xref: /openbmc/linux/fs/xfs/xfs_reflink.c (revision 9221b289)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_btree.h"
21 #include "xfs_refcount_btree.h"
22 #include "xfs_refcount.h"
23 #include "xfs_bmap_btree.h"
24 #include "xfs_trans_space.h"
25 #include "xfs_bit.h"
26 #include "xfs_alloc.h"
27 #include "xfs_quota.h"
28 #include "xfs_reflink.h"
29 #include "xfs_iomap.h"
30 #include "xfs_ag.h"
31 #include "xfs_ag_resv.h"
32 
33 /*
34  * Copy on Write of Shared Blocks
35  *
36  * XFS must preserve "the usual" file semantics even when two files share
37  * the same physical blocks.  This means that a write to one file must not
38  * alter the blocks in a different file; the way that we'll do that is
39  * through the use of a copy-on-write mechanism.  At a high level, that
40  * means that when we want to write to a shared block, we allocate a new
41  * block, write the data to the new block, and if that succeeds we map the
42  * new block into the file.
43  *
44  * XFS provides a "delayed allocation" mechanism that defers the allocation
45  * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
46  * possible.  This reduces fragmentation by enabling the filesystem to ask
47  * for bigger chunks less often, which is exactly what we want for CoW.
48  *
49  * The delalloc mechanism begins when the kernel wants to make a block
50  * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
51  * create a delalloc mapping, which is a regular in-core extent, but without
52  * a real startblock.  (For delalloc mappings, the startblock encodes both
53  * a flag that this is a delalloc mapping, and a worst-case estimate of how
54  * many blocks might be required to put the mapping into the BMBT.)  delalloc
55  * mappings are a reservation against the free space in the filesystem;
56  * adjacent mappings can also be combined into fewer larger mappings.
57  *
58  * As an optimization, the CoW extent size hint (cowextsz) creates
59  * outsized aligned delalloc reservations in the hope of landing out of
60  * order nearby CoW writes in a single extent on disk, thereby reducing
61  * fragmentation and improving future performance.
62  *
63  * D: --RRRRRRSSSRRRRRRRR--- (data fork)
64  * C: ------DDDDDDD--------- (CoW fork)
65  *
66  * When dirty pages are being written out (typically in writepage), the
67  * delalloc reservations are converted into unwritten mappings by
68  * allocating blocks and replacing the delalloc mapping with real ones.
69  * A delalloc mapping can be replaced by several unwritten ones if the
70  * free space is fragmented.
71  *
72  * D: --RRRRRRSSSRRRRRRRR---
73  * C: ------UUUUUUU---------
74  *
75  * We want to adapt the delalloc mechanism for copy-on-write, since the
76  * write paths are similar.  The first two steps (creating the reservation
77  * and allocating the blocks) are exactly the same as delalloc except that
78  * the mappings must be stored in a separate CoW fork because we do not want
79  * to disturb the mapping in the data fork until we're sure that the write
80  * succeeded.  IO completion in this case is the process of removing the old
81  * mapping from the data fork and moving the new mapping from the CoW fork to
82  * the data fork.  This will be discussed shortly.
83  *
84  * For now, unaligned directio writes will be bounced back to the page cache.
85  * Block-aligned directio writes will use the same mechanism as buffered
86  * writes.
87  *
88  * Just prior to submitting the actual disk write requests, we convert
89  * the extents representing the range of the file actually being written
90  * (as opposed to extra pieces created for the cowextsize hint) to real
91  * extents.  This will become important in the next step:
92  *
93  * D: --RRRRRRSSSRRRRRRRR---
94  * C: ------UUrrUUU---------
95  *
96  * CoW remapping must be done after the data block write completes,
97  * because we don't want to destroy the old data fork map until we're sure
98  * the new block has been written.  Since the new mappings are kept in a
99  * separate fork, we can simply iterate these mappings to find the ones
100  * that cover the file blocks that we just CoW'd.  For each extent, simply
101  * unmap the corresponding range in the data fork, map the new range into
102  * the data fork, and remove the extent from the CoW fork.  Because of
103  * the presence of the cowextsize hint, however, we must be careful
104  * only to remap the blocks that we've actually written out --  we must
105  * never remap delalloc reservations nor CoW staging blocks that have
106  * yet to be written.  This corresponds exactly to the real extents in
107  * the CoW fork:
108  *
109  * D: --RRRRRRrrSRRRRRRRR---
110  * C: ------UU--UUU---------
111  *
112  * Since the remapping operation can be applied to an arbitrary file
113  * range, we record the need for the remap step as a flag in the ioend
114  * instead of declaring a new IO type.  This is required for direct io
115  * because we only have ioend for the whole dio, and we have to be able to
116  * remember the presence of unwritten blocks and CoW blocks with a single
117  * ioend structure.  Better yet, the more ground we can cover with one
118  * ioend, the better.
119  */
120 
121 /*
122  * Given an AG extent, find the lowest-numbered run of shared blocks
123  * within that range and return the range in fbno/flen.  If
124  * find_end_of_shared is true, return the longest contiguous extent of
125  * shared blocks.  If there are no shared extents, fbno and flen will
126  * be set to NULLAGBLOCK and 0, respectively.
127  */
128 static int
129 xfs_reflink_find_shared(
130 	struct xfs_perag	*pag,
131 	struct xfs_trans	*tp,
132 	xfs_agblock_t		agbno,
133 	xfs_extlen_t		aglen,
134 	xfs_agblock_t		*fbno,
135 	xfs_extlen_t		*flen,
136 	bool			find_end_of_shared)
137 {
138 	struct xfs_buf		*agbp;
139 	struct xfs_btree_cur	*cur;
140 	int			error;
141 
142 	error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
143 	if (error)
144 		return error;
145 
146 	cur = xfs_refcountbt_init_cursor(pag->pag_mount, tp, agbp, pag);
147 
148 	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
149 			find_end_of_shared);
150 
151 	xfs_btree_del_cursor(cur, error);
152 
153 	xfs_trans_brelse(tp, agbp);
154 	return error;
155 }
156 
157 /*
158  * Trim the mapping to the next block where there's a change in the
159  * shared/unshared status.  More specifically, this means that we
160  * find the lowest-numbered extent of shared blocks that coincides with
161  * the given block mapping.  If the shared extent overlaps the start of
162  * the mapping, trim the mapping to the end of the shared extent.  If
163  * the shared region intersects the mapping, trim the mapping to the
164  * start of the shared extent.  If there are no shared regions that
165  * overlap, just return the original extent.
166  */
167 int
168 xfs_reflink_trim_around_shared(
169 	struct xfs_inode	*ip,
170 	struct xfs_bmbt_irec	*irec,
171 	bool			*shared)
172 {
173 	struct xfs_mount	*mp = ip->i_mount;
174 	struct xfs_perag	*pag;
175 	xfs_agblock_t		agbno;
176 	xfs_extlen_t		aglen;
177 	xfs_agblock_t		fbno;
178 	xfs_extlen_t		flen;
179 	int			error = 0;
180 
181 	/* Holes, unwritten, and delalloc extents cannot be shared */
182 	if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) {
183 		*shared = false;
184 		return 0;
185 	}
186 
187 	trace_xfs_reflink_trim_around_shared(ip, irec);
188 
189 	pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, irec->br_startblock));
190 	agbno = XFS_FSB_TO_AGBNO(mp, irec->br_startblock);
191 	aglen = irec->br_blockcount;
192 
193 	error = xfs_reflink_find_shared(pag, NULL, agbno, aglen, &fbno, &flen,
194 			true);
195 	xfs_perag_put(pag);
196 	if (error)
197 		return error;
198 
199 	*shared = false;
200 	if (fbno == NULLAGBLOCK) {
201 		/* No shared blocks at all. */
202 		return 0;
203 	} else if (fbno == agbno) {
204 		/*
205 		 * The start of this extent is shared.  Truncate the
206 		 * mapping at the end of the shared region so that a
207 		 * subsequent iteration starts at the start of the
208 		 * unshared region.
209 		 */
210 		irec->br_blockcount = flen;
211 		*shared = true;
212 		return 0;
213 	} else {
214 		/*
215 		 * There's a shared extent midway through this extent.
216 		 * Truncate the mapping at the start of the shared
217 		 * extent so that a subsequent iteration starts at the
218 		 * start of the shared region.
219 		 */
220 		irec->br_blockcount = fbno - agbno;
221 		return 0;
222 	}
223 }
224 
225 int
226 xfs_bmap_trim_cow(
227 	struct xfs_inode	*ip,
228 	struct xfs_bmbt_irec	*imap,
229 	bool			*shared)
230 {
231 	/* We can't update any real extents in always COW mode. */
232 	if (xfs_is_always_cow_inode(ip) &&
233 	    !isnullstartblock(imap->br_startblock)) {
234 		*shared = true;
235 		return 0;
236 	}
237 
238 	/* Trim the mapping to the nearest shared extent boundary. */
239 	return xfs_reflink_trim_around_shared(ip, imap, shared);
240 }
241 
242 static int
243 xfs_reflink_convert_cow_locked(
244 	struct xfs_inode	*ip,
245 	xfs_fileoff_t		offset_fsb,
246 	xfs_filblks_t		count_fsb)
247 {
248 	struct xfs_iext_cursor	icur;
249 	struct xfs_bmbt_irec	got;
250 	struct xfs_btree_cur	*dummy_cur = NULL;
251 	int			dummy_logflags;
252 	int			error = 0;
253 
254 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
255 		return 0;
256 
257 	do {
258 		if (got.br_startoff >= offset_fsb + count_fsb)
259 			break;
260 		if (got.br_state == XFS_EXT_NORM)
261 			continue;
262 		if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
263 			return -EIO;
264 
265 		xfs_trim_extent(&got, offset_fsb, count_fsb);
266 		if (!got.br_blockcount)
267 			continue;
268 
269 		got.br_state = XFS_EXT_NORM;
270 		error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
271 				XFS_COW_FORK, &icur, &dummy_cur, &got,
272 				&dummy_logflags);
273 		if (error)
274 			return error;
275 	} while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
276 
277 	return error;
278 }
279 
280 /* Convert all of the unwritten CoW extents in a file's range to real ones. */
281 int
282 xfs_reflink_convert_cow(
283 	struct xfs_inode	*ip,
284 	xfs_off_t		offset,
285 	xfs_off_t		count)
286 {
287 	struct xfs_mount	*mp = ip->i_mount;
288 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
289 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
290 	xfs_filblks_t		count_fsb = end_fsb - offset_fsb;
291 	int			error;
292 
293 	ASSERT(count != 0);
294 
295 	xfs_ilock(ip, XFS_ILOCK_EXCL);
296 	error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
297 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
298 	return error;
299 }
300 
301 /*
302  * Find the extent that maps the given range in the COW fork. Even if the extent
303  * is not shared we might have a preallocation for it in the COW fork. If so we
304  * use it that rather than trigger a new allocation.
305  */
306 static int
307 xfs_find_trim_cow_extent(
308 	struct xfs_inode	*ip,
309 	struct xfs_bmbt_irec	*imap,
310 	struct xfs_bmbt_irec	*cmap,
311 	bool			*shared,
312 	bool			*found)
313 {
314 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
315 	xfs_filblks_t		count_fsb = imap->br_blockcount;
316 	struct xfs_iext_cursor	icur;
317 
318 	*found = false;
319 
320 	/*
321 	 * If we don't find an overlapping extent, trim the range we need to
322 	 * allocate to fit the hole we found.
323 	 */
324 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap))
325 		cmap->br_startoff = offset_fsb + count_fsb;
326 	if (cmap->br_startoff > offset_fsb) {
327 		xfs_trim_extent(imap, imap->br_startoff,
328 				cmap->br_startoff - imap->br_startoff);
329 		return xfs_bmap_trim_cow(ip, imap, shared);
330 	}
331 
332 	*shared = true;
333 	if (isnullstartblock(cmap->br_startblock)) {
334 		xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount);
335 		return 0;
336 	}
337 
338 	/* real extent found - no need to allocate */
339 	xfs_trim_extent(cmap, offset_fsb, count_fsb);
340 	*found = true;
341 	return 0;
342 }
343 
344 /* Allocate all CoW reservations covering a range of blocks in a file. */
345 int
346 xfs_reflink_allocate_cow(
347 	struct xfs_inode	*ip,
348 	struct xfs_bmbt_irec	*imap,
349 	struct xfs_bmbt_irec	*cmap,
350 	bool			*shared,
351 	uint			*lockmode,
352 	bool			convert_now)
353 {
354 	struct xfs_mount	*mp = ip->i_mount;
355 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
356 	xfs_filblks_t		count_fsb = imap->br_blockcount;
357 	struct xfs_trans	*tp;
358 	int			nimaps, error = 0;
359 	bool			found;
360 	xfs_filblks_t		resaligned;
361 	xfs_extlen_t		resblks = 0;
362 
363 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
364 	if (!ip->i_cowfp) {
365 		ASSERT(!xfs_is_reflink_inode(ip));
366 		xfs_ifork_init_cow(ip);
367 	}
368 
369 	error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
370 	if (error || !*shared)
371 		return error;
372 	if (found)
373 		goto convert;
374 
375 	resaligned = xfs_aligned_fsb_count(imap->br_startoff,
376 		imap->br_blockcount, xfs_get_cowextsz_hint(ip));
377 	resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
378 
379 	xfs_iunlock(ip, *lockmode);
380 	*lockmode = 0;
381 
382 	error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0,
383 			false, &tp);
384 	if (error)
385 		return error;
386 
387 	*lockmode = XFS_ILOCK_EXCL;
388 
389 	/*
390 	 * Check for an overlapping extent again now that we dropped the ilock.
391 	 */
392 	error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
393 	if (error || !*shared)
394 		goto out_trans_cancel;
395 	if (found) {
396 		xfs_trans_cancel(tp);
397 		goto convert;
398 	}
399 
400 	/* Allocate the entire reservation as unwritten blocks. */
401 	nimaps = 1;
402 	error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
403 			XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap,
404 			&nimaps);
405 	if (error)
406 		goto out_trans_cancel;
407 
408 	xfs_inode_set_cowblocks_tag(ip);
409 	error = xfs_trans_commit(tp);
410 	if (error)
411 		return error;
412 
413 	/*
414 	 * Allocation succeeded but the requested range was not even partially
415 	 * satisfied?  Bail out!
416 	 */
417 	if (nimaps == 0)
418 		return -ENOSPC;
419 convert:
420 	xfs_trim_extent(cmap, offset_fsb, count_fsb);
421 	/*
422 	 * COW fork extents are supposed to remain unwritten until we're ready
423 	 * to initiate a disk write.  For direct I/O we are going to write the
424 	 * data and need the conversion, but for buffered writes we're done.
425 	 */
426 	if (!convert_now || cmap->br_state == XFS_EXT_NORM)
427 		return 0;
428 	trace_xfs_reflink_convert_cow(ip, cmap);
429 	error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
430 	if (!error)
431 		cmap->br_state = XFS_EXT_NORM;
432 	return error;
433 
434 out_trans_cancel:
435 	xfs_trans_cancel(tp);
436 	return error;
437 }
438 
439 /*
440  * Cancel CoW reservations for some block range of an inode.
441  *
442  * If cancel_real is true this function cancels all COW fork extents for the
443  * inode; if cancel_real is false, real extents are not cleared.
444  *
445  * Caller must have already joined the inode to the current transaction. The
446  * inode will be joined to the transaction returned to the caller.
447  */
448 int
449 xfs_reflink_cancel_cow_blocks(
450 	struct xfs_inode		*ip,
451 	struct xfs_trans		**tpp,
452 	xfs_fileoff_t			offset_fsb,
453 	xfs_fileoff_t			end_fsb,
454 	bool				cancel_real)
455 {
456 	struct xfs_ifork		*ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
457 	struct xfs_bmbt_irec		got, del;
458 	struct xfs_iext_cursor		icur;
459 	int				error = 0;
460 
461 	if (!xfs_inode_has_cow_data(ip))
462 		return 0;
463 	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
464 		return 0;
465 
466 	/* Walk backwards until we're out of the I/O range... */
467 	while (got.br_startoff + got.br_blockcount > offset_fsb) {
468 		del = got;
469 		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
470 
471 		/* Extent delete may have bumped ext forward */
472 		if (!del.br_blockcount) {
473 			xfs_iext_prev(ifp, &icur);
474 			goto next_extent;
475 		}
476 
477 		trace_xfs_reflink_cancel_cow(ip, &del);
478 
479 		if (isnullstartblock(del.br_startblock)) {
480 			error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
481 					&icur, &got, &del);
482 			if (error)
483 				break;
484 		} else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
485 			ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
486 
487 			/* Free the CoW orphan record. */
488 			xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
489 					del.br_blockcount);
490 
491 			xfs_free_extent_later(*tpp, del.br_startblock,
492 					  del.br_blockcount, NULL);
493 
494 			/* Roll the transaction */
495 			error = xfs_defer_finish(tpp);
496 			if (error)
497 				break;
498 
499 			/* Remove the mapping from the CoW fork. */
500 			xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
501 
502 			/* Remove the quota reservation */
503 			error = xfs_quota_unreserve_blkres(ip,
504 					del.br_blockcount);
505 			if (error)
506 				break;
507 		} else {
508 			/* Didn't do anything, push cursor back. */
509 			xfs_iext_prev(ifp, &icur);
510 		}
511 next_extent:
512 		if (!xfs_iext_get_extent(ifp, &icur, &got))
513 			break;
514 	}
515 
516 	/* clear tag if cow fork is emptied */
517 	if (!ifp->if_bytes)
518 		xfs_inode_clear_cowblocks_tag(ip);
519 	return error;
520 }
521 
522 /*
523  * Cancel CoW reservations for some byte range of an inode.
524  *
525  * If cancel_real is true this function cancels all COW fork extents for the
526  * inode; if cancel_real is false, real extents are not cleared.
527  */
528 int
529 xfs_reflink_cancel_cow_range(
530 	struct xfs_inode	*ip,
531 	xfs_off_t		offset,
532 	xfs_off_t		count,
533 	bool			cancel_real)
534 {
535 	struct xfs_trans	*tp;
536 	xfs_fileoff_t		offset_fsb;
537 	xfs_fileoff_t		end_fsb;
538 	int			error;
539 
540 	trace_xfs_reflink_cancel_cow_range(ip, offset, count);
541 	ASSERT(ip->i_cowfp);
542 
543 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
544 	if (count == NULLFILEOFF)
545 		end_fsb = NULLFILEOFF;
546 	else
547 		end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
548 
549 	/* Start a rolling transaction to remove the mappings */
550 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
551 			0, 0, 0, &tp);
552 	if (error)
553 		goto out;
554 
555 	xfs_ilock(ip, XFS_ILOCK_EXCL);
556 	xfs_trans_ijoin(tp, ip, 0);
557 
558 	/* Scrape out the old CoW reservations */
559 	error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
560 			cancel_real);
561 	if (error)
562 		goto out_cancel;
563 
564 	error = xfs_trans_commit(tp);
565 
566 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
567 	return error;
568 
569 out_cancel:
570 	xfs_trans_cancel(tp);
571 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
572 out:
573 	trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
574 	return error;
575 }
576 
577 /*
578  * Remap part of the CoW fork into the data fork.
579  *
580  * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
581  * into the data fork; this function will remap what it can (at the end of the
582  * range) and update @end_fsb appropriately.  Each remap gets its own
583  * transaction because we can end up merging and splitting bmbt blocks for
584  * every remap operation and we'd like to keep the block reservation
585  * requirements as low as possible.
586  */
587 STATIC int
588 xfs_reflink_end_cow_extent(
589 	struct xfs_inode	*ip,
590 	xfs_fileoff_t		*offset_fsb,
591 	xfs_fileoff_t		end_fsb)
592 {
593 	struct xfs_iext_cursor	icur;
594 	struct xfs_bmbt_irec	got, del, data;
595 	struct xfs_mount	*mp = ip->i_mount;
596 	struct xfs_trans	*tp;
597 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
598 	unsigned int		resblks;
599 	int			nmaps;
600 	int			error;
601 
602 	/* No COW extents?  That's easy! */
603 	if (ifp->if_bytes == 0) {
604 		*offset_fsb = end_fsb;
605 		return 0;
606 	}
607 
608 	resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
609 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
610 			XFS_TRANS_RESERVE, &tp);
611 	if (error)
612 		return error;
613 
614 	/*
615 	 * Lock the inode.  We have to ijoin without automatic unlock because
616 	 * the lead transaction is the refcountbt record deletion; the data
617 	 * fork update follows as a deferred log item.
618 	 */
619 	xfs_ilock(ip, XFS_ILOCK_EXCL);
620 	xfs_trans_ijoin(tp, ip, 0);
621 
622 	error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
623 			XFS_IEXT_REFLINK_END_COW_CNT);
624 	if (error == -EFBIG)
625 		error = xfs_iext_count_upgrade(tp, ip,
626 				XFS_IEXT_REFLINK_END_COW_CNT);
627 	if (error)
628 		goto out_cancel;
629 
630 	/*
631 	 * In case of racing, overlapping AIO writes no COW extents might be
632 	 * left by the time I/O completes for the loser of the race.  In that
633 	 * case we are done.
634 	 */
635 	if (!xfs_iext_lookup_extent(ip, ifp, *offset_fsb, &icur, &got) ||
636 	    got.br_startoff >= end_fsb) {
637 		*offset_fsb = end_fsb;
638 		goto out_cancel;
639 	}
640 
641 	/*
642 	 * Only remap real extents that contain data.  With AIO, speculative
643 	 * preallocations can leak into the range we are called upon, and we
644 	 * need to skip them.  Preserve @got for the eventual CoW fork
645 	 * deletion; from now on @del represents the mapping that we're
646 	 * actually remapping.
647 	 */
648 	while (!xfs_bmap_is_written_extent(&got)) {
649 		if (!xfs_iext_next_extent(ifp, &icur, &got) ||
650 		    got.br_startoff >= end_fsb) {
651 			*offset_fsb = end_fsb;
652 			goto out_cancel;
653 		}
654 	}
655 	del = got;
656 
657 	/* Grab the corresponding mapping in the data fork. */
658 	nmaps = 1;
659 	error = xfs_bmapi_read(ip, del.br_startoff, del.br_blockcount, &data,
660 			&nmaps, 0);
661 	if (error)
662 		goto out_cancel;
663 
664 	/* We can only remap the smaller of the two extent sizes. */
665 	data.br_blockcount = min(data.br_blockcount, del.br_blockcount);
666 	del.br_blockcount = data.br_blockcount;
667 
668 	trace_xfs_reflink_cow_remap_from(ip, &del);
669 	trace_xfs_reflink_cow_remap_to(ip, &data);
670 
671 	if (xfs_bmap_is_real_extent(&data)) {
672 		/*
673 		 * If the extent we're remapping is backed by storage (written
674 		 * or not), unmap the extent and drop its refcount.
675 		 */
676 		xfs_bmap_unmap_extent(tp, ip, &data);
677 		xfs_refcount_decrease_extent(tp, &data);
678 		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
679 				-data.br_blockcount);
680 	} else if (data.br_startblock == DELAYSTARTBLOCK) {
681 		int		done;
682 
683 		/*
684 		 * If the extent we're remapping is a delalloc reservation,
685 		 * we can use the regular bunmapi function to release the
686 		 * incore state.  Dropping the delalloc reservation takes care
687 		 * of the quota reservation for us.
688 		 */
689 		error = xfs_bunmapi(NULL, ip, data.br_startoff,
690 				data.br_blockcount, 0, 1, &done);
691 		if (error)
692 			goto out_cancel;
693 		ASSERT(done);
694 	}
695 
696 	/* Free the CoW orphan record. */
697 	xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
698 
699 	/* Map the new blocks into the data fork. */
700 	xfs_bmap_map_extent(tp, ip, &del);
701 
702 	/* Charge this new data fork mapping to the on-disk quota. */
703 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
704 			(long)del.br_blockcount);
705 
706 	/* Remove the mapping from the CoW fork. */
707 	xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
708 
709 	error = xfs_trans_commit(tp);
710 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
711 	if (error)
712 		return error;
713 
714 	/* Update the caller about how much progress we made. */
715 	*offset_fsb = del.br_startoff + del.br_blockcount;
716 	return 0;
717 
718 out_cancel:
719 	xfs_trans_cancel(tp);
720 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
721 	return error;
722 }
723 
724 /*
725  * Remap parts of a file's data fork after a successful CoW.
726  */
727 int
728 xfs_reflink_end_cow(
729 	struct xfs_inode		*ip,
730 	xfs_off_t			offset,
731 	xfs_off_t			count)
732 {
733 	xfs_fileoff_t			offset_fsb;
734 	xfs_fileoff_t			end_fsb;
735 	int				error = 0;
736 
737 	trace_xfs_reflink_end_cow(ip, offset, count);
738 
739 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
740 	end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
741 
742 	/*
743 	 * Walk forwards until we've remapped the I/O range.  The loop function
744 	 * repeatedly cycles the ILOCK to allocate one transaction per remapped
745 	 * extent.
746 	 *
747 	 * If we're being called by writeback then the pages will still
748 	 * have PageWriteback set, which prevents races with reflink remapping
749 	 * and truncate.  Reflink remapping prevents races with writeback by
750 	 * taking the iolock and mmaplock before flushing the pages and
751 	 * remapping, which means there won't be any further writeback or page
752 	 * cache dirtying until the reflink completes.
753 	 *
754 	 * We should never have two threads issuing writeback for the same file
755 	 * region.  There are also have post-eof checks in the writeback
756 	 * preparation code so that we don't bother writing out pages that are
757 	 * about to be truncated.
758 	 *
759 	 * If we're being called as part of directio write completion, the dio
760 	 * count is still elevated, which reflink and truncate will wait for.
761 	 * Reflink remapping takes the iolock and mmaplock and waits for
762 	 * pending dio to finish, which should prevent any directio until the
763 	 * remap completes.  Multiple concurrent directio writes to the same
764 	 * region are handled by end_cow processing only occurring for the
765 	 * threads which succeed; the outcome of multiple overlapping direct
766 	 * writes is not well defined anyway.
767 	 *
768 	 * It's possible that a buffered write and a direct write could collide
769 	 * here (the buffered write stumbles in after the dio flushes and
770 	 * invalidates the page cache and immediately queues writeback), but we
771 	 * have never supported this 100%.  If either disk write succeeds the
772 	 * blocks will be remapped.
773 	 */
774 	while (end_fsb > offset_fsb && !error)
775 		error = xfs_reflink_end_cow_extent(ip, &offset_fsb, end_fsb);
776 
777 	if (error)
778 		trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
779 	return error;
780 }
781 
782 /*
783  * Free all CoW staging blocks that are still referenced by the ondisk refcount
784  * metadata.  The ondisk metadata does not track which inode created the
785  * staging extent, so callers must ensure that there are no cached inodes with
786  * live CoW staging extents.
787  */
788 int
789 xfs_reflink_recover_cow(
790 	struct xfs_mount	*mp)
791 {
792 	struct xfs_perag	*pag;
793 	xfs_agnumber_t		agno;
794 	int			error = 0;
795 
796 	if (!xfs_has_reflink(mp))
797 		return 0;
798 
799 	for_each_perag(mp, agno, pag) {
800 		error = xfs_refcount_recover_cow_leftovers(mp, pag);
801 		if (error) {
802 			xfs_perag_put(pag);
803 			break;
804 		}
805 	}
806 
807 	return error;
808 }
809 
810 /*
811  * Reflinking (Block) Ranges of Two Files Together
812  *
813  * First, ensure that the reflink flag is set on both inodes.  The flag is an
814  * optimization to avoid unnecessary refcount btree lookups in the write path.
815  *
816  * Now we can iteratively remap the range of extents (and holes) in src to the
817  * corresponding ranges in dest.  Let drange and srange denote the ranges of
818  * logical blocks in dest and src touched by the reflink operation.
819  *
820  * While the length of drange is greater than zero,
821  *    - Read src's bmbt at the start of srange ("imap")
822  *    - If imap doesn't exist, make imap appear to start at the end of srange
823  *      with zero length.
824  *    - If imap starts before srange, advance imap to start at srange.
825  *    - If imap goes beyond srange, truncate imap to end at the end of srange.
826  *    - Punch (imap start - srange start + imap len) blocks from dest at
827  *      offset (drange start).
828  *    - If imap points to a real range of pblks,
829  *         > Increase the refcount of the imap's pblks
830  *         > Map imap's pblks into dest at the offset
831  *           (drange start + imap start - srange start)
832  *    - Advance drange and srange by (imap start - srange start + imap len)
833  *
834  * Finally, if the reflink made dest longer, update both the in-core and
835  * on-disk file sizes.
836  *
837  * ASCII Art Demonstration:
838  *
839  * Let's say we want to reflink this source file:
840  *
841  * ----SSSSSSS-SSSSS----SSSSSS (src file)
842  *   <-------------------->
843  *
844  * into this destination file:
845  *
846  * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
847  *        <-------------------->
848  * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
849  * Observe that the range has different logical offsets in either file.
850  *
851  * Consider that the first extent in the source file doesn't line up with our
852  * reflink range.  Unmapping  and remapping are separate operations, so we can
853  * unmap more blocks from the destination file than we remap.
854  *
855  * ----SSSSSSS-SSSSS----SSSSSS
856  *   <------->
857  * --DDDDD---------DDDDD--DDD
858  *        <------->
859  *
860  * Now remap the source extent into the destination file:
861  *
862  * ----SSSSSSS-SSSSS----SSSSSS
863  *   <------->
864  * --DDDDD--SSSSSSSDDDDD--DDD
865  *        <------->
866  *
867  * Do likewise with the second hole and extent in our range.  Holes in the
868  * unmap range don't affect our operation.
869  *
870  * ----SSSSSSS-SSSSS----SSSSSS
871  *            <---->
872  * --DDDDD--SSSSSSS-SSSSS-DDD
873  *                 <---->
874  *
875  * Finally, unmap and remap part of the third extent.  This will increase the
876  * size of the destination file.
877  *
878  * ----SSSSSSS-SSSSS----SSSSSS
879  *                  <----->
880  * --DDDDD--SSSSSSS-SSSSS----SSS
881  *                       <----->
882  *
883  * Once we update the destination file's i_size, we're done.
884  */
885 
886 /*
887  * Ensure the reflink bit is set in both inodes.
888  */
889 STATIC int
890 xfs_reflink_set_inode_flag(
891 	struct xfs_inode	*src,
892 	struct xfs_inode	*dest)
893 {
894 	struct xfs_mount	*mp = src->i_mount;
895 	int			error;
896 	struct xfs_trans	*tp;
897 
898 	if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
899 		return 0;
900 
901 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
902 	if (error)
903 		goto out_error;
904 
905 	/* Lock both files against IO */
906 	if (src->i_ino == dest->i_ino)
907 		xfs_ilock(src, XFS_ILOCK_EXCL);
908 	else
909 		xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
910 
911 	if (!xfs_is_reflink_inode(src)) {
912 		trace_xfs_reflink_set_inode_flag(src);
913 		xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
914 		src->i_diflags2 |= XFS_DIFLAG2_REFLINK;
915 		xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
916 		xfs_ifork_init_cow(src);
917 	} else
918 		xfs_iunlock(src, XFS_ILOCK_EXCL);
919 
920 	if (src->i_ino == dest->i_ino)
921 		goto commit_flags;
922 
923 	if (!xfs_is_reflink_inode(dest)) {
924 		trace_xfs_reflink_set_inode_flag(dest);
925 		xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
926 		dest->i_diflags2 |= XFS_DIFLAG2_REFLINK;
927 		xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
928 		xfs_ifork_init_cow(dest);
929 	} else
930 		xfs_iunlock(dest, XFS_ILOCK_EXCL);
931 
932 commit_flags:
933 	error = xfs_trans_commit(tp);
934 	if (error)
935 		goto out_error;
936 	return error;
937 
938 out_error:
939 	trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
940 	return error;
941 }
942 
943 /*
944  * Update destination inode size & cowextsize hint, if necessary.
945  */
946 int
947 xfs_reflink_update_dest(
948 	struct xfs_inode	*dest,
949 	xfs_off_t		newlen,
950 	xfs_extlen_t		cowextsize,
951 	unsigned int		remap_flags)
952 {
953 	struct xfs_mount	*mp = dest->i_mount;
954 	struct xfs_trans	*tp;
955 	int			error;
956 
957 	if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
958 		return 0;
959 
960 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
961 	if (error)
962 		goto out_error;
963 
964 	xfs_ilock(dest, XFS_ILOCK_EXCL);
965 	xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
966 
967 	if (newlen > i_size_read(VFS_I(dest))) {
968 		trace_xfs_reflink_update_inode_size(dest, newlen);
969 		i_size_write(VFS_I(dest), newlen);
970 		dest->i_disk_size = newlen;
971 	}
972 
973 	if (cowextsize) {
974 		dest->i_cowextsize = cowextsize;
975 		dest->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
976 	}
977 
978 	xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
979 
980 	error = xfs_trans_commit(tp);
981 	if (error)
982 		goto out_error;
983 	return error;
984 
985 out_error:
986 	trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
987 	return error;
988 }
989 
990 /*
991  * Do we have enough reserve in this AG to handle a reflink?  The refcount
992  * btree already reserved all the space it needs, but the rmap btree can grow
993  * infinitely, so we won't allow more reflinks when the AG is down to the
994  * btree reserves.
995  */
996 static int
997 xfs_reflink_ag_has_free_space(
998 	struct xfs_mount	*mp,
999 	xfs_agnumber_t		agno)
1000 {
1001 	struct xfs_perag	*pag;
1002 	int			error = 0;
1003 
1004 	if (!xfs_has_rmapbt(mp))
1005 		return 0;
1006 
1007 	pag = xfs_perag_get(mp, agno);
1008 	if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
1009 	    xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
1010 		error = -ENOSPC;
1011 	xfs_perag_put(pag);
1012 	return error;
1013 }
1014 
1015 /*
1016  * Remap the given extent into the file.  The dmap blockcount will be set to
1017  * the number of blocks that were actually remapped.
1018  */
1019 STATIC int
1020 xfs_reflink_remap_extent(
1021 	struct xfs_inode	*ip,
1022 	struct xfs_bmbt_irec	*dmap,
1023 	xfs_off_t		new_isize)
1024 {
1025 	struct xfs_bmbt_irec	smap;
1026 	struct xfs_mount	*mp = ip->i_mount;
1027 	struct xfs_trans	*tp;
1028 	xfs_off_t		newlen;
1029 	int64_t			qdelta = 0;
1030 	unsigned int		resblks;
1031 	bool			quota_reserved = true;
1032 	bool			smap_real;
1033 	bool			dmap_written = xfs_bmap_is_written_extent(dmap);
1034 	int			iext_delta = 0;
1035 	int			nimaps;
1036 	int			error;
1037 
1038 	/*
1039 	 * Start a rolling transaction to switch the mappings.
1040 	 *
1041 	 * Adding a written extent to the extent map can cause a bmbt split,
1042 	 * and removing a mapped extent from the extent can cause a bmbt split.
1043 	 * The two operations cannot both cause a split since they operate on
1044 	 * the same index in the bmap btree, so we only need a reservation for
1045 	 * one bmbt split if either thing is happening.  However, we haven't
1046 	 * locked the inode yet, so we reserve assuming this is the case.
1047 	 *
1048 	 * The first allocation call tries to reserve enough space to handle
1049 	 * mapping dmap into a sparse part of the file plus the bmbt split.  We
1050 	 * haven't locked the inode or read the existing mapping yet, so we do
1051 	 * not know for sure that we need the space.  This should succeed most
1052 	 * of the time.
1053 	 *
1054 	 * If the first attempt fails, try again but reserving only enough
1055 	 * space to handle a bmbt split.  This is the hard minimum requirement,
1056 	 * and we revisit quota reservations later when we know more about what
1057 	 * we're remapping.
1058 	 */
1059 	resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
1060 	error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1061 			resblks + dmap->br_blockcount, 0, false, &tp);
1062 	if (error == -EDQUOT || error == -ENOSPC) {
1063 		quota_reserved = false;
1064 		error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1065 				resblks, 0, false, &tp);
1066 	}
1067 	if (error)
1068 		goto out;
1069 
1070 	/*
1071 	 * Read what's currently mapped in the destination file into smap.
1072 	 * If smap isn't a hole, we will have to remove it before we can add
1073 	 * dmap to the destination file.
1074 	 */
1075 	nimaps = 1;
1076 	error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount,
1077 			&smap, &nimaps, 0);
1078 	if (error)
1079 		goto out_cancel;
1080 	ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff);
1081 	smap_real = xfs_bmap_is_real_extent(&smap);
1082 
1083 	/*
1084 	 * We can only remap as many blocks as the smaller of the two extent
1085 	 * maps, because we can only remap one extent at a time.
1086 	 */
1087 	dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount);
1088 	ASSERT(dmap->br_blockcount == smap.br_blockcount);
1089 
1090 	trace_xfs_reflink_remap_extent_dest(ip, &smap);
1091 
1092 	/*
1093 	 * Two extents mapped to the same physical block must not have
1094 	 * different states; that's filesystem corruption.  Move on to the next
1095 	 * extent if they're both holes or both the same physical extent.
1096 	 */
1097 	if (dmap->br_startblock == smap.br_startblock) {
1098 		if (dmap->br_state != smap.br_state)
1099 			error = -EFSCORRUPTED;
1100 		goto out_cancel;
1101 	}
1102 
1103 	/* If both extents are unwritten, leave them alone. */
1104 	if (dmap->br_state == XFS_EXT_UNWRITTEN &&
1105 	    smap.br_state == XFS_EXT_UNWRITTEN)
1106 		goto out_cancel;
1107 
1108 	/* No reflinking if the AG of the dest mapping is low on space. */
1109 	if (dmap_written) {
1110 		error = xfs_reflink_ag_has_free_space(mp,
1111 				XFS_FSB_TO_AGNO(mp, dmap->br_startblock));
1112 		if (error)
1113 			goto out_cancel;
1114 	}
1115 
1116 	/*
1117 	 * Increase quota reservation if we think the quota block counter for
1118 	 * this file could increase.
1119 	 *
1120 	 * If we are mapping a written extent into the file, we need to have
1121 	 * enough quota block count reservation to handle the blocks in that
1122 	 * extent.  We log only the delta to the quota block counts, so if the
1123 	 * extent we're unmapping also has blocks allocated to it, we don't
1124 	 * need a quota reservation for the extent itself.
1125 	 *
1126 	 * Note that if we're replacing a delalloc reservation with a written
1127 	 * extent, we have to take the full quota reservation because removing
1128 	 * the delalloc reservation gives the block count back to the quota
1129 	 * count.  This is suboptimal, but the VFS flushed the dest range
1130 	 * before we started.  That should have removed all the delalloc
1131 	 * reservations, but we code defensively.
1132 	 *
1133 	 * xfs_trans_alloc_inode above already tried to grab an even larger
1134 	 * quota reservation, and kicked off a blockgc scan if it couldn't.
1135 	 * If we can't get a potentially smaller quota reservation now, we're
1136 	 * done.
1137 	 */
1138 	if (!quota_reserved && !smap_real && dmap_written) {
1139 		error = xfs_trans_reserve_quota_nblks(tp, ip,
1140 				dmap->br_blockcount, 0, false);
1141 		if (error)
1142 			goto out_cancel;
1143 	}
1144 
1145 	if (smap_real)
1146 		++iext_delta;
1147 
1148 	if (dmap_written)
1149 		++iext_delta;
1150 
1151 	error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, iext_delta);
1152 	if (error == -EFBIG)
1153 		error = xfs_iext_count_upgrade(tp, ip, iext_delta);
1154 	if (error)
1155 		goto out_cancel;
1156 
1157 	if (smap_real) {
1158 		/*
1159 		 * If the extent we're unmapping is backed by storage (written
1160 		 * or not), unmap the extent and drop its refcount.
1161 		 */
1162 		xfs_bmap_unmap_extent(tp, ip, &smap);
1163 		xfs_refcount_decrease_extent(tp, &smap);
1164 		qdelta -= smap.br_blockcount;
1165 	} else if (smap.br_startblock == DELAYSTARTBLOCK) {
1166 		int		done;
1167 
1168 		/*
1169 		 * If the extent we're unmapping is a delalloc reservation,
1170 		 * we can use the regular bunmapi function to release the
1171 		 * incore state.  Dropping the delalloc reservation takes care
1172 		 * of the quota reservation for us.
1173 		 */
1174 		error = xfs_bunmapi(NULL, ip, smap.br_startoff,
1175 				smap.br_blockcount, 0, 1, &done);
1176 		if (error)
1177 			goto out_cancel;
1178 		ASSERT(done);
1179 	}
1180 
1181 	/*
1182 	 * If the extent we're sharing is backed by written storage, increase
1183 	 * its refcount and map it into the file.
1184 	 */
1185 	if (dmap_written) {
1186 		xfs_refcount_increase_extent(tp, dmap);
1187 		xfs_bmap_map_extent(tp, ip, dmap);
1188 		qdelta += dmap->br_blockcount;
1189 	}
1190 
1191 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta);
1192 
1193 	/* Update dest isize if needed. */
1194 	newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount);
1195 	newlen = min_t(xfs_off_t, newlen, new_isize);
1196 	if (newlen > i_size_read(VFS_I(ip))) {
1197 		trace_xfs_reflink_update_inode_size(ip, newlen);
1198 		i_size_write(VFS_I(ip), newlen);
1199 		ip->i_disk_size = newlen;
1200 		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1201 	}
1202 
1203 	/* Commit everything and unlock. */
1204 	error = xfs_trans_commit(tp);
1205 	goto out_unlock;
1206 
1207 out_cancel:
1208 	xfs_trans_cancel(tp);
1209 out_unlock:
1210 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1211 out:
1212 	if (error)
1213 		trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1214 	return error;
1215 }
1216 
1217 /* Remap a range of one file to the other. */
1218 int
1219 xfs_reflink_remap_blocks(
1220 	struct xfs_inode	*src,
1221 	loff_t			pos_in,
1222 	struct xfs_inode	*dest,
1223 	loff_t			pos_out,
1224 	loff_t			remap_len,
1225 	loff_t			*remapped)
1226 {
1227 	struct xfs_bmbt_irec	imap;
1228 	struct xfs_mount	*mp = src->i_mount;
1229 	xfs_fileoff_t		srcoff = XFS_B_TO_FSBT(mp, pos_in);
1230 	xfs_fileoff_t		destoff = XFS_B_TO_FSBT(mp, pos_out);
1231 	xfs_filblks_t		len;
1232 	xfs_filblks_t		remapped_len = 0;
1233 	xfs_off_t		new_isize = pos_out + remap_len;
1234 	int			nimaps;
1235 	int			error = 0;
1236 
1237 	len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len),
1238 			XFS_MAX_FILEOFF);
1239 
1240 	trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff);
1241 
1242 	while (len > 0) {
1243 		unsigned int	lock_mode;
1244 
1245 		/* Read extent from the source file */
1246 		nimaps = 1;
1247 		lock_mode = xfs_ilock_data_map_shared(src);
1248 		error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1249 		xfs_iunlock(src, lock_mode);
1250 		if (error)
1251 			break;
1252 		/*
1253 		 * The caller supposedly flushed all dirty pages in the source
1254 		 * file range, which means that writeback should have allocated
1255 		 * or deleted all delalloc reservations in that range.  If we
1256 		 * find one, that's a good sign that something is seriously
1257 		 * wrong here.
1258 		 */
1259 		ASSERT(nimaps == 1 && imap.br_startoff == srcoff);
1260 		if (imap.br_startblock == DELAYSTARTBLOCK) {
1261 			ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1262 			error = -EFSCORRUPTED;
1263 			break;
1264 		}
1265 
1266 		trace_xfs_reflink_remap_extent_src(src, &imap);
1267 
1268 		/* Remap into the destination file at the given offset. */
1269 		imap.br_startoff = destoff;
1270 		error = xfs_reflink_remap_extent(dest, &imap, new_isize);
1271 		if (error)
1272 			break;
1273 
1274 		if (fatal_signal_pending(current)) {
1275 			error = -EINTR;
1276 			break;
1277 		}
1278 
1279 		/* Advance drange/srange */
1280 		srcoff += imap.br_blockcount;
1281 		destoff += imap.br_blockcount;
1282 		len -= imap.br_blockcount;
1283 		remapped_len += imap.br_blockcount;
1284 	}
1285 
1286 	if (error)
1287 		trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1288 	*remapped = min_t(loff_t, remap_len,
1289 			  XFS_FSB_TO_B(src->i_mount, remapped_len));
1290 	return error;
1291 }
1292 
1293 /*
1294  * If we're reflinking to a point past the destination file's EOF, we must
1295  * zero any speculative post-EOF preallocations that sit between the old EOF
1296  * and the destination file offset.
1297  */
1298 static int
1299 xfs_reflink_zero_posteof(
1300 	struct xfs_inode	*ip,
1301 	loff_t			pos)
1302 {
1303 	loff_t			isize = i_size_read(VFS_I(ip));
1304 
1305 	if (pos <= isize)
1306 		return 0;
1307 
1308 	trace_xfs_zero_eof(ip, isize, pos - isize);
1309 	return xfs_zero_range(ip, isize, pos - isize, NULL);
1310 }
1311 
1312 /*
1313  * Prepare two files for range cloning.  Upon a successful return both inodes
1314  * will have the iolock and mmaplock held, the page cache of the out file will
1315  * be truncated, and any leases on the out file will have been broken.  This
1316  * function borrows heavily from xfs_file_aio_write_checks.
1317  *
1318  * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1319  * checked that the bytes beyond EOF physically match. Hence we cannot use the
1320  * EOF block in the source dedupe range because it's not a complete block match,
1321  * hence can introduce a corruption into the file that has it's block replaced.
1322  *
1323  * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1324  * "block aligned" for the purposes of cloning entire files.  However, if the
1325  * source file range includes the EOF block and it lands within the existing EOF
1326  * of the destination file, then we can expose stale data from beyond the source
1327  * file EOF in the destination file.
1328  *
1329  * XFS doesn't support partial block sharing, so in both cases we have check
1330  * these cases ourselves. For dedupe, we can simply round the length to dedupe
1331  * down to the previous whole block and ignore the partial EOF block. While this
1332  * means we can't dedupe the last block of a file, this is an acceptible
1333  * tradeoff for simplicity on implementation.
1334  *
1335  * For cloning, we want to share the partial EOF block if it is also the new EOF
1336  * block of the destination file. If the partial EOF block lies inside the
1337  * existing destination EOF, then we have to abort the clone to avoid exposing
1338  * stale data in the destination file. Hence we reject these clone attempts with
1339  * -EINVAL in this case.
1340  */
1341 int
1342 xfs_reflink_remap_prep(
1343 	struct file		*file_in,
1344 	loff_t			pos_in,
1345 	struct file		*file_out,
1346 	loff_t			pos_out,
1347 	loff_t			*len,
1348 	unsigned int		remap_flags)
1349 {
1350 	struct inode		*inode_in = file_inode(file_in);
1351 	struct xfs_inode	*src = XFS_I(inode_in);
1352 	struct inode		*inode_out = file_inode(file_out);
1353 	struct xfs_inode	*dest = XFS_I(inode_out);
1354 	int			ret;
1355 
1356 	/* Lock both files against IO */
1357 	ret = xfs_ilock2_io_mmap(src, dest);
1358 	if (ret)
1359 		return ret;
1360 
1361 	/* Check file eligibility and prepare for block sharing. */
1362 	ret = -EINVAL;
1363 	/* Don't reflink realtime inodes */
1364 	if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1365 		goto out_unlock;
1366 
1367 	/* Don't share DAX file data with non-DAX file. */
1368 	if (IS_DAX(inode_in) != IS_DAX(inode_out))
1369 		goto out_unlock;
1370 
1371 	if (!IS_DAX(inode_in))
1372 		ret = generic_remap_file_range_prep(file_in, pos_in, file_out,
1373 				pos_out, len, remap_flags);
1374 	else
1375 		ret = dax_remap_file_range_prep(file_in, pos_in, file_out,
1376 				pos_out, len, remap_flags, &xfs_read_iomap_ops);
1377 	if (ret || *len == 0)
1378 		goto out_unlock;
1379 
1380 	/* Attach dquots to dest inode before changing block map */
1381 	ret = xfs_qm_dqattach(dest);
1382 	if (ret)
1383 		goto out_unlock;
1384 
1385 	/*
1386 	 * Zero existing post-eof speculative preallocations in the destination
1387 	 * file.
1388 	 */
1389 	ret = xfs_reflink_zero_posteof(dest, pos_out);
1390 	if (ret)
1391 		goto out_unlock;
1392 
1393 	/* Set flags and remap blocks. */
1394 	ret = xfs_reflink_set_inode_flag(src, dest);
1395 	if (ret)
1396 		goto out_unlock;
1397 
1398 	/*
1399 	 * If pos_out > EOF, we may have dirtied blocks between EOF and
1400 	 * pos_out. In that case, we need to extend the flush and unmap to cover
1401 	 * from EOF to the end of the copy length.
1402 	 */
1403 	if (pos_out > XFS_ISIZE(dest)) {
1404 		loff_t	flen = *len + (pos_out - XFS_ISIZE(dest));
1405 		ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1406 	} else {
1407 		ret = xfs_flush_unmap_range(dest, pos_out, *len);
1408 	}
1409 	if (ret)
1410 		goto out_unlock;
1411 
1412 	return 0;
1413 out_unlock:
1414 	xfs_iunlock2_io_mmap(src, dest);
1415 	return ret;
1416 }
1417 
1418 /* Does this inode need the reflink flag? */
1419 int
1420 xfs_reflink_inode_has_shared_extents(
1421 	struct xfs_trans		*tp,
1422 	struct xfs_inode		*ip,
1423 	bool				*has_shared)
1424 {
1425 	struct xfs_bmbt_irec		got;
1426 	struct xfs_mount		*mp = ip->i_mount;
1427 	struct xfs_ifork		*ifp;
1428 	struct xfs_iext_cursor		icur;
1429 	bool				found;
1430 	int				error;
1431 
1432 	ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1433 	error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1434 	if (error)
1435 		return error;
1436 
1437 	*has_shared = false;
1438 	found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1439 	while (found) {
1440 		struct xfs_perag	*pag;
1441 		xfs_agblock_t		agbno;
1442 		xfs_extlen_t		aglen;
1443 		xfs_agblock_t		rbno;
1444 		xfs_extlen_t		rlen;
1445 
1446 		if (isnullstartblock(got.br_startblock) ||
1447 		    got.br_state != XFS_EXT_NORM)
1448 			goto next;
1449 
1450 		pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, got.br_startblock));
1451 		agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1452 		aglen = got.br_blockcount;
1453 		error = xfs_reflink_find_shared(pag, tp, agbno, aglen,
1454 				&rbno, &rlen, false);
1455 		xfs_perag_put(pag);
1456 		if (error)
1457 			return error;
1458 
1459 		/* Is there still a shared block here? */
1460 		if (rbno != NULLAGBLOCK) {
1461 			*has_shared = true;
1462 			return 0;
1463 		}
1464 next:
1465 		found = xfs_iext_next_extent(ifp, &icur, &got);
1466 	}
1467 
1468 	return 0;
1469 }
1470 
1471 /*
1472  * Clear the inode reflink flag if there are no shared extents.
1473  *
1474  * The caller is responsible for joining the inode to the transaction passed in.
1475  * The inode will be joined to the transaction that is returned to the caller.
1476  */
1477 int
1478 xfs_reflink_clear_inode_flag(
1479 	struct xfs_inode	*ip,
1480 	struct xfs_trans	**tpp)
1481 {
1482 	bool			needs_flag;
1483 	int			error = 0;
1484 
1485 	ASSERT(xfs_is_reflink_inode(ip));
1486 
1487 	error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1488 	if (error || needs_flag)
1489 		return error;
1490 
1491 	/*
1492 	 * We didn't find any shared blocks so turn off the reflink flag.
1493 	 * First, get rid of any leftover CoW mappings.
1494 	 */
1495 	error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF,
1496 			true);
1497 	if (error)
1498 		return error;
1499 
1500 	/* Clear the inode flag. */
1501 	trace_xfs_reflink_unset_inode_flag(ip);
1502 	ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1503 	xfs_inode_clear_cowblocks_tag(ip);
1504 	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1505 
1506 	return error;
1507 }
1508 
1509 /*
1510  * Clear the inode reflink flag if there are no shared extents and the size
1511  * hasn't changed.
1512  */
1513 STATIC int
1514 xfs_reflink_try_clear_inode_flag(
1515 	struct xfs_inode	*ip)
1516 {
1517 	struct xfs_mount	*mp = ip->i_mount;
1518 	struct xfs_trans	*tp;
1519 	int			error = 0;
1520 
1521 	/* Start a rolling transaction to remove the mappings */
1522 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1523 	if (error)
1524 		return error;
1525 
1526 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1527 	xfs_trans_ijoin(tp, ip, 0);
1528 
1529 	error = xfs_reflink_clear_inode_flag(ip, &tp);
1530 	if (error)
1531 		goto cancel;
1532 
1533 	error = xfs_trans_commit(tp);
1534 	if (error)
1535 		goto out;
1536 
1537 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1538 	return 0;
1539 cancel:
1540 	xfs_trans_cancel(tp);
1541 out:
1542 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1543 	return error;
1544 }
1545 
1546 /*
1547  * Pre-COW all shared blocks within a given byte range of a file and turn off
1548  * the reflink flag if we unshare all of the file's blocks.
1549  */
1550 int
1551 xfs_reflink_unshare(
1552 	struct xfs_inode	*ip,
1553 	xfs_off_t		offset,
1554 	xfs_off_t		len)
1555 {
1556 	struct inode		*inode = VFS_I(ip);
1557 	int			error;
1558 
1559 	if (!xfs_is_reflink_inode(ip))
1560 		return 0;
1561 
1562 	trace_xfs_reflink_unshare(ip, offset, len);
1563 
1564 	inode_dio_wait(inode);
1565 
1566 	error = iomap_file_unshare(inode, offset, len,
1567 			&xfs_buffered_write_iomap_ops);
1568 	if (error)
1569 		goto out;
1570 
1571 	error = filemap_write_and_wait_range(inode->i_mapping, offset,
1572 			offset + len - 1);
1573 	if (error)
1574 		goto out;
1575 
1576 	/* Turn off the reflink flag if possible. */
1577 	error = xfs_reflink_try_clear_inode_flag(ip);
1578 	if (error)
1579 		goto out;
1580 	return 0;
1581 
1582 out:
1583 	trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1584 	return error;
1585 }
1586