
1131 		 */
1132 		xfs_bmap_unmap_extent(tp, ip, &smap);
1133 		xfs_refcount_decrease_extent(tp, &smap);
1134 		qdelta -= smap.br_blockcount;
1135 	} else if (smap.br_startblock == DELAYSTARTBLOCK) {
1136 		xfs_filblks_t	len = smap.br_blockcount;
1137 
1138 		/*
1139 		 * If the extent we're unmapping is a delalloc reservation,
1140 		 * we can use the regular bunmapi function to release the
1141 		 * incore state.  Dropping the delalloc reservation takes care
1142 		 * of the quota reservation for us.
1143 		 */
1144 		error = __xfs_bunmapi(NULL, ip, smap.br_startoff, &len, 0, 1);
1145 		if (error)
1146 			goto out_cancel;
1147 		ASSERT(len == 0);
1148 	}
1149 
1150 	/*
1151 	 * If the extent we're sharing is backed by written storage, increase
1152 	 * its refcount and map it into the file.
1153 	 */
1154 	if (dmap_written) {
1155 		xfs_refcount_increase_extent(tp, dmap);
1156 		xfs_bmap_map_extent(tp, ip, dmap);
1157 		qdelta += dmap->br_blockcount;
1158 	}
1159 
1160 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta);
1161 
1162 	/* Update dest isize if needed. */
1163 	newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount);
1164 	newlen = min_t(xfs_off_t, newlen, new_isize);
1165 	if (newlen > i_size_read(VFS_I(ip))) {
1166 		trace_xfs_reflink_update_inode_size(ip, newlen);
1167 		i_size_write(VFS_I(ip), newlen);
1168 		ip->i_disk_size = newlen;
1169 		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1170 	}
1171 
1172 	/* Commit everything and unlock. */
1173 	error = xfs_trans_commit(tp);
1174 	goto out_unlock;
1175 
1176 out_cancel:
1177 	xfs_trans_cancel(tp);
1178 out_unlock:
1179 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1180 out:
1181 	if (error)
1182 		trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1183 	return error;
1184 }
1185 
1186 /* Remap a range of one file to the other. */
1187 int
1188 xfs_reflink_remap_blocks(
1189 	struct xfs_inode	*src,
1190 	loff_t			pos_in,
1191 	struct xfs_inode	*dest,
1192 	loff_t			pos_out,
1193 	loff_t			remap_len,
1194 	loff_t			*remapped)
1195 {
1196 	struct xfs_bmbt_irec	imap;
1197 	struct xfs_mount	*mp = src->i_mount;
1198 	xfs_fileoff_t		srcoff = XFS_B_TO_FSBT(mp, pos_in);
1199 	xfs_fileoff_t		destoff = XFS_B_TO_FSBT(mp, pos_out);
1200 	xfs_filblks_t		len;
1201 	xfs_filblks_t		remapped_len = 0;
1202 	xfs_off_t		new_isize = pos_out + remap_len;
1203 	int			nimaps;
1204 	int			error = 0;
1205 
1206 	len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len),
1207 			XFS_MAX_FILEOFF);
1208 
1209 	trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff);
1210 
1211 	while (len > 0) {
1212 		unsigned int	lock_mode;
1213 
1214 		/* Read extent from the source file */
1215 		nimaps = 1;
1216 		lock_mode = xfs_ilock_data_map_shared(src);
1217 		error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1218 		xfs_iunlock(src, lock_mode);
1219 		if (error)
1220 			break;
1221 		/*
1222 		 * The caller supposedly flushed all dirty pages in the source
1223 		 * file range, which means that writeback should have allocated
1224 		 * or deleted all delalloc reservations in that range.  If we
1225 		 * find one, that's a good sign that something is seriously
1226 		 * wrong here.
1227 		 */
1228 		ASSERT(nimaps == 1 && imap.br_startoff == srcoff);
1229 		if (imap.br_startblock == DELAYSTARTBLOCK) {
1230 			ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1231 			error = -EFSCORRUPTED;
1232 			break;
1233 		}
1234 
1235 		trace_xfs_reflink_remap_extent_src(src, &imap);
1236 
1237 		/* Remap into the destination file at the given offset. */
1238 		imap.br_startoff = destoff;
1239 		error = xfs_reflink_remap_extent(dest, &imap, new_isize);
1240 		if (error)
1241 			break;
1242 
1243 		if (fatal_signal_pending(current)) {
1244 			error = -EINTR;
1245 			break;
1246 		}
1247 
1248 		/* Advance drange/srange */
1249 		srcoff += imap.br_blockcount;
1250 		destoff += imap.br_blockcount;
1251 		len -= imap.br_blockcount;
1252 		remapped_len += imap.br_blockcount;
1253 	}
1254 
1255 	if (error)
1256 		trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1257 	*remapped = min_t(loff_t, remap_len,
1258 			  XFS_FSB_TO_B(src->i_mount, remapped_len));
1259 	return error;
1260 }
1261 
1262 /*
1263  * If we're reflinking to a point past the destination file's EOF, we must
1264  * zero any speculative post-EOF preallocations that sit between the old EOF
1265  * and the destination file offset.
1266  */
1267 static int
1268 xfs_reflink_zero_posteof(
1269 	struct xfs_inode	*ip,
1270 	loff_t			pos)
1271 {
1272 	loff_t			isize = i_size_read(VFS_I(ip));
1273 
1274 	if (pos <= isize)
1275 		return 0;
1276 
1277 	trace_xfs_zero_eof(ip, isize, pos - isize);
1278 	return xfs_zero_range(ip, isize, pos - isize, NULL);
1279 }
1280 
1281 /*
1282  * Prepare two files for range cloning.  Upon a successful return both inodes
1283  * will have the iolock and mmaplock held, the page cache of the out file will
1284  * be truncated, and any leases on the out file will have been broken.  This
1285  * function borrows heavily from xfs_file_aio_write_checks.
1286  *
1287  * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1288  * checked that the bytes beyond EOF physically match. Hence we cannot use the
1289  * EOF block in the source dedupe range because it's not a complete block match,
1290  * hence can introduce a corruption into the file that has it's block replaced.
1291  *
1292  * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1293  * "block aligned" for the purposes of cloning entire files.  However, if the
1294  * source file range includes the EOF block and it lands within the existing EOF
1295  * of the destination file, then we can expose stale data from beyond the source
1296  * file EOF in the destination file.
1297  *
1298  * XFS doesn't support partial block sharing, so in both cases we have check
1299  * these cases ourselves. For dedupe, we can simply round the length to dedupe
1300  * down to the previous whole block and ignore the partial EOF block. While this
1301  * means we can't dedupe the last block of a file, this is an acceptible
1302  * tradeoff for simplicity on implementation.
1303  *
1304  * For cloning, we want to share the partial EOF block if it is also the new EOF
1305  * block of the destination file. If the partial EOF block lies inside the
1306  * existing destination EOF, then we have to abort the clone to avoid exposing
1307  * stale data in the destination file. Hence we reject these clone attempts with
1308  * -EINVAL in this case.
1309  */
1310 int
1311 xfs_reflink_remap_prep(
1312 	struct file		*file_in,
1313 	loff_t			pos_in,
1314 	struct file		*file_out,
1315 	loff_t			pos_out,
1316 	loff_t			*len,
1317 	unsigned int		remap_flags)
1318 {
1319 	struct inode		*inode_in = file_inode(file_in);
1320 	struct xfs_inode	*src = XFS_I(inode_in);
1321 	struct inode		*inode_out = file_inode(file_out);
1322 	struct xfs_inode	*dest = XFS_I(inode_out);
1323 	int			ret;
1324 
1325 	/* Lock both files against IO */
1326 	ret = xfs_ilock2_io_mmap(src, dest);
1327 	if (ret)
1328 		return ret;
1329 
1330 	/* Check file eligibility and prepare for block sharing. */
1331 	ret = -EINVAL;
1332 	/* Don't reflink realtime inodes */
1333 	if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1334 		goto out_unlock;
1335 
1336 	/* Don't share DAX file data for now. */
1337 	if (IS_DAX(inode_in) || IS_DAX(inode_out))
1338 		goto out_unlock;
1339 
1340 	ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
1341 			len, remap_flags);
1342 	if (ret || *len == 0)
1343 		goto out_unlock;
1344 
1345 	/* Attach dquots to dest inode before changing block map */
1346 	ret = xfs_qm_dqattach(dest);
1347 	if (ret)
1348 		goto out_unlock;
1349 
1350 	/*
1351 	 * Zero existing post-eof speculative preallocations in the destination
1352 	 * file.
1353 	 */
1354 	ret = xfs_reflink_zero_posteof(dest, pos_out);
1355 	if (ret)
1356 		goto out_unlock;
1357 
1358 	/* Set flags and remap blocks. */
1359 	ret = xfs_reflink_set_inode_flag(src, dest);
1360 	if (ret)
1361 		goto out_unlock;
1362 
1363 	/*
1364 	 * If pos_out > EOF, we may have dirtied blocks between EOF and
1365 	 * pos_out. In that case, we need to extend the flush and unmap to cover
1366 	 * from EOF to the end of the copy length.
1367 	 */
1368 	if (pos_out > XFS_ISIZE(dest)) {
1369 		loff_t	flen = *len + (pos_out - XFS_ISIZE(dest));
1370 		ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1371 	} else {
1372 		ret = xfs_flush_unmap_range(dest, pos_out, *len);
1373 	}
1374 	if (ret)
1375 		goto out_unlock;
1376 
1377 	return 0;
1378 out_unlock:
1379 	xfs_iunlock2_io_mmap(src, dest);
1380 	return ret;
1381 }
1382 
1383 /* Does this inode need the reflink flag? */
1384 int
1385 xfs_reflink_inode_has_shared_extents(
1386 	struct xfs_trans		*tp,
1387 	struct xfs_inode		*ip,
1388 	bool				*has_shared)
1389 {
1390 	struct xfs_bmbt_irec		got;
1391 	struct xfs_mount		*mp = ip->i_mount;
1392 	struct xfs_ifork		*ifp;
1393 	xfs_agnumber_t			agno;
1394 	xfs_agblock_t			agbno;
1395 	xfs_extlen_t			aglen;
1396 	xfs_agblock_t			rbno;
1397 	xfs_extlen_t			rlen;
1398 	struct xfs_iext_cursor		icur;
1399 	bool				found;
1400 	int				error;
1401 
1402 	ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1403 	error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1404 	if (error)
1405 		return error;
1406 
1407 	*has_shared = false;
1408 	found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1409 	while (found) {
1410 		if (isnullstartblock(got.br_startblock) ||
1411 		    got.br_state != XFS_EXT_NORM)
1412 			goto next;
1413 		agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1414 		agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1415 		aglen = got.br_blockcount;
1416 
1417 		error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1418 				&rbno, &rlen, false);
1419 		if (error)
1420 			return error;
1421 		/* Is there still a shared block here? */
1422 		if (rbno != NULLAGBLOCK) {
1423 			*has_shared = true;
1424 			return 0;
1425 		}
1426 next:
1427 		found = xfs_iext_next_extent(ifp, &icur, &got);
1428 	}
1429 
1430 	return 0;
1431 }
1432 
1433 /*
1434  * Clear the inode reflink flag if there are no shared extents.
1435  *
1436  * The caller is responsible for joining the inode to the transaction passed in.
1437  * The inode will be joined to the transaction that is returned to the caller.
1438  */
1439 int
1440 xfs_reflink_clear_inode_flag(
1441 	struct xfs_inode	*ip,
1442 	struct xfs_trans	**tpp)
1443 {
1444 	bool			needs_flag;
1445 	int			error = 0;
1446 
1447 	ASSERT(xfs_is_reflink_inode(ip));
1448 
1449 	error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1450 	if (error || needs_flag)
1451 		return error;
1452 
1453 	/*
1454 	 * We didn't find any shared blocks so turn off the reflink flag.
1455 	 * First, get rid of any leftover CoW mappings.
1456 	 */
1457 	error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF,
1458 			true);
1459 	if (error)
1460 		return error;
1461 
1462 	/* Clear the inode flag. */
1463 	trace_xfs_reflink_unset_inode_flag(ip);
1464 	ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1465 	xfs_inode_clear_cowblocks_tag(ip);
1466 	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1467 
1468 	return error;
1469 }
1470 
1471 /*
1472  * Clear the inode reflink flag if there are no shared extents and the size
1473  * hasn't changed.
1474  */
1475 STATIC int
1476 xfs_reflink_try_clear_inode_flag(
1477 	struct xfs_inode	*ip)
1478 {
1479 	struct xfs_mount	*mp = ip->i_mount;
1480 	struct xfs_trans	*tp;
1481 	int			error = 0;
1482 
1483 	/* Start a rolling transaction to remove the mappings */
1484 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1485 	if (error)
1486 		return error;
1487 
1488 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1489 	xfs_trans_ijoin(tp, ip, 0);
1490 
1491 	error = xfs_reflink_clear_inode_flag(ip, &tp);
1492 	if (error)
1493 		goto cancel;
1494 
1495 	error = xfs_trans_commit(tp);
1496 	if (error)
1497 		goto out;
1498 
1499 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1500 	return 0;
1501 cancel:
1502 	xfs_trans_cancel(tp);
1503 out:
1504 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1505 	return error;
1506 }
1507 
1508 /*
1509  * Pre-COW all shared blocks within a given byte range of a file and turn off
1510  * the reflink flag if we unshare all of the file's blocks.
1511  */
1512 int
1513 xfs_reflink_unshare(
1514 	struct xfs_inode	*ip,
1515 	xfs_off_t		offset,
1516 	xfs_off_t		len)
1517 {
1518 	struct inode		*inode = VFS_I(ip);
1519 	int			error;
1520 
1521 	if (!xfs_is_reflink_inode(ip))
1522 		return 0;
1523 
1524 	trace_xfs_reflink_unshare(ip, offset, len);
1525 
1526 	inode_dio_wait(inode);
1527 
1528 	error = iomap_file_unshare(inode, offset, len,
1529 			&xfs_buffered_write_iomap_ops);
1530 	if (error)
1531 		goto out;
1532 
1533 	error = filemap_write_and_wait_range(inode->i_mapping, offset,
1534 			offset + len - 1);
1535 	if (error)
1536 		goto out;
1537 
1538 	/* Turn off the reflink flag if possible. */
1539 	error = xfs_reflink_try_clear_inode_flag(ip);
1540 	if (error)
1541 		goto out;
1542 	return 0;
1543 
1544 out:
1545 	trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1546 	return error;
1547 }
1548