xref: /openbmc/linux/fs/xfs/xfs_reflink.c (revision 943126417891372d56aa3fe46295cbf53db31370)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_da_format.h"
15 #include "xfs_da_btree.h"
16 #include "xfs_inode.h"
17 #include "xfs_trans.h"
18 #include "xfs_inode_item.h"
19 #include "xfs_bmap.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_error.h"
22 #include "xfs_dir2.h"
23 #include "xfs_dir2_priv.h"
24 #include "xfs_ioctl.h"
25 #include "xfs_trace.h"
26 #include "xfs_log.h"
27 #include "xfs_icache.h"
28 #include "xfs_pnfs.h"
29 #include "xfs_btree.h"
30 #include "xfs_refcount_btree.h"
31 #include "xfs_refcount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_trans_space.h"
34 #include "xfs_bit.h"
35 #include "xfs_alloc.h"
36 #include "xfs_quota_defs.h"
37 #include "xfs_quota.h"
38 #include "xfs_reflink.h"
39 #include "xfs_iomap.h"
40 #include "xfs_rmap_btree.h"
41 #include "xfs_sb.h"
42 #include "xfs_ag_resv.h"
43 
44 /*
45  * Copy on Write of Shared Blocks
46  *
47  * XFS must preserve "the usual" file semantics even when two files share
48  * the same physical blocks.  This means that a write to one file must not
49  * alter the blocks in a different file; the way that we'll do that is
50  * through the use of a copy-on-write mechanism.  At a high level, that
51  * means that when we want to write to a shared block, we allocate a new
52  * block, write the data to the new block, and if that succeeds we map the
53  * new block into the file.
54  *
55  * XFS provides a "delayed allocation" mechanism that defers the allocation
56  * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
57  * possible.  This reduces fragmentation by enabling the filesystem to ask
58  * for bigger chunks less often, which is exactly what we want for CoW.
59  *
60  * The delalloc mechanism begins when the kernel wants to make a block
61  * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
62  * create a delalloc mapping, which is a regular in-core extent, but without
63  * a real startblock.  (For delalloc mappings, the startblock encodes both
64  * a flag that this is a delalloc mapping, and a worst-case estimate of how
65  * many blocks might be required to put the mapping into the BMBT.)  delalloc
66  * mappings are a reservation against the free space in the filesystem;
67  * adjacent mappings can also be combined into fewer larger mappings.
68  *
69  * As an optimization, the CoW extent size hint (cowextsz) creates
70  * outsized aligned delalloc reservations in the hope of landing out of
71  * order nearby CoW writes in a single extent on disk, thereby reducing
72  * fragmentation and improving future performance.
73  *
74  * D: --RRRRRRSSSRRRRRRRR--- (data fork)
75  * C: ------DDDDDDD--------- (CoW fork)
76  *
77  * When dirty pages are being written out (typically in writepage), the
78  * delalloc reservations are converted into unwritten mappings by
79  * allocating blocks and replacing the delalloc mapping with real ones.
80  * A delalloc mapping can be replaced by several unwritten ones if the
81  * free space is fragmented.
82  *
83  * D: --RRRRRRSSSRRRRRRRR---
84  * C: ------UUUUUUU---------
85  *
86  * We want to adapt the delalloc mechanism for copy-on-write, since the
87  * write paths are similar.  The first two steps (creating the reservation
88  * and allocating the blocks) are exactly the same as delalloc except that
89  * the mappings must be stored in a separate CoW fork because we do not want
90  * to disturb the mapping in the data fork until we're sure that the write
91  * succeeded.  IO completion in this case is the process of removing the old
92  * mapping from the data fork and moving the new mapping from the CoW fork to
93  * the data fork.  This will be discussed shortly.
94  *
95  * For now, unaligned directio writes will be bounced back to the page cache.
96  * Block-aligned directio writes will use the same mechanism as buffered
97  * writes.
98  *
99  * Just prior to submitting the actual disk write requests, we convert
100  * the extents representing the range of the file actually being written
101  * (as opposed to extra pieces created for the cowextsize hint) to real
102  * extents.  This will become important in the next step:
103  *
104  * D: --RRRRRRSSSRRRRRRRR---
105  * C: ------UUrrUUU---------
106  *
107  * CoW remapping must be done after the data block write completes,
108  * because we don't want to destroy the old data fork map until we're sure
109  * the new block has been written.  Since the new mappings are kept in a
110  * separate fork, we can simply iterate these mappings to find the ones
111  * that cover the file blocks that we just CoW'd.  For each extent, simply
112  * unmap the corresponding range in the data fork, map the new range into
113  * the data fork, and remove the extent from the CoW fork.  Because of
114  * the presence of the cowextsize hint, however, we must be careful
115  * only to remap the blocks that we've actually written out --  we must
116  * never remap delalloc reservations nor CoW staging blocks that have
117  * yet to be written.  This corresponds exactly to the real extents in
118  * the CoW fork:
119  *
120  * D: --RRRRRRrrSRRRRRRRR---
121  * C: ------UU--UUU---------
122  *
123  * Since the remapping operation can be applied to an arbitrary file
124  * range, we record the need for the remap step as a flag in the ioend
125  * instead of declaring a new IO type.  This is required for direct io
126  * because we only have ioend for the whole dio, and we have to be able to
127  * remember the presence of unwritten blocks and CoW blocks with a single
128  * ioend structure.  Better yet, the more ground we can cover with one
129  * ioend, the better.
130  */
131 
132 /*
133  * Given an AG extent, find the lowest-numbered run of shared blocks
134  * within that range and return the range in fbno/flen.  If
135  * find_end_of_shared is true, return the longest contiguous extent of
136  * shared blocks.  If there are no shared extents, fbno and flen will
137  * be set to NULLAGBLOCK and 0, respectively.
138  */
139 int
140 xfs_reflink_find_shared(
141 	struct xfs_mount	*mp,
142 	struct xfs_trans	*tp,
143 	xfs_agnumber_t		agno,
144 	xfs_agblock_t		agbno,
145 	xfs_extlen_t		aglen,
146 	xfs_agblock_t		*fbno,
147 	xfs_extlen_t		*flen,
148 	bool			find_end_of_shared)
149 {
150 	struct xfs_buf		*agbp;
151 	struct xfs_btree_cur	*cur;
152 	int			error;
153 
154 	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
155 	if (error)
156 		return error;
157 	if (!agbp)
158 		return -ENOMEM;
159 
160 	cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno);
161 
162 	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
163 			find_end_of_shared);
164 
165 	xfs_btree_del_cursor(cur, error);
166 
167 	xfs_trans_brelse(tp, agbp);
168 	return error;
169 }
170 
171 /*
172  * Trim the mapping to the next block where there's a change in the
173  * shared/unshared status.  More specifically, this means that we
174  * find the lowest-numbered extent of shared blocks that coincides with
175  * the given block mapping.  If the shared extent overlaps the start of
176  * the mapping, trim the mapping to the end of the shared extent.  If
177  * the shared region intersects the mapping, trim the mapping to the
178  * start of the shared extent.  If there are no shared regions that
179  * overlap, just return the original extent.
180  */
181 int
182 xfs_reflink_trim_around_shared(
183 	struct xfs_inode	*ip,
184 	struct xfs_bmbt_irec	*irec,
185 	bool			*shared)
186 {
187 	xfs_agnumber_t		agno;
188 	xfs_agblock_t		agbno;
189 	xfs_extlen_t		aglen;
190 	xfs_agblock_t		fbno;
191 	xfs_extlen_t		flen;
192 	int			error = 0;
193 
194 	/* Holes, unwritten, and delalloc extents cannot be shared */
195 	if (!xfs_is_reflink_inode(ip) || !xfs_bmap_is_real_extent(irec)) {
196 		*shared = false;
197 		return 0;
198 	}
199 
200 	trace_xfs_reflink_trim_around_shared(ip, irec);
201 
202 	agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
203 	agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
204 	aglen = irec->br_blockcount;
205 
206 	error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
207 			aglen, &fbno, &flen, true);
208 	if (error)
209 		return error;
210 
211 	*shared = false;
212 	if (fbno == NULLAGBLOCK) {
213 		/* No shared blocks at all. */
214 		return 0;
215 	} else if (fbno == agbno) {
216 		/*
217 		 * The start of this extent is shared.  Truncate the
218 		 * mapping at the end of the shared region so that a
219 		 * subsequent iteration starts at the start of the
220 		 * unshared region.
221 		 */
222 		irec->br_blockcount = flen;
223 		*shared = true;
224 		return 0;
225 	} else {
226 		/*
227 		 * There's a shared extent midway through this extent.
228 		 * Truncate the mapping at the start of the shared
229 		 * extent so that a subsequent iteration starts at the
230 		 * start of the shared region.
231 		 */
232 		irec->br_blockcount = fbno - agbno;
233 		return 0;
234 	}
235 }
236 
237 /*
238  * Trim the passed in imap to the next shared/unshared extent boundary, and
239  * if imap->br_startoff points to a shared extent reserve space for it in the
240  * COW fork.
241  *
242  * Note that imap will always contain the block numbers for the existing blocks
243  * in the data fork, as the upper layers need them for read-modify-write
244  * operations.
245  */
246 int
247 xfs_reflink_reserve_cow(
248 	struct xfs_inode	*ip,
249 	struct xfs_bmbt_irec	*imap)
250 {
251 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
252 	struct xfs_bmbt_irec	got;
253 	int			error = 0;
254 	bool			eof = false;
255 	struct xfs_iext_cursor	icur;
256 	bool			shared;
257 
258 	/*
259 	 * Search the COW fork extent list first.  This serves two purposes:
260 	 * first this implement the speculative preallocation using cowextisze,
261 	 * so that we also unshared block adjacent to shared blocks instead
262 	 * of just the shared blocks themselves.  Second the lookup in the
263 	 * extent list is generally faster than going out to the shared extent
264 	 * tree.
265 	 */
266 
267 	if (!xfs_iext_lookup_extent(ip, ifp, imap->br_startoff, &icur, &got))
268 		eof = true;
269 	if (!eof && got.br_startoff <= imap->br_startoff) {
270 		trace_xfs_reflink_cow_found(ip, imap);
271 		xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
272 		return 0;
273 	}
274 
275 	/* Trim the mapping to the nearest shared extent boundary. */
276 	error = xfs_reflink_trim_around_shared(ip, imap, &shared);
277 	if (error)
278 		return error;
279 
280 	/* Not shared?  Just report the (potentially capped) extent. */
281 	if (!shared)
282 		return 0;
283 
284 	/*
285 	 * Fork all the shared blocks from our write offset until the end of
286 	 * the extent.
287 	 */
288 	error = xfs_qm_dqattach_locked(ip, false);
289 	if (error)
290 		return error;
291 
292 	error = xfs_bmapi_reserve_delalloc(ip, XFS_COW_FORK, imap->br_startoff,
293 			imap->br_blockcount, 0, &got, &icur, eof);
294 	if (error == -ENOSPC || error == -EDQUOT)
295 		trace_xfs_reflink_cow_enospc(ip, imap);
296 	if (error)
297 		return error;
298 
299 	trace_xfs_reflink_cow_alloc(ip, &got);
300 	return 0;
301 }
302 
303 /* Convert part of an unwritten CoW extent to a real one. */
304 STATIC int
305 xfs_reflink_convert_cow_extent(
306 	struct xfs_inode		*ip,
307 	struct xfs_bmbt_irec		*imap,
308 	xfs_fileoff_t			offset_fsb,
309 	xfs_filblks_t			count_fsb)
310 {
311 	int				nimaps = 1;
312 
313 	if (imap->br_state == XFS_EXT_NORM)
314 		return 0;
315 
316 	xfs_trim_extent(imap, offset_fsb, count_fsb);
317 	trace_xfs_reflink_convert_cow(ip, imap);
318 	if (imap->br_blockcount == 0)
319 		return 0;
320 	return xfs_bmapi_write(NULL, ip, imap->br_startoff, imap->br_blockcount,
321 			XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT, 0, imap,
322 			&nimaps);
323 }
324 
325 /* Convert all of the unwritten CoW extents in a file's range to real ones. */
326 int
327 xfs_reflink_convert_cow(
328 	struct xfs_inode	*ip,
329 	xfs_off_t		offset,
330 	xfs_off_t		count)
331 {
332 	struct xfs_mount	*mp = ip->i_mount;
333 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
334 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
335 	xfs_filblks_t		count_fsb = end_fsb - offset_fsb;
336 	struct xfs_bmbt_irec	imap;
337 	int			nimaps = 1, error = 0;
338 
339 	ASSERT(count != 0);
340 
341 	xfs_ilock(ip, XFS_ILOCK_EXCL);
342 	error = xfs_bmapi_write(NULL, ip, offset_fsb, count_fsb,
343 			XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT |
344 			XFS_BMAPI_CONVERT_ONLY, 0, &imap, &nimaps);
345 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
346 	return error;
347 }
348 
349 /*
350  * Find the extent that maps the given range in the COW fork. Even if the extent
351  * is not shared we might have a preallocation for it in the COW fork. If so we
352  * use it that rather than trigger a new allocation.
353  */
354 static int
355 xfs_find_trim_cow_extent(
356 	struct xfs_inode	*ip,
357 	struct xfs_bmbt_irec	*imap,
358 	bool			*shared,
359 	bool			*found)
360 {
361 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
362 	xfs_filblks_t		count_fsb = imap->br_blockcount;
363 	struct xfs_iext_cursor	icur;
364 	struct xfs_bmbt_irec	got;
365 
366 	*found = false;
367 
368 	/*
369 	 * If we don't find an overlapping extent, trim the range we need to
370 	 * allocate to fit the hole we found.
371 	 */
372 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
373 		got.br_startoff = offset_fsb + count_fsb;
374 	if (got.br_startoff > offset_fsb) {
375 		xfs_trim_extent(imap, imap->br_startoff,
376 				got.br_startoff - imap->br_startoff);
377 		return xfs_reflink_trim_around_shared(ip, imap, shared);
378 	}
379 
380 	*shared = true;
381 	if (isnullstartblock(got.br_startblock)) {
382 		xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
383 		return 0;
384 	}
385 
386 	/* real extent found - no need to allocate */
387 	xfs_trim_extent(&got, offset_fsb, count_fsb);
388 	*imap = got;
389 	*found = true;
390 	return 0;
391 }
392 
393 /* Allocate all CoW reservations covering a range of blocks in a file. */
394 int
395 xfs_reflink_allocate_cow(
396 	struct xfs_inode	*ip,
397 	struct xfs_bmbt_irec	*imap,
398 	bool			*shared,
399 	uint			*lockmode)
400 {
401 	struct xfs_mount	*mp = ip->i_mount;
402 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
403 	xfs_filblks_t		count_fsb = imap->br_blockcount;
404 	struct xfs_trans	*tp;
405 	int			nimaps, error = 0;
406 	bool			found;
407 	xfs_filblks_t		resaligned;
408 	xfs_extlen_t		resblks = 0;
409 
410 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
411 	ASSERT(xfs_is_reflink_inode(ip));
412 
413 	error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
414 	if (error || !*shared)
415 		return error;
416 	if (found)
417 		goto convert;
418 
419 	resaligned = xfs_aligned_fsb_count(imap->br_startoff,
420 		imap->br_blockcount, xfs_get_cowextsz_hint(ip));
421 	resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
422 
423 	xfs_iunlock(ip, *lockmode);
424 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
425 	*lockmode = XFS_ILOCK_EXCL;
426 	xfs_ilock(ip, *lockmode);
427 
428 	if (error)
429 		return error;
430 
431 	error = xfs_qm_dqattach_locked(ip, false);
432 	if (error)
433 		goto out_trans_cancel;
434 
435 	/*
436 	 * Check for an overlapping extent again now that we dropped the ilock.
437 	 */
438 	error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
439 	if (error || !*shared)
440 		goto out_trans_cancel;
441 	if (found) {
442 		xfs_trans_cancel(tp);
443 		goto convert;
444 	}
445 
446 	error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0,
447 			XFS_QMOPT_RES_REGBLKS);
448 	if (error)
449 		goto out_trans_cancel;
450 
451 	xfs_trans_ijoin(tp, ip, 0);
452 
453 	/* Allocate the entire reservation as unwritten blocks. */
454 	nimaps = 1;
455 	error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
456 			XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC,
457 			resblks, imap, &nimaps);
458 	if (error)
459 		goto out_unreserve;
460 
461 	xfs_inode_set_cowblocks_tag(ip);
462 	error = xfs_trans_commit(tp);
463 	if (error)
464 		return error;
465 
466 	/*
467 	 * Allocation succeeded but the requested range was not even partially
468 	 * satisfied?  Bail out!
469 	 */
470 	if (nimaps == 0)
471 		return -ENOSPC;
472 convert:
473 	return xfs_reflink_convert_cow_extent(ip, imap, offset_fsb, count_fsb);
474 
475 out_unreserve:
476 	xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0,
477 			XFS_QMOPT_RES_REGBLKS);
478 out_trans_cancel:
479 	xfs_trans_cancel(tp);
480 	return error;
481 }
482 
483 /*
484  * Cancel CoW reservations for some block range of an inode.
485  *
486  * If cancel_real is true this function cancels all COW fork extents for the
487  * inode; if cancel_real is false, real extents are not cleared.
488  *
489  * Caller must have already joined the inode to the current transaction. The
490  * inode will be joined to the transaction returned to the caller.
491  */
492 int
493 xfs_reflink_cancel_cow_blocks(
494 	struct xfs_inode		*ip,
495 	struct xfs_trans		**tpp,
496 	xfs_fileoff_t			offset_fsb,
497 	xfs_fileoff_t			end_fsb,
498 	bool				cancel_real)
499 {
500 	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
501 	struct xfs_bmbt_irec		got, del;
502 	struct xfs_iext_cursor		icur;
503 	int				error = 0;
504 
505 	if (!xfs_inode_has_cow_data(ip))
506 		return 0;
507 	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
508 		return 0;
509 
510 	/* Walk backwards until we're out of the I/O range... */
511 	while (got.br_startoff + got.br_blockcount > offset_fsb) {
512 		del = got;
513 		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
514 
515 		/* Extent delete may have bumped ext forward */
516 		if (!del.br_blockcount) {
517 			xfs_iext_prev(ifp, &icur);
518 			goto next_extent;
519 		}
520 
521 		trace_xfs_reflink_cancel_cow(ip, &del);
522 
523 		if (isnullstartblock(del.br_startblock)) {
524 			error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
525 					&icur, &got, &del);
526 			if (error)
527 				break;
528 		} else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
529 			ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
530 
531 			/* Free the CoW orphan record. */
532 			error = xfs_refcount_free_cow_extent(*tpp,
533 					del.br_startblock, del.br_blockcount);
534 			if (error)
535 				break;
536 
537 			xfs_bmap_add_free(*tpp, del.br_startblock,
538 					  del.br_blockcount, NULL);
539 
540 			/* Roll the transaction */
541 			error = xfs_defer_finish(tpp);
542 			if (error)
543 				break;
544 
545 			/* Remove the mapping from the CoW fork. */
546 			xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
547 
548 			/* Remove the quota reservation */
549 			error = xfs_trans_reserve_quota_nblks(NULL, ip,
550 					-(long)del.br_blockcount, 0,
551 					XFS_QMOPT_RES_REGBLKS);
552 			if (error)
553 				break;
554 		} else {
555 			/* Didn't do anything, push cursor back. */
556 			xfs_iext_prev(ifp, &icur);
557 		}
558 next_extent:
559 		if (!xfs_iext_get_extent(ifp, &icur, &got))
560 			break;
561 	}
562 
563 	/* clear tag if cow fork is emptied */
564 	if (!ifp->if_bytes)
565 		xfs_inode_clear_cowblocks_tag(ip);
566 	return error;
567 }
568 
569 /*
570  * Cancel CoW reservations for some byte range of an inode.
571  *
572  * If cancel_real is true this function cancels all COW fork extents for the
573  * inode; if cancel_real is false, real extents are not cleared.
574  */
575 int
576 xfs_reflink_cancel_cow_range(
577 	struct xfs_inode	*ip,
578 	xfs_off_t		offset,
579 	xfs_off_t		count,
580 	bool			cancel_real)
581 {
582 	struct xfs_trans	*tp;
583 	xfs_fileoff_t		offset_fsb;
584 	xfs_fileoff_t		end_fsb;
585 	int			error;
586 
587 	trace_xfs_reflink_cancel_cow_range(ip, offset, count);
588 	ASSERT(xfs_is_reflink_inode(ip));
589 
590 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
591 	if (count == NULLFILEOFF)
592 		end_fsb = NULLFILEOFF;
593 	else
594 		end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
595 
596 	/* Start a rolling transaction to remove the mappings */
597 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
598 			0, 0, XFS_TRANS_NOFS, &tp);
599 	if (error)
600 		goto out;
601 
602 	xfs_ilock(ip, XFS_ILOCK_EXCL);
603 	xfs_trans_ijoin(tp, ip, 0);
604 
605 	/* Scrape out the old CoW reservations */
606 	error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
607 			cancel_real);
608 	if (error)
609 		goto out_cancel;
610 
611 	error = xfs_trans_commit(tp);
612 
613 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
614 	return error;
615 
616 out_cancel:
617 	xfs_trans_cancel(tp);
618 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
619 out:
620 	trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
621 	return error;
622 }
623 
624 /*
625  * Remap parts of a file's data fork after a successful CoW.
626  */
627 int
628 xfs_reflink_end_cow(
629 	struct xfs_inode		*ip,
630 	xfs_off_t			offset,
631 	xfs_off_t			count)
632 {
633 	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
634 	struct xfs_bmbt_irec		got, del;
635 	struct xfs_trans		*tp;
636 	xfs_fileoff_t			offset_fsb;
637 	xfs_fileoff_t			end_fsb;
638 	int				error;
639 	unsigned int			resblks;
640 	xfs_filblks_t			rlen;
641 	struct xfs_iext_cursor		icur;
642 
643 	trace_xfs_reflink_end_cow(ip, offset, count);
644 
645 	/* No COW extents?  That's easy! */
646 	if (ifp->if_bytes == 0)
647 		return 0;
648 
649 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
650 	end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
651 
652 	/*
653 	 * Start a rolling transaction to switch the mappings.  We're
654 	 * unlikely ever to have to remap 16T worth of single-block
655 	 * extents, so just cap the worst case extent count to 2^32-1.
656 	 * Stick a warning in just in case, and avoid 64-bit division.
657 	 */
658 	BUILD_BUG_ON(MAX_RW_COUNT > UINT_MAX);
659 	if (end_fsb - offset_fsb > UINT_MAX) {
660 		error = -EFSCORRUPTED;
661 		xfs_force_shutdown(ip->i_mount, SHUTDOWN_CORRUPT_INCORE);
662 		ASSERT(0);
663 		goto out;
664 	}
665 	resblks = XFS_NEXTENTADD_SPACE_RES(ip->i_mount,
666 			(unsigned int)(end_fsb - offset_fsb),
667 			XFS_DATA_FORK);
668 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
669 			resblks, 0, XFS_TRANS_RESERVE | XFS_TRANS_NOFS, &tp);
670 	if (error)
671 		goto out;
672 
673 	xfs_ilock(ip, XFS_ILOCK_EXCL);
674 	xfs_trans_ijoin(tp, ip, 0);
675 
676 	/*
677 	 * In case of racing, overlapping AIO writes no COW extents might be
678 	 * left by the time I/O completes for the loser of the race.  In that
679 	 * case we are done.
680 	 */
681 	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
682 		goto out_cancel;
683 
684 	/* Walk backwards until we're out of the I/O range... */
685 	while (got.br_startoff + got.br_blockcount > offset_fsb) {
686 		del = got;
687 		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
688 
689 		/* Extent delete may have bumped ext forward */
690 		if (!del.br_blockcount)
691 			goto prev_extent;
692 
693 		/*
694 		 * Only remap real extent that contain data.  With AIO
695 		 * speculatively preallocations can leak into the range we
696 		 * are called upon, and we need to skip them.
697 		 */
698 		if (!xfs_bmap_is_real_extent(&got))
699 			goto prev_extent;
700 
701 		/* Unmap the old blocks in the data fork. */
702 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
703 		rlen = del.br_blockcount;
704 		error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
705 		if (error)
706 			goto out_cancel;
707 
708 		/* Trim the extent to whatever got unmapped. */
709 		if (rlen) {
710 			xfs_trim_extent(&del, del.br_startoff + rlen,
711 				del.br_blockcount - rlen);
712 		}
713 		trace_xfs_reflink_cow_remap(ip, &del);
714 
715 		/* Free the CoW orphan record. */
716 		error = xfs_refcount_free_cow_extent(tp, del.br_startblock,
717 				del.br_blockcount);
718 		if (error)
719 			goto out_cancel;
720 
721 		/* Map the new blocks into the data fork. */
722 		error = xfs_bmap_map_extent(tp, ip, &del);
723 		if (error)
724 			goto out_cancel;
725 
726 		/* Charge this new data fork mapping to the on-disk quota. */
727 		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
728 				(long)del.br_blockcount);
729 
730 		/* Remove the mapping from the CoW fork. */
731 		xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
732 
733 		error = xfs_defer_finish(&tp);
734 		if (error)
735 			goto out_cancel;
736 		if (!xfs_iext_get_extent(ifp, &icur, &got))
737 			break;
738 		continue;
739 prev_extent:
740 		if (!xfs_iext_prev_extent(ifp, &icur, &got))
741 			break;
742 	}
743 
744 	error = xfs_trans_commit(tp);
745 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
746 	if (error)
747 		goto out;
748 	return 0;
749 
750 out_cancel:
751 	xfs_trans_cancel(tp);
752 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
753 out:
754 	trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
755 	return error;
756 }
757 
758 /*
759  * Free leftover CoW reservations that didn't get cleaned out.
760  */
761 int
762 xfs_reflink_recover_cow(
763 	struct xfs_mount	*mp)
764 {
765 	xfs_agnumber_t		agno;
766 	int			error = 0;
767 
768 	if (!xfs_sb_version_hasreflink(&mp->m_sb))
769 		return 0;
770 
771 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
772 		error = xfs_refcount_recover_cow_leftovers(mp, agno);
773 		if (error)
774 			break;
775 	}
776 
777 	return error;
778 }
779 
780 /*
781  * Reflinking (Block) Ranges of Two Files Together
782  *
783  * First, ensure that the reflink flag is set on both inodes.  The flag is an
784  * optimization to avoid unnecessary refcount btree lookups in the write path.
785  *
786  * Now we can iteratively remap the range of extents (and holes) in src to the
787  * corresponding ranges in dest.  Let drange and srange denote the ranges of
788  * logical blocks in dest and src touched by the reflink operation.
789  *
790  * While the length of drange is greater than zero,
791  *    - Read src's bmbt at the start of srange ("imap")
792  *    - If imap doesn't exist, make imap appear to start at the end of srange
793  *      with zero length.
794  *    - If imap starts before srange, advance imap to start at srange.
795  *    - If imap goes beyond srange, truncate imap to end at the end of srange.
796  *    - Punch (imap start - srange start + imap len) blocks from dest at
797  *      offset (drange start).
798  *    - If imap points to a real range of pblks,
799  *         > Increase the refcount of the imap's pblks
800  *         > Map imap's pblks into dest at the offset
801  *           (drange start + imap start - srange start)
802  *    - Advance drange and srange by (imap start - srange start + imap len)
803  *
804  * Finally, if the reflink made dest longer, update both the in-core and
805  * on-disk file sizes.
806  *
807  * ASCII Art Demonstration:
808  *
809  * Let's say we want to reflink this source file:
810  *
811  * ----SSSSSSS-SSSSS----SSSSSS (src file)
812  *   <-------------------->
813  *
814  * into this destination file:
815  *
816  * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
817  *        <-------------------->
818  * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
819  * Observe that the range has different logical offsets in either file.
820  *
821  * Consider that the first extent in the source file doesn't line up with our
822  * reflink range.  Unmapping  and remapping are separate operations, so we can
823  * unmap more blocks from the destination file than we remap.
824  *
825  * ----SSSSSSS-SSSSS----SSSSSS
826  *   <------->
827  * --DDDDD---------DDDDD--DDD
828  *        <------->
829  *
830  * Now remap the source extent into the destination file:
831  *
832  * ----SSSSSSS-SSSSS----SSSSSS
833  *   <------->
834  * --DDDDD--SSSSSSSDDDDD--DDD
835  *        <------->
836  *
837  * Do likewise with the second hole and extent in our range.  Holes in the
838  * unmap range don't affect our operation.
839  *
840  * ----SSSSSSS-SSSSS----SSSSSS
841  *            <---->
842  * --DDDDD--SSSSSSS-SSSSS-DDD
843  *                 <---->
844  *
845  * Finally, unmap and remap part of the third extent.  This will increase the
846  * size of the destination file.
847  *
848  * ----SSSSSSS-SSSSS----SSSSSS
849  *                  <----->
850  * --DDDDD--SSSSSSS-SSSSS----SSS
851  *                       <----->
852  *
853  * Once we update the destination file's i_size, we're done.
854  */
855 
856 /*
857  * Ensure the reflink bit is set in both inodes.
858  */
859 STATIC int
860 xfs_reflink_set_inode_flag(
861 	struct xfs_inode	*src,
862 	struct xfs_inode	*dest)
863 {
864 	struct xfs_mount	*mp = src->i_mount;
865 	int			error;
866 	struct xfs_trans	*tp;
867 
868 	if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
869 		return 0;
870 
871 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
872 	if (error)
873 		goto out_error;
874 
875 	/* Lock both files against IO */
876 	if (src->i_ino == dest->i_ino)
877 		xfs_ilock(src, XFS_ILOCK_EXCL);
878 	else
879 		xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
880 
881 	if (!xfs_is_reflink_inode(src)) {
882 		trace_xfs_reflink_set_inode_flag(src);
883 		xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
884 		src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
885 		xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
886 		xfs_ifork_init_cow(src);
887 	} else
888 		xfs_iunlock(src, XFS_ILOCK_EXCL);
889 
890 	if (src->i_ino == dest->i_ino)
891 		goto commit_flags;
892 
893 	if (!xfs_is_reflink_inode(dest)) {
894 		trace_xfs_reflink_set_inode_flag(dest);
895 		xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
896 		dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
897 		xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
898 		xfs_ifork_init_cow(dest);
899 	} else
900 		xfs_iunlock(dest, XFS_ILOCK_EXCL);
901 
902 commit_flags:
903 	error = xfs_trans_commit(tp);
904 	if (error)
905 		goto out_error;
906 	return error;
907 
908 out_error:
909 	trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
910 	return error;
911 }
912 
913 /*
914  * Update destination inode size & cowextsize hint, if necessary.
915  */
916 int
917 xfs_reflink_update_dest(
918 	struct xfs_inode	*dest,
919 	xfs_off_t		newlen,
920 	xfs_extlen_t		cowextsize,
921 	unsigned int		remap_flags)
922 {
923 	struct xfs_mount	*mp = dest->i_mount;
924 	struct xfs_trans	*tp;
925 	int			error;
926 
927 	if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
928 		return 0;
929 
930 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
931 	if (error)
932 		goto out_error;
933 
934 	xfs_ilock(dest, XFS_ILOCK_EXCL);
935 	xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
936 
937 	if (newlen > i_size_read(VFS_I(dest))) {
938 		trace_xfs_reflink_update_inode_size(dest, newlen);
939 		i_size_write(VFS_I(dest), newlen);
940 		dest->i_d.di_size = newlen;
941 	}
942 
943 	if (cowextsize) {
944 		dest->i_d.di_cowextsize = cowextsize;
945 		dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
946 	}
947 
948 	xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
949 
950 	error = xfs_trans_commit(tp);
951 	if (error)
952 		goto out_error;
953 	return error;
954 
955 out_error:
956 	trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
957 	return error;
958 }
959 
960 /*
961  * Do we have enough reserve in this AG to handle a reflink?  The refcount
962  * btree already reserved all the space it needs, but the rmap btree can grow
963  * infinitely, so we won't allow more reflinks when the AG is down to the
964  * btree reserves.
965  */
966 static int
967 xfs_reflink_ag_has_free_space(
968 	struct xfs_mount	*mp,
969 	xfs_agnumber_t		agno)
970 {
971 	struct xfs_perag	*pag;
972 	int			error = 0;
973 
974 	if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
975 		return 0;
976 
977 	pag = xfs_perag_get(mp, agno);
978 	if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
979 	    xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
980 		error = -ENOSPC;
981 	xfs_perag_put(pag);
982 	return error;
983 }
984 
985 /*
986  * Unmap a range of blocks from a file, then map other blocks into the hole.
987  * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
988  * The extent irec is mapped into dest at irec->br_startoff.
989  */
990 STATIC int
991 xfs_reflink_remap_extent(
992 	struct xfs_inode	*ip,
993 	struct xfs_bmbt_irec	*irec,
994 	xfs_fileoff_t		destoff,
995 	xfs_off_t		new_isize)
996 {
997 	struct xfs_mount	*mp = ip->i_mount;
998 	bool			real_extent = xfs_bmap_is_real_extent(irec);
999 	struct xfs_trans	*tp;
1000 	unsigned int		resblks;
1001 	struct xfs_bmbt_irec	uirec;
1002 	xfs_filblks_t		rlen;
1003 	xfs_filblks_t		unmap_len;
1004 	xfs_off_t		newlen;
1005 	int			error;
1006 
1007 	unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
1008 	trace_xfs_reflink_punch_range(ip, destoff, unmap_len);
1009 
1010 	/* No reflinking if we're low on space */
1011 	if (real_extent) {
1012 		error = xfs_reflink_ag_has_free_space(mp,
1013 				XFS_FSB_TO_AGNO(mp, irec->br_startblock));
1014 		if (error)
1015 			goto out;
1016 	}
1017 
1018 	/* Start a rolling transaction to switch the mappings */
1019 	resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
1020 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1021 	if (error)
1022 		goto out;
1023 
1024 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1025 	xfs_trans_ijoin(tp, ip, 0);
1026 
1027 	/* If we're not just clearing space, then do we have enough quota? */
1028 	if (real_extent) {
1029 		error = xfs_trans_reserve_quota_nblks(tp, ip,
1030 				irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS);
1031 		if (error)
1032 			goto out_cancel;
1033 	}
1034 
1035 	trace_xfs_reflink_remap(ip, irec->br_startoff,
1036 				irec->br_blockcount, irec->br_startblock);
1037 
1038 	/* Unmap the old blocks in the data fork. */
1039 	rlen = unmap_len;
1040 	while (rlen) {
1041 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1042 		error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1);
1043 		if (error)
1044 			goto out_cancel;
1045 
1046 		/*
1047 		 * Trim the extent to whatever got unmapped.
1048 		 * Remember, bunmapi works backwards.
1049 		 */
1050 		uirec.br_startblock = irec->br_startblock + rlen;
1051 		uirec.br_startoff = irec->br_startoff + rlen;
1052 		uirec.br_blockcount = unmap_len - rlen;
1053 		unmap_len = rlen;
1054 
1055 		/* If this isn't a real mapping, we're done. */
1056 		if (!real_extent || uirec.br_blockcount == 0)
1057 			goto next_extent;
1058 
1059 		trace_xfs_reflink_remap(ip, uirec.br_startoff,
1060 				uirec.br_blockcount, uirec.br_startblock);
1061 
1062 		/* Update the refcount tree */
1063 		error = xfs_refcount_increase_extent(tp, &uirec);
1064 		if (error)
1065 			goto out_cancel;
1066 
1067 		/* Map the new blocks into the data fork. */
1068 		error = xfs_bmap_map_extent(tp, ip, &uirec);
1069 		if (error)
1070 			goto out_cancel;
1071 
1072 		/* Update quota accounting. */
1073 		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
1074 				uirec.br_blockcount);
1075 
1076 		/* Update dest isize if needed. */
1077 		newlen = XFS_FSB_TO_B(mp,
1078 				uirec.br_startoff + uirec.br_blockcount);
1079 		newlen = min_t(xfs_off_t, newlen, new_isize);
1080 		if (newlen > i_size_read(VFS_I(ip))) {
1081 			trace_xfs_reflink_update_inode_size(ip, newlen);
1082 			i_size_write(VFS_I(ip), newlen);
1083 			ip->i_d.di_size = newlen;
1084 			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1085 		}
1086 
1087 next_extent:
1088 		/* Process all the deferred stuff. */
1089 		error = xfs_defer_finish(&tp);
1090 		if (error)
1091 			goto out_cancel;
1092 	}
1093 
1094 	error = xfs_trans_commit(tp);
1095 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1096 	if (error)
1097 		goto out;
1098 	return 0;
1099 
1100 out_cancel:
1101 	xfs_trans_cancel(tp);
1102 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1103 out:
1104 	trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1105 	return error;
1106 }
1107 
1108 /*
1109  * Iteratively remap one file's extents (and holes) to another's.
1110  */
1111 int
1112 xfs_reflink_remap_blocks(
1113 	struct xfs_inode	*src,
1114 	loff_t			pos_in,
1115 	struct xfs_inode	*dest,
1116 	loff_t			pos_out,
1117 	loff_t			remap_len,
1118 	loff_t			*remapped)
1119 {
1120 	struct xfs_bmbt_irec	imap;
1121 	xfs_fileoff_t		srcoff;
1122 	xfs_fileoff_t		destoff;
1123 	xfs_filblks_t		len;
1124 	xfs_filblks_t		range_len;
1125 	xfs_filblks_t		remapped_len = 0;
1126 	xfs_off_t		new_isize = pos_out + remap_len;
1127 	int			nimaps;
1128 	int			error = 0;
1129 
1130 	destoff = XFS_B_TO_FSBT(src->i_mount, pos_out);
1131 	srcoff = XFS_B_TO_FSBT(src->i_mount, pos_in);
1132 	len = XFS_B_TO_FSB(src->i_mount, remap_len);
1133 
1134 	/* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
1135 	while (len) {
1136 		uint		lock_mode;
1137 
1138 		trace_xfs_reflink_remap_blocks_loop(src, srcoff, len,
1139 				dest, destoff);
1140 
1141 		/* Read extent from the source file */
1142 		nimaps = 1;
1143 		lock_mode = xfs_ilock_data_map_shared(src);
1144 		error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1145 		xfs_iunlock(src, lock_mode);
1146 		if (error)
1147 			break;
1148 		ASSERT(nimaps == 1);
1149 
1150 		trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_IO_OVERWRITE,
1151 				&imap);
1152 
1153 		/* Translate imap into the destination file. */
1154 		range_len = imap.br_startoff + imap.br_blockcount - srcoff;
1155 		imap.br_startoff += destoff - srcoff;
1156 
1157 		/* Clear dest from destoff to the end of imap and map it in. */
1158 		error = xfs_reflink_remap_extent(dest, &imap, destoff,
1159 				new_isize);
1160 		if (error)
1161 			break;
1162 
1163 		if (fatal_signal_pending(current)) {
1164 			error = -EINTR;
1165 			break;
1166 		}
1167 
1168 		/* Advance drange/srange */
1169 		srcoff += range_len;
1170 		destoff += range_len;
1171 		len -= range_len;
1172 		remapped_len += range_len;
1173 	}
1174 
1175 	if (error)
1176 		trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1177 	*remapped = min_t(loff_t, remap_len,
1178 			  XFS_FSB_TO_B(src->i_mount, remapped_len));
1179 	return error;
1180 }
1181 
1182 /*
1183  * Grab the exclusive iolock for a data copy from src to dest, making
1184  * sure to abide vfs locking order (lowest pointer value goes first) and
1185  * breaking the pnfs layout leases on dest before proceeding.  The loop
1186  * is needed because we cannot call the blocking break_layout() with the
1187  * src iolock held, and therefore have to back out both locks.
1188  */
1189 static int
1190 xfs_iolock_two_inodes_and_break_layout(
1191 	struct inode		*src,
1192 	struct inode		*dest)
1193 {
1194 	int			error;
1195 
1196 retry:
1197 	if (src < dest) {
1198 		inode_lock_shared(src);
1199 		inode_lock_nested(dest, I_MUTEX_NONDIR2);
1200 	} else {
1201 		/* src >= dest */
1202 		inode_lock(dest);
1203 	}
1204 
1205 	error = break_layout(dest, false);
1206 	if (error == -EWOULDBLOCK) {
1207 		inode_unlock(dest);
1208 		if (src < dest)
1209 			inode_unlock_shared(src);
1210 		error = break_layout(dest, true);
1211 		if (error)
1212 			return error;
1213 		goto retry;
1214 	}
1215 	if (error) {
1216 		inode_unlock(dest);
1217 		if (src < dest)
1218 			inode_unlock_shared(src);
1219 		return error;
1220 	}
1221 	if (src > dest)
1222 		inode_lock_shared_nested(src, I_MUTEX_NONDIR2);
1223 	return 0;
1224 }
1225 
1226 /* Unlock both inodes after they've been prepped for a range clone. */
1227 void
1228 xfs_reflink_remap_unlock(
1229 	struct file		*file_in,
1230 	struct file		*file_out)
1231 {
1232 	struct inode		*inode_in = file_inode(file_in);
1233 	struct xfs_inode	*src = XFS_I(inode_in);
1234 	struct inode		*inode_out = file_inode(file_out);
1235 	struct xfs_inode	*dest = XFS_I(inode_out);
1236 	bool			same_inode = (inode_in == inode_out);
1237 
1238 	xfs_iunlock(dest, XFS_MMAPLOCK_EXCL);
1239 	if (!same_inode)
1240 		xfs_iunlock(src, XFS_MMAPLOCK_SHARED);
1241 	inode_unlock(inode_out);
1242 	if (!same_inode)
1243 		inode_unlock_shared(inode_in);
1244 }
1245 
1246 /*
1247  * If we're reflinking to a point past the destination file's EOF, we must
1248  * zero any speculative post-EOF preallocations that sit between the old EOF
1249  * and the destination file offset.
1250  */
1251 static int
1252 xfs_reflink_zero_posteof(
1253 	struct xfs_inode	*ip,
1254 	loff_t			pos)
1255 {
1256 	loff_t			isize = i_size_read(VFS_I(ip));
1257 
1258 	if (pos <= isize)
1259 		return 0;
1260 
1261 	trace_xfs_zero_eof(ip, isize, pos - isize);
1262 	return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL,
1263 			&xfs_iomap_ops);
1264 }
1265 
1266 /*
1267  * Prepare two files for range cloning.  Upon a successful return both inodes
1268  * will have the iolock and mmaplock held, the page cache of the out file will
1269  * be truncated, and any leases on the out file will have been broken.  This
1270  * function borrows heavily from xfs_file_aio_write_checks.
1271  *
1272  * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1273  * checked that the bytes beyond EOF physically match. Hence we cannot use the
1274  * EOF block in the source dedupe range because it's not a complete block match,
1275  * hence can introduce a corruption into the file that has it's block replaced.
1276  *
1277  * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1278  * "block aligned" for the purposes of cloning entire files.  However, if the
1279  * source file range includes the EOF block and it lands within the existing EOF
1280  * of the destination file, then we can expose stale data from beyond the source
1281  * file EOF in the destination file.
1282  *
1283  * XFS doesn't support partial block sharing, so in both cases we have check
1284  * these cases ourselves. For dedupe, we can simply round the length to dedupe
1285  * down to the previous whole block and ignore the partial EOF block. While this
1286  * means we can't dedupe the last block of a file, this is an acceptible
1287  * tradeoff for simplicity on implementation.
1288  *
1289  * For cloning, we want to share the partial EOF block if it is also the new EOF
1290  * block of the destination file. If the partial EOF block lies inside the
1291  * existing destination EOF, then we have to abort the clone to avoid exposing
1292  * stale data in the destination file. Hence we reject these clone attempts with
1293  * -EINVAL in this case.
1294  */
1295 int
1296 xfs_reflink_remap_prep(
1297 	struct file		*file_in,
1298 	loff_t			pos_in,
1299 	struct file		*file_out,
1300 	loff_t			pos_out,
1301 	loff_t			*len,
1302 	unsigned int		remap_flags)
1303 {
1304 	struct inode		*inode_in = file_inode(file_in);
1305 	struct xfs_inode	*src = XFS_I(inode_in);
1306 	struct inode		*inode_out = file_inode(file_out);
1307 	struct xfs_inode	*dest = XFS_I(inode_out);
1308 	bool			same_inode = (inode_in == inode_out);
1309 	ssize_t			ret;
1310 
1311 	/* Lock both files against IO */
1312 	ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out);
1313 	if (ret)
1314 		return ret;
1315 	if (same_inode)
1316 		xfs_ilock(src, XFS_MMAPLOCK_EXCL);
1317 	else
1318 		xfs_lock_two_inodes(src, XFS_MMAPLOCK_SHARED, dest,
1319 				XFS_MMAPLOCK_EXCL);
1320 
1321 	/* Check file eligibility and prepare for block sharing. */
1322 	ret = -EINVAL;
1323 	/* Don't reflink realtime inodes */
1324 	if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1325 		goto out_unlock;
1326 
1327 	/* Don't share DAX file data for now. */
1328 	if (IS_DAX(inode_in) || IS_DAX(inode_out))
1329 		goto out_unlock;
1330 
1331 	ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
1332 			len, remap_flags);
1333 	if (ret < 0 || *len == 0)
1334 		goto out_unlock;
1335 
1336 	/* Attach dquots to dest inode before changing block map */
1337 	ret = xfs_qm_dqattach(dest);
1338 	if (ret)
1339 		goto out_unlock;
1340 
1341 	/*
1342 	 * Zero existing post-eof speculative preallocations in the destination
1343 	 * file.
1344 	 */
1345 	ret = xfs_reflink_zero_posteof(dest, pos_out);
1346 	if (ret)
1347 		goto out_unlock;
1348 
1349 	/* Set flags and remap blocks. */
1350 	ret = xfs_reflink_set_inode_flag(src, dest);
1351 	if (ret)
1352 		goto out_unlock;
1353 
1354 	/* Zap any page cache for the destination file's range. */
1355 	truncate_inode_pages_range(&inode_out->i_data,
1356 			round_down(pos_out, PAGE_SIZE),
1357 			round_up(pos_out + *len, PAGE_SIZE) - 1);
1358 
1359 	return 1;
1360 out_unlock:
1361 	xfs_reflink_remap_unlock(file_in, file_out);
1362 	return ret;
1363 }
1364 
1365 /*
1366  * The user wants to preemptively CoW all shared blocks in this file,
1367  * which enables us to turn off the reflink flag.  Iterate all
1368  * extents which are not prealloc/delalloc to see which ranges are
1369  * mentioned in the refcount tree, then read those blocks into the
1370  * pagecache, dirty them, fsync them back out, and then we can update
1371  * the inode flag.  What happens if we run out of memory? :)
1372  */
1373 STATIC int
1374 xfs_reflink_dirty_extents(
1375 	struct xfs_inode	*ip,
1376 	xfs_fileoff_t		fbno,
1377 	xfs_filblks_t		end,
1378 	xfs_off_t		isize)
1379 {
1380 	struct xfs_mount	*mp = ip->i_mount;
1381 	xfs_agnumber_t		agno;
1382 	xfs_agblock_t		agbno;
1383 	xfs_extlen_t		aglen;
1384 	xfs_agblock_t		rbno;
1385 	xfs_extlen_t		rlen;
1386 	xfs_off_t		fpos;
1387 	xfs_off_t		flen;
1388 	struct xfs_bmbt_irec	map[2];
1389 	int			nmaps;
1390 	int			error = 0;
1391 
1392 	while (end - fbno > 0) {
1393 		nmaps = 1;
1394 		/*
1395 		 * Look for extents in the file.  Skip holes, delalloc, or
1396 		 * unwritten extents; they can't be reflinked.
1397 		 */
1398 		error = xfs_bmapi_read(ip, fbno, end - fbno, map, &nmaps, 0);
1399 		if (error)
1400 			goto out;
1401 		if (nmaps == 0)
1402 			break;
1403 		if (!xfs_bmap_is_real_extent(&map[0]))
1404 			goto next;
1405 
1406 		map[1] = map[0];
1407 		while (map[1].br_blockcount) {
1408 			agno = XFS_FSB_TO_AGNO(mp, map[1].br_startblock);
1409 			agbno = XFS_FSB_TO_AGBNO(mp, map[1].br_startblock);
1410 			aglen = map[1].br_blockcount;
1411 
1412 			error = xfs_reflink_find_shared(mp, NULL, agno, agbno,
1413 					aglen, &rbno, &rlen, true);
1414 			if (error)
1415 				goto out;
1416 			if (rbno == NULLAGBLOCK)
1417 				break;
1418 
1419 			/* Dirty the pages */
1420 			xfs_iunlock(ip, XFS_ILOCK_EXCL);
1421 			fpos = XFS_FSB_TO_B(mp, map[1].br_startoff +
1422 					(rbno - agbno));
1423 			flen = XFS_FSB_TO_B(mp, rlen);
1424 			if (fpos + flen > isize)
1425 				flen = isize - fpos;
1426 			error = iomap_file_dirty(VFS_I(ip), fpos, flen,
1427 					&xfs_iomap_ops);
1428 			xfs_ilock(ip, XFS_ILOCK_EXCL);
1429 			if (error)
1430 				goto out;
1431 
1432 			map[1].br_blockcount -= (rbno - agbno + rlen);
1433 			map[1].br_startoff += (rbno - agbno + rlen);
1434 			map[1].br_startblock += (rbno - agbno + rlen);
1435 		}
1436 
1437 next:
1438 		fbno = map[0].br_startoff + map[0].br_blockcount;
1439 	}
1440 out:
1441 	return error;
1442 }
1443 
1444 /* Does this inode need the reflink flag? */
1445 int
1446 xfs_reflink_inode_has_shared_extents(
1447 	struct xfs_trans		*tp,
1448 	struct xfs_inode		*ip,
1449 	bool				*has_shared)
1450 {
1451 	struct xfs_bmbt_irec		got;
1452 	struct xfs_mount		*mp = ip->i_mount;
1453 	struct xfs_ifork		*ifp;
1454 	xfs_agnumber_t			agno;
1455 	xfs_agblock_t			agbno;
1456 	xfs_extlen_t			aglen;
1457 	xfs_agblock_t			rbno;
1458 	xfs_extlen_t			rlen;
1459 	struct xfs_iext_cursor		icur;
1460 	bool				found;
1461 	int				error;
1462 
1463 	ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1464 	if (!(ifp->if_flags & XFS_IFEXTENTS)) {
1465 		error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1466 		if (error)
1467 			return error;
1468 	}
1469 
1470 	*has_shared = false;
1471 	found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1472 	while (found) {
1473 		if (isnullstartblock(got.br_startblock) ||
1474 		    got.br_state != XFS_EXT_NORM)
1475 			goto next;
1476 		agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1477 		agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1478 		aglen = got.br_blockcount;
1479 
1480 		error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1481 				&rbno, &rlen, false);
1482 		if (error)
1483 			return error;
1484 		/* Is there still a shared block here? */
1485 		if (rbno != NULLAGBLOCK) {
1486 			*has_shared = true;
1487 			return 0;
1488 		}
1489 next:
1490 		found = xfs_iext_next_extent(ifp, &icur, &got);
1491 	}
1492 
1493 	return 0;
1494 }
1495 
1496 /*
1497  * Clear the inode reflink flag if there are no shared extents.
1498  *
1499  * The caller is responsible for joining the inode to the transaction passed in.
1500  * The inode will be joined to the transaction that is returned to the caller.
1501  */
1502 int
1503 xfs_reflink_clear_inode_flag(
1504 	struct xfs_inode	*ip,
1505 	struct xfs_trans	**tpp)
1506 {
1507 	bool			needs_flag;
1508 	int			error = 0;
1509 
1510 	ASSERT(xfs_is_reflink_inode(ip));
1511 
1512 	error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1513 	if (error || needs_flag)
1514 		return error;
1515 
1516 	/*
1517 	 * We didn't find any shared blocks so turn off the reflink flag.
1518 	 * First, get rid of any leftover CoW mappings.
1519 	 */
1520 	error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF, true);
1521 	if (error)
1522 		return error;
1523 
1524 	/* Clear the inode flag. */
1525 	trace_xfs_reflink_unset_inode_flag(ip);
1526 	ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1527 	xfs_inode_clear_cowblocks_tag(ip);
1528 	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1529 
1530 	return error;
1531 }
1532 
1533 /*
1534  * Clear the inode reflink flag if there are no shared extents and the size
1535  * hasn't changed.
1536  */
1537 STATIC int
1538 xfs_reflink_try_clear_inode_flag(
1539 	struct xfs_inode	*ip)
1540 {
1541 	struct xfs_mount	*mp = ip->i_mount;
1542 	struct xfs_trans	*tp;
1543 	int			error = 0;
1544 
1545 	/* Start a rolling transaction to remove the mappings */
1546 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1547 	if (error)
1548 		return error;
1549 
1550 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1551 	xfs_trans_ijoin(tp, ip, 0);
1552 
1553 	error = xfs_reflink_clear_inode_flag(ip, &tp);
1554 	if (error)
1555 		goto cancel;
1556 
1557 	error = xfs_trans_commit(tp);
1558 	if (error)
1559 		goto out;
1560 
1561 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1562 	return 0;
1563 cancel:
1564 	xfs_trans_cancel(tp);
1565 out:
1566 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1567 	return error;
1568 }
1569 
1570 /*
1571  * Pre-COW all shared blocks within a given byte range of a file and turn off
1572  * the reflink flag if we unshare all of the file's blocks.
1573  */
1574 int
1575 xfs_reflink_unshare(
1576 	struct xfs_inode	*ip,
1577 	xfs_off_t		offset,
1578 	xfs_off_t		len)
1579 {
1580 	struct xfs_mount	*mp = ip->i_mount;
1581 	xfs_fileoff_t		fbno;
1582 	xfs_filblks_t		end;
1583 	xfs_off_t		isize;
1584 	int			error;
1585 
1586 	if (!xfs_is_reflink_inode(ip))
1587 		return 0;
1588 
1589 	trace_xfs_reflink_unshare(ip, offset, len);
1590 
1591 	inode_dio_wait(VFS_I(ip));
1592 
1593 	/* Try to CoW the selected ranges */
1594 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1595 	fbno = XFS_B_TO_FSBT(mp, offset);
1596 	isize = i_size_read(VFS_I(ip));
1597 	end = XFS_B_TO_FSB(mp, offset + len);
1598 	error = xfs_reflink_dirty_extents(ip, fbno, end, isize);
1599 	if (error)
1600 		goto out_unlock;
1601 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1602 
1603 	/* Wait for the IO to finish */
1604 	error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1605 	if (error)
1606 		goto out;
1607 
1608 	/* Turn off the reflink flag if possible. */
1609 	error = xfs_reflink_try_clear_inode_flag(ip);
1610 	if (error)
1611 		goto out;
1612 
1613 	return 0;
1614 
1615 out_unlock:
1616 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1617 out:
1618 	trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1619 	return error;
1620 }
1621