xref: /openbmc/linux/fs/xfs/xfs_reflink.c (revision a17922de)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_da_format.h"
15 #include "xfs_da_btree.h"
16 #include "xfs_inode.h"
17 #include "xfs_trans.h"
18 #include "xfs_inode_item.h"
19 #include "xfs_bmap.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_error.h"
22 #include "xfs_dir2.h"
23 #include "xfs_dir2_priv.h"
24 #include "xfs_ioctl.h"
25 #include "xfs_trace.h"
26 #include "xfs_log.h"
27 #include "xfs_icache.h"
28 #include "xfs_pnfs.h"
29 #include "xfs_btree.h"
30 #include "xfs_refcount_btree.h"
31 #include "xfs_refcount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_trans_space.h"
34 #include "xfs_bit.h"
35 #include "xfs_alloc.h"
36 #include "xfs_quota_defs.h"
37 #include "xfs_quota.h"
38 #include "xfs_reflink.h"
39 #include "xfs_iomap.h"
40 #include "xfs_rmap_btree.h"
41 #include "xfs_sb.h"
42 #include "xfs_ag_resv.h"
43 
44 /*
45  * Copy on Write of Shared Blocks
46  *
47  * XFS must preserve "the usual" file semantics even when two files share
48  * the same physical blocks.  This means that a write to one file must not
49  * alter the blocks in a different file; the way that we'll do that is
50  * through the use of a copy-on-write mechanism.  At a high level, that
51  * means that when we want to write to a shared block, we allocate a new
52  * block, write the data to the new block, and if that succeeds we map the
53  * new block into the file.
54  *
55  * XFS provides a "delayed allocation" mechanism that defers the allocation
56  * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
57  * possible.  This reduces fragmentation by enabling the filesystem to ask
58  * for bigger chunks less often, which is exactly what we want for CoW.
59  *
60  * The delalloc mechanism begins when the kernel wants to make a block
61  * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
62  * create a delalloc mapping, which is a regular in-core extent, but without
63  * a real startblock.  (For delalloc mappings, the startblock encodes both
64  * a flag that this is a delalloc mapping, and a worst-case estimate of how
65  * many blocks might be required to put the mapping into the BMBT.)  delalloc
66  * mappings are a reservation against the free space in the filesystem;
67  * adjacent mappings can also be combined into fewer larger mappings.
68  *
69  * As an optimization, the CoW extent size hint (cowextsz) creates
70  * outsized aligned delalloc reservations in the hope of landing out of
71  * order nearby CoW writes in a single extent on disk, thereby reducing
72  * fragmentation and improving future performance.
73  *
74  * D: --RRRRRRSSSRRRRRRRR--- (data fork)
75  * C: ------DDDDDDD--------- (CoW fork)
76  *
77  * When dirty pages are being written out (typically in writepage), the
78  * delalloc reservations are converted into unwritten mappings by
79  * allocating blocks and replacing the delalloc mapping with real ones.
80  * A delalloc mapping can be replaced by several unwritten ones if the
81  * free space is fragmented.
82  *
83  * D: --RRRRRRSSSRRRRRRRR---
84  * C: ------UUUUUUU---------
85  *
86  * We want to adapt the delalloc mechanism for copy-on-write, since the
87  * write paths are similar.  The first two steps (creating the reservation
88  * and allocating the blocks) are exactly the same as delalloc except that
89  * the mappings must be stored in a separate CoW fork because we do not want
90  * to disturb the mapping in the data fork until we're sure that the write
91  * succeeded.  IO completion in this case is the process of removing the old
92  * mapping from the data fork and moving the new mapping from the CoW fork to
93  * the data fork.  This will be discussed shortly.
94  *
95  * For now, unaligned directio writes will be bounced back to the page cache.
96  * Block-aligned directio writes will use the same mechanism as buffered
97  * writes.
98  *
99  * Just prior to submitting the actual disk write requests, we convert
100  * the extents representing the range of the file actually being written
101  * (as opposed to extra pieces created for the cowextsize hint) to real
102  * extents.  This will become important in the next step:
103  *
104  * D: --RRRRRRSSSRRRRRRRR---
105  * C: ------UUrrUUU---------
106  *
107  * CoW remapping must be done after the data block write completes,
108  * because we don't want to destroy the old data fork map until we're sure
109  * the new block has been written.  Since the new mappings are kept in a
110  * separate fork, we can simply iterate these mappings to find the ones
111  * that cover the file blocks that we just CoW'd.  For each extent, simply
112  * unmap the corresponding range in the data fork, map the new range into
113  * the data fork, and remove the extent from the CoW fork.  Because of
114  * the presence of the cowextsize hint, however, we must be careful
115  * only to remap the blocks that we've actually written out --  we must
116  * never remap delalloc reservations nor CoW staging blocks that have
117  * yet to be written.  This corresponds exactly to the real extents in
118  * the CoW fork:
119  *
120  * D: --RRRRRRrrSRRRRRRRR---
121  * C: ------UU--UUU---------
122  *
123  * Since the remapping operation can be applied to an arbitrary file
124  * range, we record the need for the remap step as a flag in the ioend
125  * instead of declaring a new IO type.  This is required for direct io
126  * because we only have ioend for the whole dio, and we have to be able to
127  * remember the presence of unwritten blocks and CoW blocks with a single
128  * ioend structure.  Better yet, the more ground we can cover with one
129  * ioend, the better.
130  */
131 
132 /*
133  * Given an AG extent, find the lowest-numbered run of shared blocks
134  * within that range and return the range in fbno/flen.  If
135  * find_end_of_shared is true, return the longest contiguous extent of
136  * shared blocks.  If there are no shared extents, fbno and flen will
137  * be set to NULLAGBLOCK and 0, respectively.
138  */
139 int
140 xfs_reflink_find_shared(
141 	struct xfs_mount	*mp,
142 	struct xfs_trans	*tp,
143 	xfs_agnumber_t		agno,
144 	xfs_agblock_t		agbno,
145 	xfs_extlen_t		aglen,
146 	xfs_agblock_t		*fbno,
147 	xfs_extlen_t		*flen,
148 	bool			find_end_of_shared)
149 {
150 	struct xfs_buf		*agbp;
151 	struct xfs_btree_cur	*cur;
152 	int			error;
153 
154 	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
155 	if (error)
156 		return error;
157 	if (!agbp)
158 		return -ENOMEM;
159 
160 	cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno, NULL);
161 
162 	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
163 			find_end_of_shared);
164 
165 	xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
166 
167 	xfs_trans_brelse(tp, agbp);
168 	return error;
169 }
170 
171 /*
172  * Trim the mapping to the next block where there's a change in the
173  * shared/unshared status.  More specifically, this means that we
174  * find the lowest-numbered extent of shared blocks that coincides with
175  * the given block mapping.  If the shared extent overlaps the start of
176  * the mapping, trim the mapping to the end of the shared extent.  If
177  * the shared region intersects the mapping, trim the mapping to the
178  * start of the shared extent.  If there are no shared regions that
179  * overlap, just return the original extent.
180  */
181 int
182 xfs_reflink_trim_around_shared(
183 	struct xfs_inode	*ip,
184 	struct xfs_bmbt_irec	*irec,
185 	bool			*shared,
186 	bool			*trimmed)
187 {
188 	xfs_agnumber_t		agno;
189 	xfs_agblock_t		agbno;
190 	xfs_extlen_t		aglen;
191 	xfs_agblock_t		fbno;
192 	xfs_extlen_t		flen;
193 	int			error = 0;
194 
195 	/* Holes, unwritten, and delalloc extents cannot be shared */
196 	if (!xfs_is_reflink_inode(ip) || !xfs_bmap_is_real_extent(irec)) {
197 		*shared = false;
198 		return 0;
199 	}
200 
201 	trace_xfs_reflink_trim_around_shared(ip, irec);
202 
203 	agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
204 	agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
205 	aglen = irec->br_blockcount;
206 
207 	error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
208 			aglen, &fbno, &flen, true);
209 	if (error)
210 		return error;
211 
212 	*shared = *trimmed = false;
213 	if (fbno == NULLAGBLOCK) {
214 		/* No shared blocks at all. */
215 		return 0;
216 	} else if (fbno == agbno) {
217 		/*
218 		 * The start of this extent is shared.  Truncate the
219 		 * mapping at the end of the shared region so that a
220 		 * subsequent iteration starts at the start of the
221 		 * unshared region.
222 		 */
223 		irec->br_blockcount = flen;
224 		*shared = true;
225 		if (flen != aglen)
226 			*trimmed = true;
227 		return 0;
228 	} else {
229 		/*
230 		 * There's a shared extent midway through this extent.
231 		 * Truncate the mapping at the start of the shared
232 		 * extent so that a subsequent iteration starts at the
233 		 * start of the shared region.
234 		 */
235 		irec->br_blockcount = fbno - agbno;
236 		*trimmed = true;
237 		return 0;
238 	}
239 }
240 
241 /*
242  * Trim the passed in imap to the next shared/unshared extent boundary, and
243  * if imap->br_startoff points to a shared extent reserve space for it in the
244  * COW fork.  In this case *shared is set to true, else to false.
245  *
246  * Note that imap will always contain the block numbers for the existing blocks
247  * in the data fork, as the upper layers need them for read-modify-write
248  * operations.
249  */
250 int
251 xfs_reflink_reserve_cow(
252 	struct xfs_inode	*ip,
253 	struct xfs_bmbt_irec	*imap,
254 	bool			*shared)
255 {
256 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
257 	struct xfs_bmbt_irec	got;
258 	int			error = 0;
259 	bool			eof = false, trimmed;
260 	struct xfs_iext_cursor	icur;
261 
262 	/*
263 	 * Search the COW fork extent list first.  This serves two purposes:
264 	 * first this implement the speculative preallocation using cowextisze,
265 	 * so that we also unshared block adjacent to shared blocks instead
266 	 * of just the shared blocks themselves.  Second the lookup in the
267 	 * extent list is generally faster than going out to the shared extent
268 	 * tree.
269 	 */
270 
271 	if (!xfs_iext_lookup_extent(ip, ifp, imap->br_startoff, &icur, &got))
272 		eof = true;
273 	if (!eof && got.br_startoff <= imap->br_startoff) {
274 		trace_xfs_reflink_cow_found(ip, imap);
275 		xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
276 
277 		*shared = true;
278 		return 0;
279 	}
280 
281 	/* Trim the mapping to the nearest shared extent boundary. */
282 	error = xfs_reflink_trim_around_shared(ip, imap, shared, &trimmed);
283 	if (error)
284 		return error;
285 
286 	/* Not shared?  Just report the (potentially capped) extent. */
287 	if (!*shared)
288 		return 0;
289 
290 	/*
291 	 * Fork all the shared blocks from our write offset until the end of
292 	 * the extent.
293 	 */
294 	error = xfs_qm_dqattach_locked(ip, false);
295 	if (error)
296 		return error;
297 
298 	error = xfs_bmapi_reserve_delalloc(ip, XFS_COW_FORK, imap->br_startoff,
299 			imap->br_blockcount, 0, &got, &icur, eof);
300 	if (error == -ENOSPC || error == -EDQUOT)
301 		trace_xfs_reflink_cow_enospc(ip, imap);
302 	if (error)
303 		return error;
304 
305 	trace_xfs_reflink_cow_alloc(ip, &got);
306 	return 0;
307 }
308 
309 /* Convert part of an unwritten CoW extent to a real one. */
310 STATIC int
311 xfs_reflink_convert_cow_extent(
312 	struct xfs_inode		*ip,
313 	struct xfs_bmbt_irec		*imap,
314 	xfs_fileoff_t			offset_fsb,
315 	xfs_filblks_t			count_fsb,
316 	struct xfs_defer_ops		*dfops)
317 {
318 	xfs_fsblock_t			first_block = NULLFSBLOCK;
319 	int				nimaps = 1;
320 
321 	if (imap->br_state == XFS_EXT_NORM)
322 		return 0;
323 
324 	xfs_trim_extent(imap, offset_fsb, count_fsb);
325 	trace_xfs_reflink_convert_cow(ip, imap);
326 	if (imap->br_blockcount == 0)
327 		return 0;
328 	return xfs_bmapi_write(NULL, ip, imap->br_startoff, imap->br_blockcount,
329 			XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT, &first_block,
330 			0, imap, &nimaps, dfops);
331 }
332 
333 /* Convert all of the unwritten CoW extents in a file's range to real ones. */
334 int
335 xfs_reflink_convert_cow(
336 	struct xfs_inode	*ip,
337 	xfs_off_t		offset,
338 	xfs_off_t		count)
339 {
340 	struct xfs_mount	*mp = ip->i_mount;
341 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
342 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
343 	xfs_filblks_t		count_fsb = end_fsb - offset_fsb;
344 	struct xfs_bmbt_irec	imap;
345 	struct xfs_defer_ops	dfops;
346 	xfs_fsblock_t		first_block = NULLFSBLOCK;
347 	int			nimaps = 1, error = 0;
348 
349 	ASSERT(count != 0);
350 
351 	xfs_ilock(ip, XFS_ILOCK_EXCL);
352 	error = xfs_bmapi_write(NULL, ip, offset_fsb, count_fsb,
353 			XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT |
354 			XFS_BMAPI_CONVERT_ONLY, &first_block, 0, &imap, &nimaps,
355 			&dfops);
356 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
357 	return error;
358 }
359 
360 /* Allocate all CoW reservations covering a range of blocks in a file. */
361 int
362 xfs_reflink_allocate_cow(
363 	struct xfs_inode	*ip,
364 	struct xfs_bmbt_irec	*imap,
365 	bool			*shared,
366 	uint			*lockmode)
367 {
368 	struct xfs_mount	*mp = ip->i_mount;
369 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
370 	xfs_filblks_t		count_fsb = imap->br_blockcount;
371 	struct xfs_bmbt_irec	got;
372 	struct xfs_defer_ops	dfops;
373 	struct xfs_trans	*tp = NULL;
374 	xfs_fsblock_t		first_block;
375 	int			nimaps, error = 0;
376 	bool			trimmed;
377 	xfs_filblks_t		resaligned;
378 	xfs_extlen_t		resblks = 0;
379 	struct xfs_iext_cursor	icur;
380 
381 retry:
382 	ASSERT(xfs_is_reflink_inode(ip));
383 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
384 
385 	/*
386 	 * Even if the extent is not shared we might have a preallocation for
387 	 * it in the COW fork.  If so use it.
388 	 */
389 	if (xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got) &&
390 	    got.br_startoff <= offset_fsb) {
391 		*shared = true;
392 
393 		/* If we have a real allocation in the COW fork we're done. */
394 		if (!isnullstartblock(got.br_startblock)) {
395 			xfs_trim_extent(&got, offset_fsb, count_fsb);
396 			*imap = got;
397 			goto convert;
398 		}
399 
400 		xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
401 	} else {
402 		error = xfs_reflink_trim_around_shared(ip, imap, shared, &trimmed);
403 		if (error || !*shared)
404 			goto out;
405 	}
406 
407 	if (!tp) {
408 		resaligned = xfs_aligned_fsb_count(imap->br_startoff,
409 			imap->br_blockcount, xfs_get_cowextsz_hint(ip));
410 		resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
411 
412 		xfs_iunlock(ip, *lockmode);
413 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
414 		*lockmode = XFS_ILOCK_EXCL;
415 		xfs_ilock(ip, *lockmode);
416 
417 		if (error)
418 			return error;
419 
420 		error = xfs_qm_dqattach_locked(ip, false);
421 		if (error)
422 			goto out;
423 		goto retry;
424 	}
425 
426 	error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0,
427 			XFS_QMOPT_RES_REGBLKS);
428 	if (error)
429 		goto out;
430 
431 	xfs_trans_ijoin(tp, ip, 0);
432 
433 	xfs_defer_init(&dfops, &first_block);
434 	nimaps = 1;
435 
436 	/* Allocate the entire reservation as unwritten blocks. */
437 	error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
438 			XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, &first_block,
439 			resblks, imap, &nimaps, &dfops);
440 	if (error)
441 		goto out_bmap_cancel;
442 
443 	xfs_inode_set_cowblocks_tag(ip);
444 
445 	/* Finish up. */
446 	error = xfs_defer_finish(&tp, &dfops);
447 	if (error)
448 		goto out_bmap_cancel;
449 
450 	error = xfs_trans_commit(tp);
451 	if (error)
452 		return error;
453 
454 	/*
455 	 * Allocation succeeded but the requested range was not even partially
456 	 * satisfied?  Bail out!
457 	 */
458 	if (nimaps == 0)
459 		return -ENOSPC;
460 convert:
461 	return xfs_reflink_convert_cow_extent(ip, imap, offset_fsb, count_fsb,
462 			&dfops);
463 out_bmap_cancel:
464 	xfs_defer_cancel(&dfops);
465 	xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0,
466 			XFS_QMOPT_RES_REGBLKS);
467 out:
468 	if (tp)
469 		xfs_trans_cancel(tp);
470 	return error;
471 }
472 
473 /*
474  * Find the CoW reservation for a given byte offset of a file.
475  */
476 bool
477 xfs_reflink_find_cow_mapping(
478 	struct xfs_inode		*ip,
479 	xfs_off_t			offset,
480 	struct xfs_bmbt_irec		*imap)
481 {
482 	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
483 	xfs_fileoff_t			offset_fsb;
484 	struct xfs_bmbt_irec		got;
485 	struct xfs_iext_cursor		icur;
486 
487 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED));
488 
489 	if (!xfs_is_reflink_inode(ip))
490 		return false;
491 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
492 	if (!xfs_iext_lookup_extent(ip, ifp, offset_fsb, &icur, &got))
493 		return false;
494 	if (got.br_startoff > offset_fsb)
495 		return false;
496 
497 	trace_xfs_reflink_find_cow_mapping(ip, offset, 1, XFS_IO_OVERWRITE,
498 			&got);
499 	*imap = got;
500 	return true;
501 }
502 
503 /*
504  * Trim an extent to end at the next CoW reservation past offset_fsb.
505  */
506 void
507 xfs_reflink_trim_irec_to_next_cow(
508 	struct xfs_inode		*ip,
509 	xfs_fileoff_t			offset_fsb,
510 	struct xfs_bmbt_irec		*imap)
511 {
512 	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
513 	struct xfs_bmbt_irec		got;
514 	struct xfs_iext_cursor		icur;
515 
516 	if (!xfs_is_reflink_inode(ip))
517 		return;
518 
519 	/* Find the extent in the CoW fork. */
520 	if (!xfs_iext_lookup_extent(ip, ifp, offset_fsb, &icur, &got))
521 		return;
522 
523 	/* This is the extent before; try sliding up one. */
524 	if (got.br_startoff < offset_fsb) {
525 		if (!xfs_iext_next_extent(ifp, &icur, &got))
526 			return;
527 	}
528 
529 	if (got.br_startoff >= imap->br_startoff + imap->br_blockcount)
530 		return;
531 
532 	imap->br_blockcount = got.br_startoff - imap->br_startoff;
533 	trace_xfs_reflink_trim_irec(ip, imap);
534 }
535 
536 /*
537  * Cancel CoW reservations for some block range of an inode.
538  *
539  * If cancel_real is true this function cancels all COW fork extents for the
540  * inode; if cancel_real is false, real extents are not cleared.
541  *
542  * Caller must have already joined the inode to the current transaction. The
543  * inode will be joined to the transaction returned to the caller.
544  */
545 int
546 xfs_reflink_cancel_cow_blocks(
547 	struct xfs_inode		*ip,
548 	struct xfs_trans		**tpp,
549 	xfs_fileoff_t			offset_fsb,
550 	xfs_fileoff_t			end_fsb,
551 	bool				cancel_real)
552 {
553 	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
554 	struct xfs_bmbt_irec		got, del;
555 	struct xfs_iext_cursor		icur;
556 	xfs_fsblock_t			firstfsb;
557 	struct xfs_defer_ops		dfops;
558 	int				error = 0;
559 
560 	if (!xfs_is_reflink_inode(ip))
561 		return 0;
562 	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
563 		return 0;
564 
565 	/* Walk backwards until we're out of the I/O range... */
566 	while (got.br_startoff + got.br_blockcount > offset_fsb) {
567 		del = got;
568 		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
569 
570 		/* Extent delete may have bumped ext forward */
571 		if (!del.br_blockcount) {
572 			xfs_iext_prev(ifp, &icur);
573 			goto next_extent;
574 		}
575 
576 		trace_xfs_reflink_cancel_cow(ip, &del);
577 
578 		if (isnullstartblock(del.br_startblock)) {
579 			error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
580 					&icur, &got, &del);
581 			if (error)
582 				break;
583 		} else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
584 			xfs_defer_init(&dfops, &firstfsb);
585 
586 			/* Free the CoW orphan record. */
587 			error = xfs_refcount_free_cow_extent(ip->i_mount,
588 					&dfops, del.br_startblock,
589 					del.br_blockcount);
590 			if (error)
591 				break;
592 
593 			xfs_bmap_add_free(ip->i_mount, &dfops,
594 					del.br_startblock, del.br_blockcount,
595 					NULL);
596 
597 			/* Roll the transaction */
598 			xfs_defer_ijoin(&dfops, ip);
599 			error = xfs_defer_finish(tpp, &dfops);
600 			if (error) {
601 				xfs_defer_cancel(&dfops);
602 				break;
603 			}
604 
605 			/* Remove the mapping from the CoW fork. */
606 			xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
607 
608 			/* Remove the quota reservation */
609 			error = xfs_trans_reserve_quota_nblks(NULL, ip,
610 					-(long)del.br_blockcount, 0,
611 					XFS_QMOPT_RES_REGBLKS);
612 			if (error)
613 				break;
614 		} else {
615 			/* Didn't do anything, push cursor back. */
616 			xfs_iext_prev(ifp, &icur);
617 		}
618 next_extent:
619 		if (!xfs_iext_get_extent(ifp, &icur, &got))
620 			break;
621 	}
622 
623 	/* clear tag if cow fork is emptied */
624 	if (!ifp->if_bytes)
625 		xfs_inode_clear_cowblocks_tag(ip);
626 
627 	return error;
628 }
629 
630 /*
631  * Cancel CoW reservations for some byte range of an inode.
632  *
633  * If cancel_real is true this function cancels all COW fork extents for the
634  * inode; if cancel_real is false, real extents are not cleared.
635  */
636 int
637 xfs_reflink_cancel_cow_range(
638 	struct xfs_inode	*ip,
639 	xfs_off_t		offset,
640 	xfs_off_t		count,
641 	bool			cancel_real)
642 {
643 	struct xfs_trans	*tp;
644 	xfs_fileoff_t		offset_fsb;
645 	xfs_fileoff_t		end_fsb;
646 	int			error;
647 
648 	trace_xfs_reflink_cancel_cow_range(ip, offset, count);
649 	ASSERT(xfs_is_reflink_inode(ip));
650 
651 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
652 	if (count == NULLFILEOFF)
653 		end_fsb = NULLFILEOFF;
654 	else
655 		end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
656 
657 	/* Start a rolling transaction to remove the mappings */
658 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
659 			0, 0, XFS_TRANS_NOFS, &tp);
660 	if (error)
661 		goto out;
662 
663 	xfs_ilock(ip, XFS_ILOCK_EXCL);
664 	xfs_trans_ijoin(tp, ip, 0);
665 
666 	/* Scrape out the old CoW reservations */
667 	error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
668 			cancel_real);
669 	if (error)
670 		goto out_cancel;
671 
672 	error = xfs_trans_commit(tp);
673 
674 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
675 	return error;
676 
677 out_cancel:
678 	xfs_trans_cancel(tp);
679 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
680 out:
681 	trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
682 	return error;
683 }
684 
685 /*
686  * Remap parts of a file's data fork after a successful CoW.
687  */
688 int
689 xfs_reflink_end_cow(
690 	struct xfs_inode		*ip,
691 	xfs_off_t			offset,
692 	xfs_off_t			count)
693 {
694 	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
695 	struct xfs_bmbt_irec		got, del;
696 	struct xfs_trans		*tp;
697 	xfs_fileoff_t			offset_fsb;
698 	xfs_fileoff_t			end_fsb;
699 	xfs_fsblock_t			firstfsb;
700 	struct xfs_defer_ops		dfops;
701 	int				error;
702 	unsigned int			resblks;
703 	xfs_filblks_t			rlen;
704 	struct xfs_iext_cursor		icur;
705 
706 	trace_xfs_reflink_end_cow(ip, offset, count);
707 
708 	/* No COW extents?  That's easy! */
709 	if (ifp->if_bytes == 0)
710 		return 0;
711 
712 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
713 	end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
714 
715 	/*
716 	 * Start a rolling transaction to switch the mappings.  We're
717 	 * unlikely ever to have to remap 16T worth of single-block
718 	 * extents, so just cap the worst case extent count to 2^32-1.
719 	 * Stick a warning in just in case, and avoid 64-bit division.
720 	 */
721 	BUILD_BUG_ON(MAX_RW_COUNT > UINT_MAX);
722 	if (end_fsb - offset_fsb > UINT_MAX) {
723 		error = -EFSCORRUPTED;
724 		xfs_force_shutdown(ip->i_mount, SHUTDOWN_CORRUPT_INCORE);
725 		ASSERT(0);
726 		goto out;
727 	}
728 	resblks = XFS_NEXTENTADD_SPACE_RES(ip->i_mount,
729 			(unsigned int)(end_fsb - offset_fsb),
730 			XFS_DATA_FORK);
731 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
732 			resblks, 0, XFS_TRANS_RESERVE | XFS_TRANS_NOFS, &tp);
733 	if (error)
734 		goto out;
735 
736 	xfs_ilock(ip, XFS_ILOCK_EXCL);
737 	xfs_trans_ijoin(tp, ip, 0);
738 
739 	/*
740 	 * In case of racing, overlapping AIO writes no COW extents might be
741 	 * left by the time I/O completes for the loser of the race.  In that
742 	 * case we are done.
743 	 */
744 	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
745 		goto out_cancel;
746 
747 	/* Walk backwards until we're out of the I/O range... */
748 	while (got.br_startoff + got.br_blockcount > offset_fsb) {
749 		del = got;
750 		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
751 
752 		/* Extent delete may have bumped ext forward */
753 		if (!del.br_blockcount)
754 			goto prev_extent;
755 
756 		ASSERT(!isnullstartblock(got.br_startblock));
757 
758 		/*
759 		 * Don't remap unwritten extents; these are
760 		 * speculatively preallocated CoW extents that have been
761 		 * allocated but have not yet been involved in a write.
762 		 */
763 		if (got.br_state == XFS_EXT_UNWRITTEN)
764 			goto prev_extent;
765 
766 		/* Unmap the old blocks in the data fork. */
767 		xfs_defer_init(&dfops, &firstfsb);
768 		rlen = del.br_blockcount;
769 		error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1,
770 				&firstfsb, &dfops);
771 		if (error)
772 			goto out_defer;
773 
774 		/* Trim the extent to whatever got unmapped. */
775 		if (rlen) {
776 			xfs_trim_extent(&del, del.br_startoff + rlen,
777 				del.br_blockcount - rlen);
778 		}
779 		trace_xfs_reflink_cow_remap(ip, &del);
780 
781 		/* Free the CoW orphan record. */
782 		error = xfs_refcount_free_cow_extent(tp->t_mountp, &dfops,
783 				del.br_startblock, del.br_blockcount);
784 		if (error)
785 			goto out_defer;
786 
787 		/* Map the new blocks into the data fork. */
788 		error = xfs_bmap_map_extent(tp->t_mountp, &dfops, ip, &del);
789 		if (error)
790 			goto out_defer;
791 
792 		/* Charge this new data fork mapping to the on-disk quota. */
793 		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
794 				(long)del.br_blockcount);
795 
796 		/* Remove the mapping from the CoW fork. */
797 		xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
798 
799 		xfs_defer_ijoin(&dfops, ip);
800 		error = xfs_defer_finish(&tp, &dfops);
801 		if (error)
802 			goto out_defer;
803 		if (!xfs_iext_get_extent(ifp, &icur, &got))
804 			break;
805 		continue;
806 prev_extent:
807 		if (!xfs_iext_prev_extent(ifp, &icur, &got))
808 			break;
809 	}
810 
811 	error = xfs_trans_commit(tp);
812 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
813 	if (error)
814 		goto out;
815 	return 0;
816 
817 out_defer:
818 	xfs_defer_cancel(&dfops);
819 out_cancel:
820 	xfs_trans_cancel(tp);
821 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
822 out:
823 	trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
824 	return error;
825 }
826 
827 /*
828  * Free leftover CoW reservations that didn't get cleaned out.
829  */
830 int
831 xfs_reflink_recover_cow(
832 	struct xfs_mount	*mp)
833 {
834 	xfs_agnumber_t		agno;
835 	int			error = 0;
836 
837 	if (!xfs_sb_version_hasreflink(&mp->m_sb))
838 		return 0;
839 
840 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
841 		error = xfs_refcount_recover_cow_leftovers(mp, agno);
842 		if (error)
843 			break;
844 	}
845 
846 	return error;
847 }
848 
849 /*
850  * Reflinking (Block) Ranges of Two Files Together
851  *
852  * First, ensure that the reflink flag is set on both inodes.  The flag is an
853  * optimization to avoid unnecessary refcount btree lookups in the write path.
854  *
855  * Now we can iteratively remap the range of extents (and holes) in src to the
856  * corresponding ranges in dest.  Let drange and srange denote the ranges of
857  * logical blocks in dest and src touched by the reflink operation.
858  *
859  * While the length of drange is greater than zero,
860  *    - Read src's bmbt at the start of srange ("imap")
861  *    - If imap doesn't exist, make imap appear to start at the end of srange
862  *      with zero length.
863  *    - If imap starts before srange, advance imap to start at srange.
864  *    - If imap goes beyond srange, truncate imap to end at the end of srange.
865  *    - Punch (imap start - srange start + imap len) blocks from dest at
866  *      offset (drange start).
867  *    - If imap points to a real range of pblks,
868  *         > Increase the refcount of the imap's pblks
869  *         > Map imap's pblks into dest at the offset
870  *           (drange start + imap start - srange start)
871  *    - Advance drange and srange by (imap start - srange start + imap len)
872  *
873  * Finally, if the reflink made dest longer, update both the in-core and
874  * on-disk file sizes.
875  *
876  * ASCII Art Demonstration:
877  *
878  * Let's say we want to reflink this source file:
879  *
880  * ----SSSSSSS-SSSSS----SSSSSS (src file)
881  *   <-------------------->
882  *
883  * into this destination file:
884  *
885  * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
886  *        <-------------------->
887  * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
888  * Observe that the range has different logical offsets in either file.
889  *
890  * Consider that the first extent in the source file doesn't line up with our
891  * reflink range.  Unmapping  and remapping are separate operations, so we can
892  * unmap more blocks from the destination file than we remap.
893  *
894  * ----SSSSSSS-SSSSS----SSSSSS
895  *   <------->
896  * --DDDDD---------DDDDD--DDD
897  *        <------->
898  *
899  * Now remap the source extent into the destination file:
900  *
901  * ----SSSSSSS-SSSSS----SSSSSS
902  *   <------->
903  * --DDDDD--SSSSSSSDDDDD--DDD
904  *        <------->
905  *
906  * Do likewise with the second hole and extent in our range.  Holes in the
907  * unmap range don't affect our operation.
908  *
909  * ----SSSSSSS-SSSSS----SSSSSS
910  *            <---->
911  * --DDDDD--SSSSSSS-SSSSS-DDD
912  *                 <---->
913  *
914  * Finally, unmap and remap part of the third extent.  This will increase the
915  * size of the destination file.
916  *
917  * ----SSSSSSS-SSSSS----SSSSSS
918  *                  <----->
919  * --DDDDD--SSSSSSS-SSSSS----SSS
920  *                       <----->
921  *
922  * Once we update the destination file's i_size, we're done.
923  */
924 
925 /*
926  * Ensure the reflink bit is set in both inodes.
927  */
928 STATIC int
929 xfs_reflink_set_inode_flag(
930 	struct xfs_inode	*src,
931 	struct xfs_inode	*dest)
932 {
933 	struct xfs_mount	*mp = src->i_mount;
934 	int			error;
935 	struct xfs_trans	*tp;
936 
937 	if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
938 		return 0;
939 
940 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
941 	if (error)
942 		goto out_error;
943 
944 	/* Lock both files against IO */
945 	if (src->i_ino == dest->i_ino)
946 		xfs_ilock(src, XFS_ILOCK_EXCL);
947 	else
948 		xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
949 
950 	if (!xfs_is_reflink_inode(src)) {
951 		trace_xfs_reflink_set_inode_flag(src);
952 		xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
953 		src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
954 		xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
955 		xfs_ifork_init_cow(src);
956 	} else
957 		xfs_iunlock(src, XFS_ILOCK_EXCL);
958 
959 	if (src->i_ino == dest->i_ino)
960 		goto commit_flags;
961 
962 	if (!xfs_is_reflink_inode(dest)) {
963 		trace_xfs_reflink_set_inode_flag(dest);
964 		xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
965 		dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
966 		xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
967 		xfs_ifork_init_cow(dest);
968 	} else
969 		xfs_iunlock(dest, XFS_ILOCK_EXCL);
970 
971 commit_flags:
972 	error = xfs_trans_commit(tp);
973 	if (error)
974 		goto out_error;
975 	return error;
976 
977 out_error:
978 	trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
979 	return error;
980 }
981 
982 /*
983  * Update destination inode size & cowextsize hint, if necessary.
984  */
985 STATIC int
986 xfs_reflink_update_dest(
987 	struct xfs_inode	*dest,
988 	xfs_off_t		newlen,
989 	xfs_extlen_t		cowextsize,
990 	bool			is_dedupe)
991 {
992 	struct xfs_mount	*mp = dest->i_mount;
993 	struct xfs_trans	*tp;
994 	int			error;
995 
996 	if (is_dedupe && newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
997 		return 0;
998 
999 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1000 	if (error)
1001 		goto out_error;
1002 
1003 	xfs_ilock(dest, XFS_ILOCK_EXCL);
1004 	xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
1005 
1006 	if (newlen > i_size_read(VFS_I(dest))) {
1007 		trace_xfs_reflink_update_inode_size(dest, newlen);
1008 		i_size_write(VFS_I(dest), newlen);
1009 		dest->i_d.di_size = newlen;
1010 	}
1011 
1012 	if (cowextsize) {
1013 		dest->i_d.di_cowextsize = cowextsize;
1014 		dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
1015 	}
1016 
1017 	if (!is_dedupe) {
1018 		xfs_trans_ichgtime(tp, dest,
1019 				   XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1020 	}
1021 	xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
1022 
1023 	error = xfs_trans_commit(tp);
1024 	if (error)
1025 		goto out_error;
1026 	return error;
1027 
1028 out_error:
1029 	trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
1030 	return error;
1031 }
1032 
1033 /*
1034  * Do we have enough reserve in this AG to handle a reflink?  The refcount
1035  * btree already reserved all the space it needs, but the rmap btree can grow
1036  * infinitely, so we won't allow more reflinks when the AG is down to the
1037  * btree reserves.
1038  */
1039 static int
1040 xfs_reflink_ag_has_free_space(
1041 	struct xfs_mount	*mp,
1042 	xfs_agnumber_t		agno)
1043 {
1044 	struct xfs_perag	*pag;
1045 	int			error = 0;
1046 
1047 	if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
1048 		return 0;
1049 
1050 	pag = xfs_perag_get(mp, agno);
1051 	if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
1052 	    xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
1053 		error = -ENOSPC;
1054 	xfs_perag_put(pag);
1055 	return error;
1056 }
1057 
1058 /*
1059  * Unmap a range of blocks from a file, then map other blocks into the hole.
1060  * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
1061  * The extent irec is mapped into dest at irec->br_startoff.
1062  */
1063 STATIC int
1064 xfs_reflink_remap_extent(
1065 	struct xfs_inode	*ip,
1066 	struct xfs_bmbt_irec	*irec,
1067 	xfs_fileoff_t		destoff,
1068 	xfs_off_t		new_isize)
1069 {
1070 	struct xfs_mount	*mp = ip->i_mount;
1071 	bool			real_extent = xfs_bmap_is_real_extent(irec);
1072 	struct xfs_trans	*tp;
1073 	xfs_fsblock_t		firstfsb;
1074 	unsigned int		resblks;
1075 	struct xfs_defer_ops	dfops;
1076 	struct xfs_bmbt_irec	uirec;
1077 	xfs_filblks_t		rlen;
1078 	xfs_filblks_t		unmap_len;
1079 	xfs_off_t		newlen;
1080 	int			error;
1081 
1082 	unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
1083 	trace_xfs_reflink_punch_range(ip, destoff, unmap_len);
1084 
1085 	/* No reflinking if we're low on space */
1086 	if (real_extent) {
1087 		error = xfs_reflink_ag_has_free_space(mp,
1088 				XFS_FSB_TO_AGNO(mp, irec->br_startblock));
1089 		if (error)
1090 			goto out;
1091 	}
1092 
1093 	/* Start a rolling transaction to switch the mappings */
1094 	resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
1095 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1096 	if (error)
1097 		goto out;
1098 
1099 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1100 	xfs_trans_ijoin(tp, ip, 0);
1101 
1102 	/* If we're not just clearing space, then do we have enough quota? */
1103 	if (real_extent) {
1104 		error = xfs_trans_reserve_quota_nblks(tp, ip,
1105 				irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS);
1106 		if (error)
1107 			goto out_cancel;
1108 	}
1109 
1110 	trace_xfs_reflink_remap(ip, irec->br_startoff,
1111 				irec->br_blockcount, irec->br_startblock);
1112 
1113 	/* Unmap the old blocks in the data fork. */
1114 	rlen = unmap_len;
1115 	while (rlen) {
1116 		xfs_defer_init(&dfops, &firstfsb);
1117 		error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1,
1118 				&firstfsb, &dfops);
1119 		if (error)
1120 			goto out_defer;
1121 
1122 		/*
1123 		 * Trim the extent to whatever got unmapped.
1124 		 * Remember, bunmapi works backwards.
1125 		 */
1126 		uirec.br_startblock = irec->br_startblock + rlen;
1127 		uirec.br_startoff = irec->br_startoff + rlen;
1128 		uirec.br_blockcount = unmap_len - rlen;
1129 		unmap_len = rlen;
1130 
1131 		/* If this isn't a real mapping, we're done. */
1132 		if (!real_extent || uirec.br_blockcount == 0)
1133 			goto next_extent;
1134 
1135 		trace_xfs_reflink_remap(ip, uirec.br_startoff,
1136 				uirec.br_blockcount, uirec.br_startblock);
1137 
1138 		/* Update the refcount tree */
1139 		error = xfs_refcount_increase_extent(mp, &dfops, &uirec);
1140 		if (error)
1141 			goto out_defer;
1142 
1143 		/* Map the new blocks into the data fork. */
1144 		error = xfs_bmap_map_extent(mp, &dfops, ip, &uirec);
1145 		if (error)
1146 			goto out_defer;
1147 
1148 		/* Update quota accounting. */
1149 		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
1150 				uirec.br_blockcount);
1151 
1152 		/* Update dest isize if needed. */
1153 		newlen = XFS_FSB_TO_B(mp,
1154 				uirec.br_startoff + uirec.br_blockcount);
1155 		newlen = min_t(xfs_off_t, newlen, new_isize);
1156 		if (newlen > i_size_read(VFS_I(ip))) {
1157 			trace_xfs_reflink_update_inode_size(ip, newlen);
1158 			i_size_write(VFS_I(ip), newlen);
1159 			ip->i_d.di_size = newlen;
1160 			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1161 		}
1162 
1163 next_extent:
1164 		/* Process all the deferred stuff. */
1165 		xfs_defer_ijoin(&dfops, ip);
1166 		error = xfs_defer_finish(&tp, &dfops);
1167 		if (error)
1168 			goto out_defer;
1169 	}
1170 
1171 	error = xfs_trans_commit(tp);
1172 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1173 	if (error)
1174 		goto out;
1175 	return 0;
1176 
1177 out_defer:
1178 	xfs_defer_cancel(&dfops);
1179 out_cancel:
1180 	xfs_trans_cancel(tp);
1181 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1182 out:
1183 	trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1184 	return error;
1185 }
1186 
1187 /*
1188  * Iteratively remap one file's extents (and holes) to another's.
1189  */
1190 STATIC int
1191 xfs_reflink_remap_blocks(
1192 	struct xfs_inode	*src,
1193 	xfs_fileoff_t		srcoff,
1194 	struct xfs_inode	*dest,
1195 	xfs_fileoff_t		destoff,
1196 	xfs_filblks_t		len,
1197 	xfs_off_t		new_isize)
1198 {
1199 	struct xfs_bmbt_irec	imap;
1200 	int			nimaps;
1201 	int			error = 0;
1202 	xfs_filblks_t		range_len;
1203 
1204 	/* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
1205 	while (len) {
1206 		uint		lock_mode;
1207 
1208 		trace_xfs_reflink_remap_blocks_loop(src, srcoff, len,
1209 				dest, destoff);
1210 
1211 		/* Read extent from the source file */
1212 		nimaps = 1;
1213 		lock_mode = xfs_ilock_data_map_shared(src);
1214 		error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1215 		xfs_iunlock(src, lock_mode);
1216 		if (error)
1217 			goto err;
1218 		ASSERT(nimaps == 1);
1219 
1220 		trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_IO_OVERWRITE,
1221 				&imap);
1222 
1223 		/* Translate imap into the destination file. */
1224 		range_len = imap.br_startoff + imap.br_blockcount - srcoff;
1225 		imap.br_startoff += destoff - srcoff;
1226 
1227 		/* Clear dest from destoff to the end of imap and map it in. */
1228 		error = xfs_reflink_remap_extent(dest, &imap, destoff,
1229 				new_isize);
1230 		if (error)
1231 			goto err;
1232 
1233 		if (fatal_signal_pending(current)) {
1234 			error = -EINTR;
1235 			goto err;
1236 		}
1237 
1238 		/* Advance drange/srange */
1239 		srcoff += range_len;
1240 		destoff += range_len;
1241 		len -= range_len;
1242 	}
1243 
1244 	return 0;
1245 
1246 err:
1247 	trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1248 	return error;
1249 }
1250 
1251 /*
1252  * Grab the exclusive iolock for a data copy from src to dest, making
1253  * sure to abide vfs locking order (lowest pointer value goes first) and
1254  * breaking the pnfs layout leases on dest before proceeding.  The loop
1255  * is needed because we cannot call the blocking break_layout() with the
1256  * src iolock held, and therefore have to back out both locks.
1257  */
1258 static int
1259 xfs_iolock_two_inodes_and_break_layout(
1260 	struct inode		*src,
1261 	struct inode		*dest)
1262 {
1263 	int			error;
1264 
1265 retry:
1266 	if (src < dest) {
1267 		inode_lock_shared(src);
1268 		inode_lock_nested(dest, I_MUTEX_NONDIR2);
1269 	} else {
1270 		/* src >= dest */
1271 		inode_lock(dest);
1272 	}
1273 
1274 	error = break_layout(dest, false);
1275 	if (error == -EWOULDBLOCK) {
1276 		inode_unlock(dest);
1277 		if (src < dest)
1278 			inode_unlock_shared(src);
1279 		error = break_layout(dest, true);
1280 		if (error)
1281 			return error;
1282 		goto retry;
1283 	}
1284 	if (error) {
1285 		inode_unlock(dest);
1286 		if (src < dest)
1287 			inode_unlock_shared(src);
1288 		return error;
1289 	}
1290 	if (src > dest)
1291 		inode_lock_shared_nested(src, I_MUTEX_NONDIR2);
1292 	return 0;
1293 }
1294 
1295 /*
1296  * Link a range of blocks from one file to another.
1297  */
1298 int
1299 xfs_reflink_remap_range(
1300 	struct file		*file_in,
1301 	loff_t			pos_in,
1302 	struct file		*file_out,
1303 	loff_t			pos_out,
1304 	u64			len,
1305 	bool			is_dedupe)
1306 {
1307 	struct inode		*inode_in = file_inode(file_in);
1308 	struct xfs_inode	*src = XFS_I(inode_in);
1309 	struct inode		*inode_out = file_inode(file_out);
1310 	struct xfs_inode	*dest = XFS_I(inode_out);
1311 	struct xfs_mount	*mp = src->i_mount;
1312 	bool			same_inode = (inode_in == inode_out);
1313 	xfs_fileoff_t		sfsbno, dfsbno;
1314 	xfs_filblks_t		fsblen;
1315 	xfs_extlen_t		cowextsize;
1316 	ssize_t			ret;
1317 
1318 	if (!xfs_sb_version_hasreflink(&mp->m_sb))
1319 		return -EOPNOTSUPP;
1320 
1321 	if (XFS_FORCED_SHUTDOWN(mp))
1322 		return -EIO;
1323 
1324 	/* Lock both files against IO */
1325 	ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out);
1326 	if (ret)
1327 		return ret;
1328 	if (same_inode)
1329 		xfs_ilock(src, XFS_MMAPLOCK_EXCL);
1330 	else
1331 		xfs_lock_two_inodes(src, XFS_MMAPLOCK_SHARED, dest,
1332 				XFS_MMAPLOCK_EXCL);
1333 
1334 	/* Check file eligibility and prepare for block sharing. */
1335 	ret = -EINVAL;
1336 	/* Don't reflink realtime inodes */
1337 	if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1338 		goto out_unlock;
1339 
1340 	/* Don't share DAX file data for now. */
1341 	if (IS_DAX(inode_in) || IS_DAX(inode_out))
1342 		goto out_unlock;
1343 
1344 	ret = vfs_clone_file_prep_inodes(inode_in, pos_in, inode_out, pos_out,
1345 			&len, is_dedupe);
1346 	if (ret <= 0)
1347 		goto out_unlock;
1348 
1349 	/* Attach dquots to dest inode before changing block map */
1350 	ret = xfs_qm_dqattach(dest);
1351 	if (ret)
1352 		goto out_unlock;
1353 
1354 	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1355 
1356 	/*
1357 	 * Clear out post-eof preallocations because we don't have page cache
1358 	 * backing the delayed allocations and they'll never get freed on
1359 	 * their own.
1360 	 */
1361 	if (xfs_can_free_eofblocks(dest, true)) {
1362 		ret = xfs_free_eofblocks(dest);
1363 		if (ret)
1364 			goto out_unlock;
1365 	}
1366 
1367 	/* Set flags and remap blocks. */
1368 	ret = xfs_reflink_set_inode_flag(src, dest);
1369 	if (ret)
1370 		goto out_unlock;
1371 
1372 	dfsbno = XFS_B_TO_FSBT(mp, pos_out);
1373 	sfsbno = XFS_B_TO_FSBT(mp, pos_in);
1374 	fsblen = XFS_B_TO_FSB(mp, len);
1375 	ret = xfs_reflink_remap_blocks(src, sfsbno, dest, dfsbno, fsblen,
1376 			pos_out + len);
1377 	if (ret)
1378 		goto out_unlock;
1379 
1380 	/* Zap any page cache for the destination file's range. */
1381 	truncate_inode_pages_range(&inode_out->i_data, pos_out,
1382 				   PAGE_ALIGN(pos_out + len) - 1);
1383 
1384 	/*
1385 	 * Carry the cowextsize hint from src to dest if we're sharing the
1386 	 * entire source file to the entire destination file, the source file
1387 	 * has a cowextsize hint, and the destination file does not.
1388 	 */
1389 	cowextsize = 0;
1390 	if (pos_in == 0 && len == i_size_read(inode_in) &&
1391 	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1392 	    pos_out == 0 && len >= i_size_read(inode_out) &&
1393 	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1394 		cowextsize = src->i_d.di_cowextsize;
1395 
1396 	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1397 			is_dedupe);
1398 
1399 out_unlock:
1400 	xfs_iunlock(dest, XFS_MMAPLOCK_EXCL);
1401 	if (!same_inode)
1402 		xfs_iunlock(src, XFS_MMAPLOCK_SHARED);
1403 	inode_unlock(inode_out);
1404 	if (!same_inode)
1405 		inode_unlock_shared(inode_in);
1406 	if (ret)
1407 		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1408 	return ret;
1409 }
1410 
1411 /*
1412  * The user wants to preemptively CoW all shared blocks in this file,
1413  * which enables us to turn off the reflink flag.  Iterate all
1414  * extents which are not prealloc/delalloc to see which ranges are
1415  * mentioned in the refcount tree, then read those blocks into the
1416  * pagecache, dirty them, fsync them back out, and then we can update
1417  * the inode flag.  What happens if we run out of memory? :)
1418  */
1419 STATIC int
1420 xfs_reflink_dirty_extents(
1421 	struct xfs_inode	*ip,
1422 	xfs_fileoff_t		fbno,
1423 	xfs_filblks_t		end,
1424 	xfs_off_t		isize)
1425 {
1426 	struct xfs_mount	*mp = ip->i_mount;
1427 	xfs_agnumber_t		agno;
1428 	xfs_agblock_t		agbno;
1429 	xfs_extlen_t		aglen;
1430 	xfs_agblock_t		rbno;
1431 	xfs_extlen_t		rlen;
1432 	xfs_off_t		fpos;
1433 	xfs_off_t		flen;
1434 	struct xfs_bmbt_irec	map[2];
1435 	int			nmaps;
1436 	int			error = 0;
1437 
1438 	while (end - fbno > 0) {
1439 		nmaps = 1;
1440 		/*
1441 		 * Look for extents in the file.  Skip holes, delalloc, or
1442 		 * unwritten extents; they can't be reflinked.
1443 		 */
1444 		error = xfs_bmapi_read(ip, fbno, end - fbno, map, &nmaps, 0);
1445 		if (error)
1446 			goto out;
1447 		if (nmaps == 0)
1448 			break;
1449 		if (!xfs_bmap_is_real_extent(&map[0]))
1450 			goto next;
1451 
1452 		map[1] = map[0];
1453 		while (map[1].br_blockcount) {
1454 			agno = XFS_FSB_TO_AGNO(mp, map[1].br_startblock);
1455 			agbno = XFS_FSB_TO_AGBNO(mp, map[1].br_startblock);
1456 			aglen = map[1].br_blockcount;
1457 
1458 			error = xfs_reflink_find_shared(mp, NULL, agno, agbno,
1459 					aglen, &rbno, &rlen, true);
1460 			if (error)
1461 				goto out;
1462 			if (rbno == NULLAGBLOCK)
1463 				break;
1464 
1465 			/* Dirty the pages */
1466 			xfs_iunlock(ip, XFS_ILOCK_EXCL);
1467 			fpos = XFS_FSB_TO_B(mp, map[1].br_startoff +
1468 					(rbno - agbno));
1469 			flen = XFS_FSB_TO_B(mp, rlen);
1470 			if (fpos + flen > isize)
1471 				flen = isize - fpos;
1472 			error = iomap_file_dirty(VFS_I(ip), fpos, flen,
1473 					&xfs_iomap_ops);
1474 			xfs_ilock(ip, XFS_ILOCK_EXCL);
1475 			if (error)
1476 				goto out;
1477 
1478 			map[1].br_blockcount -= (rbno - agbno + rlen);
1479 			map[1].br_startoff += (rbno - agbno + rlen);
1480 			map[1].br_startblock += (rbno - agbno + rlen);
1481 		}
1482 
1483 next:
1484 		fbno = map[0].br_startoff + map[0].br_blockcount;
1485 	}
1486 out:
1487 	return error;
1488 }
1489 
1490 /* Does this inode need the reflink flag? */
1491 int
1492 xfs_reflink_inode_has_shared_extents(
1493 	struct xfs_trans		*tp,
1494 	struct xfs_inode		*ip,
1495 	bool				*has_shared)
1496 {
1497 	struct xfs_bmbt_irec		got;
1498 	struct xfs_mount		*mp = ip->i_mount;
1499 	struct xfs_ifork		*ifp;
1500 	xfs_agnumber_t			agno;
1501 	xfs_agblock_t			agbno;
1502 	xfs_extlen_t			aglen;
1503 	xfs_agblock_t			rbno;
1504 	xfs_extlen_t			rlen;
1505 	struct xfs_iext_cursor		icur;
1506 	bool				found;
1507 	int				error;
1508 
1509 	ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1510 	if (!(ifp->if_flags & XFS_IFEXTENTS)) {
1511 		error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1512 		if (error)
1513 			return error;
1514 	}
1515 
1516 	*has_shared = false;
1517 	found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1518 	while (found) {
1519 		if (isnullstartblock(got.br_startblock) ||
1520 		    got.br_state != XFS_EXT_NORM)
1521 			goto next;
1522 		agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1523 		agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1524 		aglen = got.br_blockcount;
1525 
1526 		error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1527 				&rbno, &rlen, false);
1528 		if (error)
1529 			return error;
1530 		/* Is there still a shared block here? */
1531 		if (rbno != NULLAGBLOCK) {
1532 			*has_shared = true;
1533 			return 0;
1534 		}
1535 next:
1536 		found = xfs_iext_next_extent(ifp, &icur, &got);
1537 	}
1538 
1539 	return 0;
1540 }
1541 
1542 /*
1543  * Clear the inode reflink flag if there are no shared extents.
1544  *
1545  * The caller is responsible for joining the inode to the transaction passed in.
1546  * The inode will be joined to the transaction that is returned to the caller.
1547  */
1548 int
1549 xfs_reflink_clear_inode_flag(
1550 	struct xfs_inode	*ip,
1551 	struct xfs_trans	**tpp)
1552 {
1553 	bool			needs_flag;
1554 	int			error = 0;
1555 
1556 	ASSERT(xfs_is_reflink_inode(ip));
1557 
1558 	error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1559 	if (error || needs_flag)
1560 		return error;
1561 
1562 	/*
1563 	 * We didn't find any shared blocks so turn off the reflink flag.
1564 	 * First, get rid of any leftover CoW mappings.
1565 	 */
1566 	error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF, true);
1567 	if (error)
1568 		return error;
1569 
1570 	/* Clear the inode flag. */
1571 	trace_xfs_reflink_unset_inode_flag(ip);
1572 	ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1573 	xfs_inode_clear_cowblocks_tag(ip);
1574 	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1575 
1576 	return error;
1577 }
1578 
1579 /*
1580  * Clear the inode reflink flag if there are no shared extents and the size
1581  * hasn't changed.
1582  */
1583 STATIC int
1584 xfs_reflink_try_clear_inode_flag(
1585 	struct xfs_inode	*ip)
1586 {
1587 	struct xfs_mount	*mp = ip->i_mount;
1588 	struct xfs_trans	*tp;
1589 	int			error = 0;
1590 
1591 	/* Start a rolling transaction to remove the mappings */
1592 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1593 	if (error)
1594 		return error;
1595 
1596 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1597 	xfs_trans_ijoin(tp, ip, 0);
1598 
1599 	error = xfs_reflink_clear_inode_flag(ip, &tp);
1600 	if (error)
1601 		goto cancel;
1602 
1603 	error = xfs_trans_commit(tp);
1604 	if (error)
1605 		goto out;
1606 
1607 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1608 	return 0;
1609 cancel:
1610 	xfs_trans_cancel(tp);
1611 out:
1612 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1613 	return error;
1614 }
1615 
1616 /*
1617  * Pre-COW all shared blocks within a given byte range of a file and turn off
1618  * the reflink flag if we unshare all of the file's blocks.
1619  */
1620 int
1621 xfs_reflink_unshare(
1622 	struct xfs_inode	*ip,
1623 	xfs_off_t		offset,
1624 	xfs_off_t		len)
1625 {
1626 	struct xfs_mount	*mp = ip->i_mount;
1627 	xfs_fileoff_t		fbno;
1628 	xfs_filblks_t		end;
1629 	xfs_off_t		isize;
1630 	int			error;
1631 
1632 	if (!xfs_is_reflink_inode(ip))
1633 		return 0;
1634 
1635 	trace_xfs_reflink_unshare(ip, offset, len);
1636 
1637 	inode_dio_wait(VFS_I(ip));
1638 
1639 	/* Try to CoW the selected ranges */
1640 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1641 	fbno = XFS_B_TO_FSBT(mp, offset);
1642 	isize = i_size_read(VFS_I(ip));
1643 	end = XFS_B_TO_FSB(mp, offset + len);
1644 	error = xfs_reflink_dirty_extents(ip, fbno, end, isize);
1645 	if (error)
1646 		goto out_unlock;
1647 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1648 
1649 	/* Wait for the IO to finish */
1650 	error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1651 	if (error)
1652 		goto out;
1653 
1654 	/* Turn off the reflink flag if possible. */
1655 	error = xfs_reflink_try_clear_inode_flag(ip);
1656 	if (error)
1657 		goto out;
1658 
1659 	return 0;
1660 
1661 out_unlock:
1662 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1663 out:
1664 	trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1665 	return error;
1666 }
1667