1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2016 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_defer.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_bmap.h" 17 #include "xfs_bmap_util.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_btree.h" 21 #include "xfs_refcount_btree.h" 22 #include "xfs_refcount.h" 23 #include "xfs_bmap_btree.h" 24 #include "xfs_trans_space.h" 25 #include "xfs_bit.h" 26 #include "xfs_alloc.h" 27 #include "xfs_quota.h" 28 #include "xfs_reflink.h" 29 #include "xfs_iomap.h" 30 #include "xfs_sb.h" 31 #include "xfs_ag_resv.h" 32 33 /* 34 * Copy on Write of Shared Blocks 35 * 36 * XFS must preserve "the usual" file semantics even when two files share 37 * the same physical blocks. This means that a write to one file must not 38 * alter the blocks in a different file; the way that we'll do that is 39 * through the use of a copy-on-write mechanism. At a high level, that 40 * means that when we want to write to a shared block, we allocate a new 41 * block, write the data to the new block, and if that succeeds we map the 42 * new block into the file. 43 * 44 * XFS provides a "delayed allocation" mechanism that defers the allocation 45 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as 46 * possible. This reduces fragmentation by enabling the filesystem to ask 47 * for bigger chunks less often, which is exactly what we want for CoW. 48 * 49 * The delalloc mechanism begins when the kernel wants to make a block 50 * writable (write_begin or page_mkwrite). If the offset is not mapped, we 51 * create a delalloc mapping, which is a regular in-core extent, but without 52 * a real startblock. (For delalloc mappings, the startblock encodes both 53 * a flag that this is a delalloc mapping, and a worst-case estimate of how 54 * many blocks might be required to put the mapping into the BMBT.) delalloc 55 * mappings are a reservation against the free space in the filesystem; 56 * adjacent mappings can also be combined into fewer larger mappings. 57 * 58 * As an optimization, the CoW extent size hint (cowextsz) creates 59 * outsized aligned delalloc reservations in the hope of landing out of 60 * order nearby CoW writes in a single extent on disk, thereby reducing 61 * fragmentation and improving future performance. 62 * 63 * D: --RRRRRRSSSRRRRRRRR--- (data fork) 64 * C: ------DDDDDDD--------- (CoW fork) 65 * 66 * When dirty pages are being written out (typically in writepage), the 67 * delalloc reservations are converted into unwritten mappings by 68 * allocating blocks and replacing the delalloc mapping with real ones. 69 * A delalloc mapping can be replaced by several unwritten ones if the 70 * free space is fragmented. 71 * 72 * D: --RRRRRRSSSRRRRRRRR--- 73 * C: ------UUUUUUU--------- 74 * 75 * We want to adapt the delalloc mechanism for copy-on-write, since the 76 * write paths are similar. The first two steps (creating the reservation 77 * and allocating the blocks) are exactly the same as delalloc except that 78 * the mappings must be stored in a separate CoW fork because we do not want 79 * to disturb the mapping in the data fork until we're sure that the write 80 * succeeded. IO completion in this case is the process of removing the old 81 * mapping from the data fork and moving the new mapping from the CoW fork to 82 * the data fork. This will be discussed shortly. 83 * 84 * For now, unaligned directio writes will be bounced back to the page cache. 85 * Block-aligned directio writes will use the same mechanism as buffered 86 * writes. 87 * 88 * Just prior to submitting the actual disk write requests, we convert 89 * the extents representing the range of the file actually being written 90 * (as opposed to extra pieces created for the cowextsize hint) to real 91 * extents. This will become important in the next step: 92 * 93 * D: --RRRRRRSSSRRRRRRRR--- 94 * C: ------UUrrUUU--------- 95 * 96 * CoW remapping must be done after the data block write completes, 97 * because we don't want to destroy the old data fork map until we're sure 98 * the new block has been written. Since the new mappings are kept in a 99 * separate fork, we can simply iterate these mappings to find the ones 100 * that cover the file blocks that we just CoW'd. For each extent, simply 101 * unmap the corresponding range in the data fork, map the new range into 102 * the data fork, and remove the extent from the CoW fork. Because of 103 * the presence of the cowextsize hint, however, we must be careful 104 * only to remap the blocks that we've actually written out -- we must 105 * never remap delalloc reservations nor CoW staging blocks that have 106 * yet to be written. This corresponds exactly to the real extents in 107 * the CoW fork: 108 * 109 * D: --RRRRRRrrSRRRRRRRR--- 110 * C: ------UU--UUU--------- 111 * 112 * Since the remapping operation can be applied to an arbitrary file 113 * range, we record the need for the remap step as a flag in the ioend 114 * instead of declaring a new IO type. This is required for direct io 115 * because we only have ioend for the whole dio, and we have to be able to 116 * remember the presence of unwritten blocks and CoW blocks with a single 117 * ioend structure. Better yet, the more ground we can cover with one 118 * ioend, the better. 119 */ 120 121 /* 122 * Given an AG extent, find the lowest-numbered run of shared blocks 123 * within that range and return the range in fbno/flen. If 124 * find_end_of_shared is true, return the longest contiguous extent of 125 * shared blocks. If there are no shared extents, fbno and flen will 126 * be set to NULLAGBLOCK and 0, respectively. 127 */ 128 int 129 xfs_reflink_find_shared( 130 struct xfs_mount *mp, 131 struct xfs_trans *tp, 132 xfs_agnumber_t agno, 133 xfs_agblock_t agbno, 134 xfs_extlen_t aglen, 135 xfs_agblock_t *fbno, 136 xfs_extlen_t *flen, 137 bool find_end_of_shared) 138 { 139 struct xfs_buf *agbp; 140 struct xfs_btree_cur *cur; 141 int error; 142 143 error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp); 144 if (error) 145 return error; 146 if (!agbp) 147 return -ENOMEM; 148 149 cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno); 150 151 error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen, 152 find_end_of_shared); 153 154 xfs_btree_del_cursor(cur, error); 155 156 xfs_trans_brelse(tp, agbp); 157 return error; 158 } 159 160 /* 161 * Trim the mapping to the next block where there's a change in the 162 * shared/unshared status. More specifically, this means that we 163 * find the lowest-numbered extent of shared blocks that coincides with 164 * the given block mapping. If the shared extent overlaps the start of 165 * the mapping, trim the mapping to the end of the shared extent. If 166 * the shared region intersects the mapping, trim the mapping to the 167 * start of the shared extent. If there are no shared regions that 168 * overlap, just return the original extent. 169 */ 170 int 171 xfs_reflink_trim_around_shared( 172 struct xfs_inode *ip, 173 struct xfs_bmbt_irec *irec, 174 bool *shared) 175 { 176 xfs_agnumber_t agno; 177 xfs_agblock_t agbno; 178 xfs_extlen_t aglen; 179 xfs_agblock_t fbno; 180 xfs_extlen_t flen; 181 int error = 0; 182 183 /* Holes, unwritten, and delalloc extents cannot be shared */ 184 if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_real_extent(irec)) { 185 *shared = false; 186 return 0; 187 } 188 189 trace_xfs_reflink_trim_around_shared(ip, irec); 190 191 agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock); 192 agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock); 193 aglen = irec->br_blockcount; 194 195 error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno, 196 aglen, &fbno, &flen, true); 197 if (error) 198 return error; 199 200 *shared = false; 201 if (fbno == NULLAGBLOCK) { 202 /* No shared blocks at all. */ 203 return 0; 204 } else if (fbno == agbno) { 205 /* 206 * The start of this extent is shared. Truncate the 207 * mapping at the end of the shared region so that a 208 * subsequent iteration starts at the start of the 209 * unshared region. 210 */ 211 irec->br_blockcount = flen; 212 *shared = true; 213 return 0; 214 } else { 215 /* 216 * There's a shared extent midway through this extent. 217 * Truncate the mapping at the start of the shared 218 * extent so that a subsequent iteration starts at the 219 * start of the shared region. 220 */ 221 irec->br_blockcount = fbno - agbno; 222 return 0; 223 } 224 } 225 226 bool 227 xfs_inode_need_cow( 228 struct xfs_inode *ip, 229 struct xfs_bmbt_irec *imap, 230 bool *shared) 231 { 232 /* We can't update any real extents in always COW mode. */ 233 if (xfs_is_always_cow_inode(ip) && 234 !isnullstartblock(imap->br_startblock)) { 235 *shared = true; 236 return 0; 237 } 238 239 /* Trim the mapping to the nearest shared extent boundary. */ 240 return xfs_reflink_trim_around_shared(ip, imap, shared); 241 } 242 243 static int 244 xfs_reflink_convert_cow_locked( 245 struct xfs_inode *ip, 246 xfs_fileoff_t offset_fsb, 247 xfs_filblks_t count_fsb) 248 { 249 struct xfs_iext_cursor icur; 250 struct xfs_bmbt_irec got; 251 struct xfs_btree_cur *dummy_cur = NULL; 252 int dummy_logflags; 253 int error = 0; 254 255 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got)) 256 return 0; 257 258 do { 259 if (got.br_startoff >= offset_fsb + count_fsb) 260 break; 261 if (got.br_state == XFS_EXT_NORM) 262 continue; 263 if (WARN_ON_ONCE(isnullstartblock(got.br_startblock))) 264 return -EIO; 265 266 xfs_trim_extent(&got, offset_fsb, count_fsb); 267 if (!got.br_blockcount) 268 continue; 269 270 got.br_state = XFS_EXT_NORM; 271 error = xfs_bmap_add_extent_unwritten_real(NULL, ip, 272 XFS_COW_FORK, &icur, &dummy_cur, &got, 273 &dummy_logflags); 274 if (error) 275 return error; 276 } while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got)); 277 278 return error; 279 } 280 281 /* Convert all of the unwritten CoW extents in a file's range to real ones. */ 282 int 283 xfs_reflink_convert_cow( 284 struct xfs_inode *ip, 285 xfs_off_t offset, 286 xfs_off_t count) 287 { 288 struct xfs_mount *mp = ip->i_mount; 289 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 290 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); 291 xfs_filblks_t count_fsb = end_fsb - offset_fsb; 292 int error; 293 294 ASSERT(count != 0); 295 296 xfs_ilock(ip, XFS_ILOCK_EXCL); 297 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb); 298 xfs_iunlock(ip, XFS_ILOCK_EXCL); 299 return error; 300 } 301 302 /* 303 * Find the extent that maps the given range in the COW fork. Even if the extent 304 * is not shared we might have a preallocation for it in the COW fork. If so we 305 * use it that rather than trigger a new allocation. 306 */ 307 static int 308 xfs_find_trim_cow_extent( 309 struct xfs_inode *ip, 310 struct xfs_bmbt_irec *imap, 311 struct xfs_bmbt_irec *cmap, 312 bool *shared, 313 bool *found) 314 { 315 xfs_fileoff_t offset_fsb = imap->br_startoff; 316 xfs_filblks_t count_fsb = imap->br_blockcount; 317 struct xfs_iext_cursor icur; 318 319 *found = false; 320 321 /* 322 * If we don't find an overlapping extent, trim the range we need to 323 * allocate to fit the hole we found. 324 */ 325 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap)) 326 cmap->br_startoff = offset_fsb + count_fsb; 327 if (cmap->br_startoff > offset_fsb) { 328 xfs_trim_extent(imap, imap->br_startoff, 329 cmap->br_startoff - imap->br_startoff); 330 return xfs_inode_need_cow(ip, imap, shared); 331 } 332 333 *shared = true; 334 if (isnullstartblock(cmap->br_startblock)) { 335 xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount); 336 return 0; 337 } 338 339 /* real extent found - no need to allocate */ 340 xfs_trim_extent(cmap, offset_fsb, count_fsb); 341 *found = true; 342 return 0; 343 } 344 345 /* Allocate all CoW reservations covering a range of blocks in a file. */ 346 int 347 xfs_reflink_allocate_cow( 348 struct xfs_inode *ip, 349 struct xfs_bmbt_irec *imap, 350 struct xfs_bmbt_irec *cmap, 351 bool *shared, 352 uint *lockmode, 353 bool convert_now) 354 { 355 struct xfs_mount *mp = ip->i_mount; 356 xfs_fileoff_t offset_fsb = imap->br_startoff; 357 xfs_filblks_t count_fsb = imap->br_blockcount; 358 struct xfs_trans *tp; 359 int nimaps, error = 0; 360 bool found; 361 xfs_filblks_t resaligned; 362 xfs_extlen_t resblks = 0; 363 364 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 365 if (!ip->i_cowfp) { 366 ASSERT(!xfs_is_reflink_inode(ip)); 367 xfs_ifork_init_cow(ip); 368 } 369 370 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found); 371 if (error || !*shared) 372 return error; 373 if (found) 374 goto convert; 375 376 resaligned = xfs_aligned_fsb_count(imap->br_startoff, 377 imap->br_blockcount, xfs_get_cowextsz_hint(ip)); 378 resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned); 379 380 xfs_iunlock(ip, *lockmode); 381 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp); 382 *lockmode = XFS_ILOCK_EXCL; 383 xfs_ilock(ip, *lockmode); 384 385 if (error) 386 return error; 387 388 error = xfs_qm_dqattach_locked(ip, false); 389 if (error) 390 goto out_trans_cancel; 391 392 /* 393 * Check for an overlapping extent again now that we dropped the ilock. 394 */ 395 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found); 396 if (error || !*shared) 397 goto out_trans_cancel; 398 if (found) { 399 xfs_trans_cancel(tp); 400 goto convert; 401 } 402 403 error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0, 404 XFS_QMOPT_RES_REGBLKS); 405 if (error) 406 goto out_trans_cancel; 407 408 xfs_trans_ijoin(tp, ip, 0); 409 410 /* Allocate the entire reservation as unwritten blocks. */ 411 nimaps = 1; 412 error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount, 413 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap, 414 &nimaps); 415 if (error) 416 goto out_unreserve; 417 418 xfs_inode_set_cowblocks_tag(ip); 419 error = xfs_trans_commit(tp); 420 if (error) 421 return error; 422 423 /* 424 * Allocation succeeded but the requested range was not even partially 425 * satisfied? Bail out! 426 */ 427 if (nimaps == 0) 428 return -ENOSPC; 429 convert: 430 xfs_trim_extent(cmap, offset_fsb, count_fsb); 431 /* 432 * COW fork extents are supposed to remain unwritten until we're ready 433 * to initiate a disk write. For direct I/O we are going to write the 434 * data and need the conversion, but for buffered writes we're done. 435 */ 436 if (!convert_now || cmap->br_state == XFS_EXT_NORM) 437 return 0; 438 trace_xfs_reflink_convert_cow(ip, cmap); 439 return xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb); 440 441 out_unreserve: 442 xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0, 443 XFS_QMOPT_RES_REGBLKS); 444 out_trans_cancel: 445 xfs_trans_cancel(tp); 446 return error; 447 } 448 449 /* 450 * Cancel CoW reservations for some block range of an inode. 451 * 452 * If cancel_real is true this function cancels all COW fork extents for the 453 * inode; if cancel_real is false, real extents are not cleared. 454 * 455 * Caller must have already joined the inode to the current transaction. The 456 * inode will be joined to the transaction returned to the caller. 457 */ 458 int 459 xfs_reflink_cancel_cow_blocks( 460 struct xfs_inode *ip, 461 struct xfs_trans **tpp, 462 xfs_fileoff_t offset_fsb, 463 xfs_fileoff_t end_fsb, 464 bool cancel_real) 465 { 466 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK); 467 struct xfs_bmbt_irec got, del; 468 struct xfs_iext_cursor icur; 469 int error = 0; 470 471 if (!xfs_inode_has_cow_data(ip)) 472 return 0; 473 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got)) 474 return 0; 475 476 /* Walk backwards until we're out of the I/O range... */ 477 while (got.br_startoff + got.br_blockcount > offset_fsb) { 478 del = got; 479 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb); 480 481 /* Extent delete may have bumped ext forward */ 482 if (!del.br_blockcount) { 483 xfs_iext_prev(ifp, &icur); 484 goto next_extent; 485 } 486 487 trace_xfs_reflink_cancel_cow(ip, &del); 488 489 if (isnullstartblock(del.br_startblock)) { 490 error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK, 491 &icur, &got, &del); 492 if (error) 493 break; 494 } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) { 495 ASSERT((*tpp)->t_firstblock == NULLFSBLOCK); 496 497 /* Free the CoW orphan record. */ 498 xfs_refcount_free_cow_extent(*tpp, del.br_startblock, 499 del.br_blockcount); 500 501 xfs_bmap_add_free(*tpp, del.br_startblock, 502 del.br_blockcount, NULL); 503 504 /* Roll the transaction */ 505 error = xfs_defer_finish(tpp); 506 if (error) 507 break; 508 509 /* Remove the mapping from the CoW fork. */ 510 xfs_bmap_del_extent_cow(ip, &icur, &got, &del); 511 512 /* Remove the quota reservation */ 513 error = xfs_trans_reserve_quota_nblks(NULL, ip, 514 -(long)del.br_blockcount, 0, 515 XFS_QMOPT_RES_REGBLKS); 516 if (error) 517 break; 518 } else { 519 /* Didn't do anything, push cursor back. */ 520 xfs_iext_prev(ifp, &icur); 521 } 522 next_extent: 523 if (!xfs_iext_get_extent(ifp, &icur, &got)) 524 break; 525 } 526 527 /* clear tag if cow fork is emptied */ 528 if (!ifp->if_bytes) 529 xfs_inode_clear_cowblocks_tag(ip); 530 return error; 531 } 532 533 /* 534 * Cancel CoW reservations for some byte range of an inode. 535 * 536 * If cancel_real is true this function cancels all COW fork extents for the 537 * inode; if cancel_real is false, real extents are not cleared. 538 */ 539 int 540 xfs_reflink_cancel_cow_range( 541 struct xfs_inode *ip, 542 xfs_off_t offset, 543 xfs_off_t count, 544 bool cancel_real) 545 { 546 struct xfs_trans *tp; 547 xfs_fileoff_t offset_fsb; 548 xfs_fileoff_t end_fsb; 549 int error; 550 551 trace_xfs_reflink_cancel_cow_range(ip, offset, count); 552 ASSERT(ip->i_cowfp); 553 554 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 555 if (count == NULLFILEOFF) 556 end_fsb = NULLFILEOFF; 557 else 558 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count); 559 560 /* Start a rolling transaction to remove the mappings */ 561 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write, 562 0, 0, 0, &tp); 563 if (error) 564 goto out; 565 566 xfs_ilock(ip, XFS_ILOCK_EXCL); 567 xfs_trans_ijoin(tp, ip, 0); 568 569 /* Scrape out the old CoW reservations */ 570 error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb, 571 cancel_real); 572 if (error) 573 goto out_cancel; 574 575 error = xfs_trans_commit(tp); 576 577 xfs_iunlock(ip, XFS_ILOCK_EXCL); 578 return error; 579 580 out_cancel: 581 xfs_trans_cancel(tp); 582 xfs_iunlock(ip, XFS_ILOCK_EXCL); 583 out: 584 trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_); 585 return error; 586 } 587 588 /* 589 * Remap part of the CoW fork into the data fork. 590 * 591 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb 592 * into the data fork; this function will remap what it can (at the end of the 593 * range) and update @end_fsb appropriately. Each remap gets its own 594 * transaction because we can end up merging and splitting bmbt blocks for 595 * every remap operation and we'd like to keep the block reservation 596 * requirements as low as possible. 597 */ 598 STATIC int 599 xfs_reflink_end_cow_extent( 600 struct xfs_inode *ip, 601 xfs_fileoff_t offset_fsb, 602 xfs_fileoff_t *end_fsb) 603 { 604 struct xfs_bmbt_irec got, del; 605 struct xfs_iext_cursor icur; 606 struct xfs_mount *mp = ip->i_mount; 607 struct xfs_trans *tp; 608 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK); 609 xfs_filblks_t rlen; 610 unsigned int resblks; 611 int error; 612 613 /* No COW extents? That's easy! */ 614 if (ifp->if_bytes == 0) { 615 *end_fsb = offset_fsb; 616 return 0; 617 } 618 619 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK); 620 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 621 XFS_TRANS_RESERVE, &tp); 622 if (error) 623 return error; 624 625 /* 626 * Lock the inode. We have to ijoin without automatic unlock because 627 * the lead transaction is the refcountbt record deletion; the data 628 * fork update follows as a deferred log item. 629 */ 630 xfs_ilock(ip, XFS_ILOCK_EXCL); 631 xfs_trans_ijoin(tp, ip, 0); 632 633 /* 634 * In case of racing, overlapping AIO writes no COW extents might be 635 * left by the time I/O completes for the loser of the race. In that 636 * case we are done. 637 */ 638 if (!xfs_iext_lookup_extent_before(ip, ifp, end_fsb, &icur, &got) || 639 got.br_startoff + got.br_blockcount <= offset_fsb) { 640 *end_fsb = offset_fsb; 641 goto out_cancel; 642 } 643 644 /* 645 * Structure copy @got into @del, then trim @del to the range that we 646 * were asked to remap. We preserve @got for the eventual CoW fork 647 * deletion; from now on @del represents the mapping that we're 648 * actually remapping. 649 */ 650 del = got; 651 xfs_trim_extent(&del, offset_fsb, *end_fsb - offset_fsb); 652 653 ASSERT(del.br_blockcount > 0); 654 655 /* 656 * Only remap real extents that contain data. With AIO, speculative 657 * preallocations can leak into the range we are called upon, and we 658 * need to skip them. 659 */ 660 if (!xfs_bmap_is_real_extent(&got)) { 661 *end_fsb = del.br_startoff; 662 goto out_cancel; 663 } 664 665 /* Unmap the old blocks in the data fork. */ 666 rlen = del.br_blockcount; 667 error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1); 668 if (error) 669 goto out_cancel; 670 671 /* Trim the extent to whatever got unmapped. */ 672 xfs_trim_extent(&del, del.br_startoff + rlen, del.br_blockcount - rlen); 673 trace_xfs_reflink_cow_remap(ip, &del); 674 675 /* Free the CoW orphan record. */ 676 xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount); 677 678 /* Map the new blocks into the data fork. */ 679 xfs_bmap_map_extent(tp, ip, &del); 680 681 /* Charge this new data fork mapping to the on-disk quota. */ 682 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT, 683 (long)del.br_blockcount); 684 685 /* Remove the mapping from the CoW fork. */ 686 xfs_bmap_del_extent_cow(ip, &icur, &got, &del); 687 688 error = xfs_trans_commit(tp); 689 xfs_iunlock(ip, XFS_ILOCK_EXCL); 690 if (error) 691 return error; 692 693 /* Update the caller about how much progress we made. */ 694 *end_fsb = del.br_startoff; 695 return 0; 696 697 out_cancel: 698 xfs_trans_cancel(tp); 699 xfs_iunlock(ip, XFS_ILOCK_EXCL); 700 return error; 701 } 702 703 /* 704 * Remap parts of a file's data fork after a successful CoW. 705 */ 706 int 707 xfs_reflink_end_cow( 708 struct xfs_inode *ip, 709 xfs_off_t offset, 710 xfs_off_t count) 711 { 712 xfs_fileoff_t offset_fsb; 713 xfs_fileoff_t end_fsb; 714 int error = 0; 715 716 trace_xfs_reflink_end_cow(ip, offset, count); 717 718 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 719 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count); 720 721 /* 722 * Walk backwards until we're out of the I/O range. The loop function 723 * repeatedly cycles the ILOCK to allocate one transaction per remapped 724 * extent. 725 * 726 * If we're being called by writeback then the the pages will still 727 * have PageWriteback set, which prevents races with reflink remapping 728 * and truncate. Reflink remapping prevents races with writeback by 729 * taking the iolock and mmaplock before flushing the pages and 730 * remapping, which means there won't be any further writeback or page 731 * cache dirtying until the reflink completes. 732 * 733 * We should never have two threads issuing writeback for the same file 734 * region. There are also have post-eof checks in the writeback 735 * preparation code so that we don't bother writing out pages that are 736 * about to be truncated. 737 * 738 * If we're being called as part of directio write completion, the dio 739 * count is still elevated, which reflink and truncate will wait for. 740 * Reflink remapping takes the iolock and mmaplock and waits for 741 * pending dio to finish, which should prevent any directio until the 742 * remap completes. Multiple concurrent directio writes to the same 743 * region are handled by end_cow processing only occurring for the 744 * threads which succeed; the outcome of multiple overlapping direct 745 * writes is not well defined anyway. 746 * 747 * It's possible that a buffered write and a direct write could collide 748 * here (the buffered write stumbles in after the dio flushes and 749 * invalidates the page cache and immediately queues writeback), but we 750 * have never supported this 100%. If either disk write succeeds the 751 * blocks will be remapped. 752 */ 753 while (end_fsb > offset_fsb && !error) 754 error = xfs_reflink_end_cow_extent(ip, offset_fsb, &end_fsb); 755 756 if (error) 757 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_); 758 return error; 759 } 760 761 /* 762 * Free leftover CoW reservations that didn't get cleaned out. 763 */ 764 int 765 xfs_reflink_recover_cow( 766 struct xfs_mount *mp) 767 { 768 xfs_agnumber_t agno; 769 int error = 0; 770 771 if (!xfs_sb_version_hasreflink(&mp->m_sb)) 772 return 0; 773 774 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 775 error = xfs_refcount_recover_cow_leftovers(mp, agno); 776 if (error) 777 break; 778 } 779 780 return error; 781 } 782 783 /* 784 * Reflinking (Block) Ranges of Two Files Together 785 * 786 * First, ensure that the reflink flag is set on both inodes. The flag is an 787 * optimization to avoid unnecessary refcount btree lookups in the write path. 788 * 789 * Now we can iteratively remap the range of extents (and holes) in src to the 790 * corresponding ranges in dest. Let drange and srange denote the ranges of 791 * logical blocks in dest and src touched by the reflink operation. 792 * 793 * While the length of drange is greater than zero, 794 * - Read src's bmbt at the start of srange ("imap") 795 * - If imap doesn't exist, make imap appear to start at the end of srange 796 * with zero length. 797 * - If imap starts before srange, advance imap to start at srange. 798 * - If imap goes beyond srange, truncate imap to end at the end of srange. 799 * - Punch (imap start - srange start + imap len) blocks from dest at 800 * offset (drange start). 801 * - If imap points to a real range of pblks, 802 * > Increase the refcount of the imap's pblks 803 * > Map imap's pblks into dest at the offset 804 * (drange start + imap start - srange start) 805 * - Advance drange and srange by (imap start - srange start + imap len) 806 * 807 * Finally, if the reflink made dest longer, update both the in-core and 808 * on-disk file sizes. 809 * 810 * ASCII Art Demonstration: 811 * 812 * Let's say we want to reflink this source file: 813 * 814 * ----SSSSSSS-SSSSS----SSSSSS (src file) 815 * <--------------------> 816 * 817 * into this destination file: 818 * 819 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file) 820 * <--------------------> 821 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest. 822 * Observe that the range has different logical offsets in either file. 823 * 824 * Consider that the first extent in the source file doesn't line up with our 825 * reflink range. Unmapping and remapping are separate operations, so we can 826 * unmap more blocks from the destination file than we remap. 827 * 828 * ----SSSSSSS-SSSSS----SSSSSS 829 * <-------> 830 * --DDDDD---------DDDDD--DDD 831 * <-------> 832 * 833 * Now remap the source extent into the destination file: 834 * 835 * ----SSSSSSS-SSSSS----SSSSSS 836 * <-------> 837 * --DDDDD--SSSSSSSDDDDD--DDD 838 * <-------> 839 * 840 * Do likewise with the second hole and extent in our range. Holes in the 841 * unmap range don't affect our operation. 842 * 843 * ----SSSSSSS-SSSSS----SSSSSS 844 * <----> 845 * --DDDDD--SSSSSSS-SSSSS-DDD 846 * <----> 847 * 848 * Finally, unmap and remap part of the third extent. This will increase the 849 * size of the destination file. 850 * 851 * ----SSSSSSS-SSSSS----SSSSSS 852 * <-----> 853 * --DDDDD--SSSSSSS-SSSSS----SSS 854 * <-----> 855 * 856 * Once we update the destination file's i_size, we're done. 857 */ 858 859 /* 860 * Ensure the reflink bit is set in both inodes. 861 */ 862 STATIC int 863 xfs_reflink_set_inode_flag( 864 struct xfs_inode *src, 865 struct xfs_inode *dest) 866 { 867 struct xfs_mount *mp = src->i_mount; 868 int error; 869 struct xfs_trans *tp; 870 871 if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest)) 872 return 0; 873 874 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); 875 if (error) 876 goto out_error; 877 878 /* Lock both files against IO */ 879 if (src->i_ino == dest->i_ino) 880 xfs_ilock(src, XFS_ILOCK_EXCL); 881 else 882 xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL); 883 884 if (!xfs_is_reflink_inode(src)) { 885 trace_xfs_reflink_set_inode_flag(src); 886 xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL); 887 src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK; 888 xfs_trans_log_inode(tp, src, XFS_ILOG_CORE); 889 xfs_ifork_init_cow(src); 890 } else 891 xfs_iunlock(src, XFS_ILOCK_EXCL); 892 893 if (src->i_ino == dest->i_ino) 894 goto commit_flags; 895 896 if (!xfs_is_reflink_inode(dest)) { 897 trace_xfs_reflink_set_inode_flag(dest); 898 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL); 899 dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK; 900 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE); 901 xfs_ifork_init_cow(dest); 902 } else 903 xfs_iunlock(dest, XFS_ILOCK_EXCL); 904 905 commit_flags: 906 error = xfs_trans_commit(tp); 907 if (error) 908 goto out_error; 909 return error; 910 911 out_error: 912 trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_); 913 return error; 914 } 915 916 /* 917 * Update destination inode size & cowextsize hint, if necessary. 918 */ 919 int 920 xfs_reflink_update_dest( 921 struct xfs_inode *dest, 922 xfs_off_t newlen, 923 xfs_extlen_t cowextsize, 924 unsigned int remap_flags) 925 { 926 struct xfs_mount *mp = dest->i_mount; 927 struct xfs_trans *tp; 928 int error; 929 930 if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0) 931 return 0; 932 933 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); 934 if (error) 935 goto out_error; 936 937 xfs_ilock(dest, XFS_ILOCK_EXCL); 938 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL); 939 940 if (newlen > i_size_read(VFS_I(dest))) { 941 trace_xfs_reflink_update_inode_size(dest, newlen); 942 i_size_write(VFS_I(dest), newlen); 943 dest->i_d.di_size = newlen; 944 } 945 946 if (cowextsize) { 947 dest->i_d.di_cowextsize = cowextsize; 948 dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; 949 } 950 951 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE); 952 953 error = xfs_trans_commit(tp); 954 if (error) 955 goto out_error; 956 return error; 957 958 out_error: 959 trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_); 960 return error; 961 } 962 963 /* 964 * Do we have enough reserve in this AG to handle a reflink? The refcount 965 * btree already reserved all the space it needs, but the rmap btree can grow 966 * infinitely, so we won't allow more reflinks when the AG is down to the 967 * btree reserves. 968 */ 969 static int 970 xfs_reflink_ag_has_free_space( 971 struct xfs_mount *mp, 972 xfs_agnumber_t agno) 973 { 974 struct xfs_perag *pag; 975 int error = 0; 976 977 if (!xfs_sb_version_hasrmapbt(&mp->m_sb)) 978 return 0; 979 980 pag = xfs_perag_get(mp, agno); 981 if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) || 982 xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA)) 983 error = -ENOSPC; 984 xfs_perag_put(pag); 985 return error; 986 } 987 988 /* 989 * Unmap a range of blocks from a file, then map other blocks into the hole. 990 * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount). 991 * The extent irec is mapped into dest at irec->br_startoff. 992 */ 993 STATIC int 994 xfs_reflink_remap_extent( 995 struct xfs_inode *ip, 996 struct xfs_bmbt_irec *irec, 997 xfs_fileoff_t destoff, 998 xfs_off_t new_isize) 999 { 1000 struct xfs_mount *mp = ip->i_mount; 1001 bool real_extent = xfs_bmap_is_real_extent(irec); 1002 struct xfs_trans *tp; 1003 unsigned int resblks; 1004 struct xfs_bmbt_irec uirec; 1005 xfs_filblks_t rlen; 1006 xfs_filblks_t unmap_len; 1007 xfs_off_t newlen; 1008 int error; 1009 1010 unmap_len = irec->br_startoff + irec->br_blockcount - destoff; 1011 trace_xfs_reflink_punch_range(ip, destoff, unmap_len); 1012 1013 /* No reflinking if we're low on space */ 1014 if (real_extent) { 1015 error = xfs_reflink_ag_has_free_space(mp, 1016 XFS_FSB_TO_AGNO(mp, irec->br_startblock)); 1017 if (error) 1018 goto out; 1019 } 1020 1021 /* Start a rolling transaction to switch the mappings */ 1022 resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK); 1023 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp); 1024 if (error) 1025 goto out; 1026 1027 xfs_ilock(ip, XFS_ILOCK_EXCL); 1028 xfs_trans_ijoin(tp, ip, 0); 1029 1030 /* If we're not just clearing space, then do we have enough quota? */ 1031 if (real_extent) { 1032 error = xfs_trans_reserve_quota_nblks(tp, ip, 1033 irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS); 1034 if (error) 1035 goto out_cancel; 1036 } 1037 1038 trace_xfs_reflink_remap(ip, irec->br_startoff, 1039 irec->br_blockcount, irec->br_startblock); 1040 1041 /* Unmap the old blocks in the data fork. */ 1042 rlen = unmap_len; 1043 while (rlen) { 1044 ASSERT(tp->t_firstblock == NULLFSBLOCK); 1045 error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1); 1046 if (error) 1047 goto out_cancel; 1048 1049 /* 1050 * Trim the extent to whatever got unmapped. 1051 * Remember, bunmapi works backwards. 1052 */ 1053 uirec.br_startblock = irec->br_startblock + rlen; 1054 uirec.br_startoff = irec->br_startoff + rlen; 1055 uirec.br_blockcount = unmap_len - rlen; 1056 unmap_len = rlen; 1057 1058 /* If this isn't a real mapping, we're done. */ 1059 if (!real_extent || uirec.br_blockcount == 0) 1060 goto next_extent; 1061 1062 trace_xfs_reflink_remap(ip, uirec.br_startoff, 1063 uirec.br_blockcount, uirec.br_startblock); 1064 1065 /* Update the refcount tree */ 1066 xfs_refcount_increase_extent(tp, &uirec); 1067 1068 /* Map the new blocks into the data fork. */ 1069 xfs_bmap_map_extent(tp, ip, &uirec); 1070 1071 /* Update quota accounting. */ 1072 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, 1073 uirec.br_blockcount); 1074 1075 /* Update dest isize if needed. */ 1076 newlen = XFS_FSB_TO_B(mp, 1077 uirec.br_startoff + uirec.br_blockcount); 1078 newlen = min_t(xfs_off_t, newlen, new_isize); 1079 if (newlen > i_size_read(VFS_I(ip))) { 1080 trace_xfs_reflink_update_inode_size(ip, newlen); 1081 i_size_write(VFS_I(ip), newlen); 1082 ip->i_d.di_size = newlen; 1083 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1084 } 1085 1086 next_extent: 1087 /* Process all the deferred stuff. */ 1088 error = xfs_defer_finish(&tp); 1089 if (error) 1090 goto out_cancel; 1091 } 1092 1093 error = xfs_trans_commit(tp); 1094 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1095 if (error) 1096 goto out; 1097 return 0; 1098 1099 out_cancel: 1100 xfs_trans_cancel(tp); 1101 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1102 out: 1103 trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_); 1104 return error; 1105 } 1106 1107 /* 1108 * Iteratively remap one file's extents (and holes) to another's. 1109 */ 1110 int 1111 xfs_reflink_remap_blocks( 1112 struct xfs_inode *src, 1113 loff_t pos_in, 1114 struct xfs_inode *dest, 1115 loff_t pos_out, 1116 loff_t remap_len, 1117 loff_t *remapped) 1118 { 1119 struct xfs_bmbt_irec imap; 1120 xfs_fileoff_t srcoff; 1121 xfs_fileoff_t destoff; 1122 xfs_filblks_t len; 1123 xfs_filblks_t range_len; 1124 xfs_filblks_t remapped_len = 0; 1125 xfs_off_t new_isize = pos_out + remap_len; 1126 int nimaps; 1127 int error = 0; 1128 1129 destoff = XFS_B_TO_FSBT(src->i_mount, pos_out); 1130 srcoff = XFS_B_TO_FSBT(src->i_mount, pos_in); 1131 len = XFS_B_TO_FSB(src->i_mount, remap_len); 1132 1133 /* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */ 1134 while (len) { 1135 uint lock_mode; 1136 1137 trace_xfs_reflink_remap_blocks_loop(src, srcoff, len, 1138 dest, destoff); 1139 1140 /* Read extent from the source file */ 1141 nimaps = 1; 1142 lock_mode = xfs_ilock_data_map_shared(src); 1143 error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0); 1144 xfs_iunlock(src, lock_mode); 1145 if (error) 1146 break; 1147 ASSERT(nimaps == 1); 1148 1149 trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_DATA_FORK, 1150 &imap); 1151 1152 /* Translate imap into the destination file. */ 1153 range_len = imap.br_startoff + imap.br_blockcount - srcoff; 1154 imap.br_startoff += destoff - srcoff; 1155 1156 /* Clear dest from destoff to the end of imap and map it in. */ 1157 error = xfs_reflink_remap_extent(dest, &imap, destoff, 1158 new_isize); 1159 if (error) 1160 break; 1161 1162 if (fatal_signal_pending(current)) { 1163 error = -EINTR; 1164 break; 1165 } 1166 1167 /* Advance drange/srange */ 1168 srcoff += range_len; 1169 destoff += range_len; 1170 len -= range_len; 1171 remapped_len += range_len; 1172 } 1173 1174 if (error) 1175 trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_); 1176 *remapped = min_t(loff_t, remap_len, 1177 XFS_FSB_TO_B(src->i_mount, remapped_len)); 1178 return error; 1179 } 1180 1181 /* 1182 * Grab the exclusive iolock for a data copy from src to dest, making sure to 1183 * abide vfs locking order (lowest pointer value goes first) and breaking the 1184 * layout leases before proceeding. The loop is needed because we cannot call 1185 * the blocking break_layout() with the iolocks held, and therefore have to 1186 * back out both locks. 1187 */ 1188 static int 1189 xfs_iolock_two_inodes_and_break_layout( 1190 struct inode *src, 1191 struct inode *dest) 1192 { 1193 int error; 1194 1195 if (src > dest) 1196 swap(src, dest); 1197 1198 retry: 1199 /* Wait to break both inodes' layouts before we start locking. */ 1200 error = break_layout(src, true); 1201 if (error) 1202 return error; 1203 if (src != dest) { 1204 error = break_layout(dest, true); 1205 if (error) 1206 return error; 1207 } 1208 1209 /* Lock one inode and make sure nobody got in and leased it. */ 1210 inode_lock(src); 1211 error = break_layout(src, false); 1212 if (error) { 1213 inode_unlock(src); 1214 if (error == -EWOULDBLOCK) 1215 goto retry; 1216 return error; 1217 } 1218 1219 if (src == dest) 1220 return 0; 1221 1222 /* Lock the other inode and make sure nobody got in and leased it. */ 1223 inode_lock_nested(dest, I_MUTEX_NONDIR2); 1224 error = break_layout(dest, false); 1225 if (error) { 1226 inode_unlock(src); 1227 inode_unlock(dest); 1228 if (error == -EWOULDBLOCK) 1229 goto retry; 1230 return error; 1231 } 1232 1233 return 0; 1234 } 1235 1236 /* Unlock both inodes after they've been prepped for a range clone. */ 1237 void 1238 xfs_reflink_remap_unlock( 1239 struct file *file_in, 1240 struct file *file_out) 1241 { 1242 struct inode *inode_in = file_inode(file_in); 1243 struct xfs_inode *src = XFS_I(inode_in); 1244 struct inode *inode_out = file_inode(file_out); 1245 struct xfs_inode *dest = XFS_I(inode_out); 1246 bool same_inode = (inode_in == inode_out); 1247 1248 xfs_iunlock(dest, XFS_MMAPLOCK_EXCL); 1249 if (!same_inode) 1250 xfs_iunlock(src, XFS_MMAPLOCK_EXCL); 1251 inode_unlock(inode_out); 1252 if (!same_inode) 1253 inode_unlock(inode_in); 1254 } 1255 1256 /* 1257 * If we're reflinking to a point past the destination file's EOF, we must 1258 * zero any speculative post-EOF preallocations that sit between the old EOF 1259 * and the destination file offset. 1260 */ 1261 static int 1262 xfs_reflink_zero_posteof( 1263 struct xfs_inode *ip, 1264 loff_t pos) 1265 { 1266 loff_t isize = i_size_read(VFS_I(ip)); 1267 1268 if (pos <= isize) 1269 return 0; 1270 1271 trace_xfs_zero_eof(ip, isize, pos - isize); 1272 return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL, 1273 &xfs_buffered_write_iomap_ops); 1274 } 1275 1276 /* 1277 * Prepare two files for range cloning. Upon a successful return both inodes 1278 * will have the iolock and mmaplock held, the page cache of the out file will 1279 * be truncated, and any leases on the out file will have been broken. This 1280 * function borrows heavily from xfs_file_aio_write_checks. 1281 * 1282 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't 1283 * checked that the bytes beyond EOF physically match. Hence we cannot use the 1284 * EOF block in the source dedupe range because it's not a complete block match, 1285 * hence can introduce a corruption into the file that has it's block replaced. 1286 * 1287 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be 1288 * "block aligned" for the purposes of cloning entire files. However, if the 1289 * source file range includes the EOF block and it lands within the existing EOF 1290 * of the destination file, then we can expose stale data from beyond the source 1291 * file EOF in the destination file. 1292 * 1293 * XFS doesn't support partial block sharing, so in both cases we have check 1294 * these cases ourselves. For dedupe, we can simply round the length to dedupe 1295 * down to the previous whole block and ignore the partial EOF block. While this 1296 * means we can't dedupe the last block of a file, this is an acceptible 1297 * tradeoff for simplicity on implementation. 1298 * 1299 * For cloning, we want to share the partial EOF block if it is also the new EOF 1300 * block of the destination file. If the partial EOF block lies inside the 1301 * existing destination EOF, then we have to abort the clone to avoid exposing 1302 * stale data in the destination file. Hence we reject these clone attempts with 1303 * -EINVAL in this case. 1304 */ 1305 int 1306 xfs_reflink_remap_prep( 1307 struct file *file_in, 1308 loff_t pos_in, 1309 struct file *file_out, 1310 loff_t pos_out, 1311 loff_t *len, 1312 unsigned int remap_flags) 1313 { 1314 struct inode *inode_in = file_inode(file_in); 1315 struct xfs_inode *src = XFS_I(inode_in); 1316 struct inode *inode_out = file_inode(file_out); 1317 struct xfs_inode *dest = XFS_I(inode_out); 1318 bool same_inode = (inode_in == inode_out); 1319 ssize_t ret; 1320 1321 /* Lock both files against IO */ 1322 ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out); 1323 if (ret) 1324 return ret; 1325 if (same_inode) 1326 xfs_ilock(src, XFS_MMAPLOCK_EXCL); 1327 else 1328 xfs_lock_two_inodes(src, XFS_MMAPLOCK_EXCL, dest, 1329 XFS_MMAPLOCK_EXCL); 1330 1331 /* Check file eligibility and prepare for block sharing. */ 1332 ret = -EINVAL; 1333 /* Don't reflink realtime inodes */ 1334 if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest)) 1335 goto out_unlock; 1336 1337 /* Don't share DAX file data for now. */ 1338 if (IS_DAX(inode_in) || IS_DAX(inode_out)) 1339 goto out_unlock; 1340 1341 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 1342 len, remap_flags); 1343 if (ret < 0 || *len == 0) 1344 goto out_unlock; 1345 1346 /* Attach dquots to dest inode before changing block map */ 1347 ret = xfs_qm_dqattach(dest); 1348 if (ret) 1349 goto out_unlock; 1350 1351 /* 1352 * Zero existing post-eof speculative preallocations in the destination 1353 * file. 1354 */ 1355 ret = xfs_reflink_zero_posteof(dest, pos_out); 1356 if (ret) 1357 goto out_unlock; 1358 1359 /* Set flags and remap blocks. */ 1360 ret = xfs_reflink_set_inode_flag(src, dest); 1361 if (ret) 1362 goto out_unlock; 1363 1364 /* 1365 * If pos_out > EOF, we may have dirtied blocks between EOF and 1366 * pos_out. In that case, we need to extend the flush and unmap to cover 1367 * from EOF to the end of the copy length. 1368 */ 1369 if (pos_out > XFS_ISIZE(dest)) { 1370 loff_t flen = *len + (pos_out - XFS_ISIZE(dest)); 1371 ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen); 1372 } else { 1373 ret = xfs_flush_unmap_range(dest, pos_out, *len); 1374 } 1375 if (ret) 1376 goto out_unlock; 1377 1378 return 1; 1379 out_unlock: 1380 xfs_reflink_remap_unlock(file_in, file_out); 1381 return ret; 1382 } 1383 1384 /* Does this inode need the reflink flag? */ 1385 int 1386 xfs_reflink_inode_has_shared_extents( 1387 struct xfs_trans *tp, 1388 struct xfs_inode *ip, 1389 bool *has_shared) 1390 { 1391 struct xfs_bmbt_irec got; 1392 struct xfs_mount *mp = ip->i_mount; 1393 struct xfs_ifork *ifp; 1394 xfs_agnumber_t agno; 1395 xfs_agblock_t agbno; 1396 xfs_extlen_t aglen; 1397 xfs_agblock_t rbno; 1398 xfs_extlen_t rlen; 1399 struct xfs_iext_cursor icur; 1400 bool found; 1401 int error; 1402 1403 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 1404 if (!(ifp->if_flags & XFS_IFEXTENTS)) { 1405 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK); 1406 if (error) 1407 return error; 1408 } 1409 1410 *has_shared = false; 1411 found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got); 1412 while (found) { 1413 if (isnullstartblock(got.br_startblock) || 1414 got.br_state != XFS_EXT_NORM) 1415 goto next; 1416 agno = XFS_FSB_TO_AGNO(mp, got.br_startblock); 1417 agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock); 1418 aglen = got.br_blockcount; 1419 1420 error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen, 1421 &rbno, &rlen, false); 1422 if (error) 1423 return error; 1424 /* Is there still a shared block here? */ 1425 if (rbno != NULLAGBLOCK) { 1426 *has_shared = true; 1427 return 0; 1428 } 1429 next: 1430 found = xfs_iext_next_extent(ifp, &icur, &got); 1431 } 1432 1433 return 0; 1434 } 1435 1436 /* 1437 * Clear the inode reflink flag if there are no shared extents. 1438 * 1439 * The caller is responsible for joining the inode to the transaction passed in. 1440 * The inode will be joined to the transaction that is returned to the caller. 1441 */ 1442 int 1443 xfs_reflink_clear_inode_flag( 1444 struct xfs_inode *ip, 1445 struct xfs_trans **tpp) 1446 { 1447 bool needs_flag; 1448 int error = 0; 1449 1450 ASSERT(xfs_is_reflink_inode(ip)); 1451 1452 error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag); 1453 if (error || needs_flag) 1454 return error; 1455 1456 /* 1457 * We didn't find any shared blocks so turn off the reflink flag. 1458 * First, get rid of any leftover CoW mappings. 1459 */ 1460 error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF, true); 1461 if (error) 1462 return error; 1463 1464 /* Clear the inode flag. */ 1465 trace_xfs_reflink_unset_inode_flag(ip); 1466 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1467 xfs_inode_clear_cowblocks_tag(ip); 1468 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE); 1469 1470 return error; 1471 } 1472 1473 /* 1474 * Clear the inode reflink flag if there are no shared extents and the size 1475 * hasn't changed. 1476 */ 1477 STATIC int 1478 xfs_reflink_try_clear_inode_flag( 1479 struct xfs_inode *ip) 1480 { 1481 struct xfs_mount *mp = ip->i_mount; 1482 struct xfs_trans *tp; 1483 int error = 0; 1484 1485 /* Start a rolling transaction to remove the mappings */ 1486 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp); 1487 if (error) 1488 return error; 1489 1490 xfs_ilock(ip, XFS_ILOCK_EXCL); 1491 xfs_trans_ijoin(tp, ip, 0); 1492 1493 error = xfs_reflink_clear_inode_flag(ip, &tp); 1494 if (error) 1495 goto cancel; 1496 1497 error = xfs_trans_commit(tp); 1498 if (error) 1499 goto out; 1500 1501 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1502 return 0; 1503 cancel: 1504 xfs_trans_cancel(tp); 1505 out: 1506 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1507 return error; 1508 } 1509 1510 /* 1511 * Pre-COW all shared blocks within a given byte range of a file and turn off 1512 * the reflink flag if we unshare all of the file's blocks. 1513 */ 1514 int 1515 xfs_reflink_unshare( 1516 struct xfs_inode *ip, 1517 xfs_off_t offset, 1518 xfs_off_t len) 1519 { 1520 struct inode *inode = VFS_I(ip); 1521 int error; 1522 1523 if (!xfs_is_reflink_inode(ip)) 1524 return 0; 1525 1526 trace_xfs_reflink_unshare(ip, offset, len); 1527 1528 inode_dio_wait(inode); 1529 1530 error = iomap_file_unshare(inode, offset, len, 1531 &xfs_buffered_write_iomap_ops); 1532 if (error) 1533 goto out; 1534 error = filemap_write_and_wait(inode->i_mapping); 1535 if (error) 1536 goto out; 1537 1538 /* Turn off the reflink flag if possible. */ 1539 error = xfs_reflink_try_clear_inode_flag(ip); 1540 if (error) 1541 goto out; 1542 return 0; 1543 1544 out: 1545 trace_xfs_reflink_unshare_error(ip, error, _RET_IP_); 1546 return error; 1547 } 1548