1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2016 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_defer.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_bmap.h" 17 #include "xfs_bmap_util.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_btree.h" 21 #include "xfs_refcount_btree.h" 22 #include "xfs_refcount.h" 23 #include "xfs_bmap_btree.h" 24 #include "xfs_trans_space.h" 25 #include "xfs_bit.h" 26 #include "xfs_alloc.h" 27 #include "xfs_quota.h" 28 #include "xfs_reflink.h" 29 #include "xfs_iomap.h" 30 #include "xfs_ag.h" 31 #include "xfs_ag_resv.h" 32 33 /* 34 * Copy on Write of Shared Blocks 35 * 36 * XFS must preserve "the usual" file semantics even when two files share 37 * the same physical blocks. This means that a write to one file must not 38 * alter the blocks in a different file; the way that we'll do that is 39 * through the use of a copy-on-write mechanism. At a high level, that 40 * means that when we want to write to a shared block, we allocate a new 41 * block, write the data to the new block, and if that succeeds we map the 42 * new block into the file. 43 * 44 * XFS provides a "delayed allocation" mechanism that defers the allocation 45 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as 46 * possible. This reduces fragmentation by enabling the filesystem to ask 47 * for bigger chunks less often, which is exactly what we want for CoW. 48 * 49 * The delalloc mechanism begins when the kernel wants to make a block 50 * writable (write_begin or page_mkwrite). If the offset is not mapped, we 51 * create a delalloc mapping, which is a regular in-core extent, but without 52 * a real startblock. (For delalloc mappings, the startblock encodes both 53 * a flag that this is a delalloc mapping, and a worst-case estimate of how 54 * many blocks might be required to put the mapping into the BMBT.) delalloc 55 * mappings are a reservation against the free space in the filesystem; 56 * adjacent mappings can also be combined into fewer larger mappings. 57 * 58 * As an optimization, the CoW extent size hint (cowextsz) creates 59 * outsized aligned delalloc reservations in the hope of landing out of 60 * order nearby CoW writes in a single extent on disk, thereby reducing 61 * fragmentation and improving future performance. 62 * 63 * D: --RRRRRRSSSRRRRRRRR--- (data fork) 64 * C: ------DDDDDDD--------- (CoW fork) 65 * 66 * When dirty pages are being written out (typically in writepage), the 67 * delalloc reservations are converted into unwritten mappings by 68 * allocating blocks and replacing the delalloc mapping with real ones. 69 * A delalloc mapping can be replaced by several unwritten ones if the 70 * free space is fragmented. 71 * 72 * D: --RRRRRRSSSRRRRRRRR--- 73 * C: ------UUUUUUU--------- 74 * 75 * We want to adapt the delalloc mechanism for copy-on-write, since the 76 * write paths are similar. The first two steps (creating the reservation 77 * and allocating the blocks) are exactly the same as delalloc except that 78 * the mappings must be stored in a separate CoW fork because we do not want 79 * to disturb the mapping in the data fork until we're sure that the write 80 * succeeded. IO completion in this case is the process of removing the old 81 * mapping from the data fork and moving the new mapping from the CoW fork to 82 * the data fork. This will be discussed shortly. 83 * 84 * For now, unaligned directio writes will be bounced back to the page cache. 85 * Block-aligned directio writes will use the same mechanism as buffered 86 * writes. 87 * 88 * Just prior to submitting the actual disk write requests, we convert 89 * the extents representing the range of the file actually being written 90 * (as opposed to extra pieces created for the cowextsize hint) to real 91 * extents. This will become important in the next step: 92 * 93 * D: --RRRRRRSSSRRRRRRRR--- 94 * C: ------UUrrUUU--------- 95 * 96 * CoW remapping must be done after the data block write completes, 97 * because we don't want to destroy the old data fork map until we're sure 98 * the new block has been written. Since the new mappings are kept in a 99 * separate fork, we can simply iterate these mappings to find the ones 100 * that cover the file blocks that we just CoW'd. For each extent, simply 101 * unmap the corresponding range in the data fork, map the new range into 102 * the data fork, and remove the extent from the CoW fork. Because of 103 * the presence of the cowextsize hint, however, we must be careful 104 * only to remap the blocks that we've actually written out -- we must 105 * never remap delalloc reservations nor CoW staging blocks that have 106 * yet to be written. This corresponds exactly to the real extents in 107 * the CoW fork: 108 * 109 * D: --RRRRRRrrSRRRRRRRR--- 110 * C: ------UU--UUU--------- 111 * 112 * Since the remapping operation can be applied to an arbitrary file 113 * range, we record the need for the remap step as a flag in the ioend 114 * instead of declaring a new IO type. This is required for direct io 115 * because we only have ioend for the whole dio, and we have to be able to 116 * remember the presence of unwritten blocks and CoW blocks with a single 117 * ioend structure. Better yet, the more ground we can cover with one 118 * ioend, the better. 119 */ 120 121 /* 122 * Given an AG extent, find the lowest-numbered run of shared blocks 123 * within that range and return the range in fbno/flen. If 124 * find_end_of_shared is true, return the longest contiguous extent of 125 * shared blocks. If there are no shared extents, fbno and flen will 126 * be set to NULLAGBLOCK and 0, respectively. 127 */ 128 static int 129 xfs_reflink_find_shared( 130 struct xfs_perag *pag, 131 struct xfs_trans *tp, 132 xfs_agblock_t agbno, 133 xfs_extlen_t aglen, 134 xfs_agblock_t *fbno, 135 xfs_extlen_t *flen, 136 bool find_end_of_shared) 137 { 138 struct xfs_buf *agbp; 139 struct xfs_btree_cur *cur; 140 int error; 141 142 error = xfs_alloc_read_agf(pag, tp, 0, &agbp); 143 if (error) 144 return error; 145 146 cur = xfs_refcountbt_init_cursor(pag->pag_mount, tp, agbp, pag); 147 148 error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen, 149 find_end_of_shared); 150 151 xfs_btree_del_cursor(cur, error); 152 153 xfs_trans_brelse(tp, agbp); 154 return error; 155 } 156 157 /* 158 * Trim the mapping to the next block where there's a change in the 159 * shared/unshared status. More specifically, this means that we 160 * find the lowest-numbered extent of shared blocks that coincides with 161 * the given block mapping. If the shared extent overlaps the start of 162 * the mapping, trim the mapping to the end of the shared extent. If 163 * the shared region intersects the mapping, trim the mapping to the 164 * start of the shared extent. If there are no shared regions that 165 * overlap, just return the original extent. 166 */ 167 int 168 xfs_reflink_trim_around_shared( 169 struct xfs_inode *ip, 170 struct xfs_bmbt_irec *irec, 171 bool *shared) 172 { 173 struct xfs_mount *mp = ip->i_mount; 174 struct xfs_perag *pag; 175 xfs_agblock_t agbno; 176 xfs_extlen_t aglen; 177 xfs_agblock_t fbno; 178 xfs_extlen_t flen; 179 int error = 0; 180 181 /* Holes, unwritten, and delalloc extents cannot be shared */ 182 if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) { 183 *shared = false; 184 return 0; 185 } 186 187 trace_xfs_reflink_trim_around_shared(ip, irec); 188 189 pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, irec->br_startblock)); 190 agbno = XFS_FSB_TO_AGBNO(mp, irec->br_startblock); 191 aglen = irec->br_blockcount; 192 193 error = xfs_reflink_find_shared(pag, NULL, agbno, aglen, &fbno, &flen, 194 true); 195 xfs_perag_put(pag); 196 if (error) 197 return error; 198 199 *shared = false; 200 if (fbno == NULLAGBLOCK) { 201 /* No shared blocks at all. */ 202 return 0; 203 } 204 205 if (fbno == agbno) { 206 /* 207 * The start of this extent is shared. Truncate the 208 * mapping at the end of the shared region so that a 209 * subsequent iteration starts at the start of the 210 * unshared region. 211 */ 212 irec->br_blockcount = flen; 213 *shared = true; 214 return 0; 215 } 216 217 /* 218 * There's a shared extent midway through this extent. 219 * Truncate the mapping at the start of the shared 220 * extent so that a subsequent iteration starts at the 221 * start of the shared region. 222 */ 223 irec->br_blockcount = fbno - agbno; 224 return 0; 225 } 226 227 int 228 xfs_bmap_trim_cow( 229 struct xfs_inode *ip, 230 struct xfs_bmbt_irec *imap, 231 bool *shared) 232 { 233 /* We can't update any real extents in always COW mode. */ 234 if (xfs_is_always_cow_inode(ip) && 235 !isnullstartblock(imap->br_startblock)) { 236 *shared = true; 237 return 0; 238 } 239 240 /* Trim the mapping to the nearest shared extent boundary. */ 241 return xfs_reflink_trim_around_shared(ip, imap, shared); 242 } 243 244 static int 245 xfs_reflink_convert_cow_locked( 246 struct xfs_inode *ip, 247 xfs_fileoff_t offset_fsb, 248 xfs_filblks_t count_fsb) 249 { 250 struct xfs_iext_cursor icur; 251 struct xfs_bmbt_irec got; 252 struct xfs_btree_cur *dummy_cur = NULL; 253 int dummy_logflags; 254 int error = 0; 255 256 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got)) 257 return 0; 258 259 do { 260 if (got.br_startoff >= offset_fsb + count_fsb) 261 break; 262 if (got.br_state == XFS_EXT_NORM) 263 continue; 264 if (WARN_ON_ONCE(isnullstartblock(got.br_startblock))) 265 return -EIO; 266 267 xfs_trim_extent(&got, offset_fsb, count_fsb); 268 if (!got.br_blockcount) 269 continue; 270 271 got.br_state = XFS_EXT_NORM; 272 error = xfs_bmap_add_extent_unwritten_real(NULL, ip, 273 XFS_COW_FORK, &icur, &dummy_cur, &got, 274 &dummy_logflags); 275 if (error) 276 return error; 277 } while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got)); 278 279 return error; 280 } 281 282 /* Convert all of the unwritten CoW extents in a file's range to real ones. */ 283 int 284 xfs_reflink_convert_cow( 285 struct xfs_inode *ip, 286 xfs_off_t offset, 287 xfs_off_t count) 288 { 289 struct xfs_mount *mp = ip->i_mount; 290 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 291 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); 292 xfs_filblks_t count_fsb = end_fsb - offset_fsb; 293 int error; 294 295 ASSERT(count != 0); 296 297 xfs_ilock(ip, XFS_ILOCK_EXCL); 298 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb); 299 xfs_iunlock(ip, XFS_ILOCK_EXCL); 300 return error; 301 } 302 303 /* 304 * Find the extent that maps the given range in the COW fork. Even if the extent 305 * is not shared we might have a preallocation for it in the COW fork. If so we 306 * use it that rather than trigger a new allocation. 307 */ 308 static int 309 xfs_find_trim_cow_extent( 310 struct xfs_inode *ip, 311 struct xfs_bmbt_irec *imap, 312 struct xfs_bmbt_irec *cmap, 313 bool *shared, 314 bool *found) 315 { 316 xfs_fileoff_t offset_fsb = imap->br_startoff; 317 xfs_filblks_t count_fsb = imap->br_blockcount; 318 struct xfs_iext_cursor icur; 319 320 *found = false; 321 322 /* 323 * If we don't find an overlapping extent, trim the range we need to 324 * allocate to fit the hole we found. 325 */ 326 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap)) 327 cmap->br_startoff = offset_fsb + count_fsb; 328 if (cmap->br_startoff > offset_fsb) { 329 xfs_trim_extent(imap, imap->br_startoff, 330 cmap->br_startoff - imap->br_startoff); 331 return xfs_bmap_trim_cow(ip, imap, shared); 332 } 333 334 *shared = true; 335 if (isnullstartblock(cmap->br_startblock)) { 336 xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount); 337 return 0; 338 } 339 340 /* real extent found - no need to allocate */ 341 xfs_trim_extent(cmap, offset_fsb, count_fsb); 342 *found = true; 343 return 0; 344 } 345 346 static int 347 xfs_reflink_convert_unwritten( 348 struct xfs_inode *ip, 349 struct xfs_bmbt_irec *imap, 350 struct xfs_bmbt_irec *cmap, 351 bool convert_now) 352 { 353 xfs_fileoff_t offset_fsb = imap->br_startoff; 354 xfs_filblks_t count_fsb = imap->br_blockcount; 355 int error; 356 357 /* 358 * cmap might larger than imap due to cowextsize hint. 359 */ 360 xfs_trim_extent(cmap, offset_fsb, count_fsb); 361 362 /* 363 * COW fork extents are supposed to remain unwritten until we're ready 364 * to initiate a disk write. For direct I/O we are going to write the 365 * data and need the conversion, but for buffered writes we're done. 366 */ 367 if (!convert_now || cmap->br_state == XFS_EXT_NORM) 368 return 0; 369 370 trace_xfs_reflink_convert_cow(ip, cmap); 371 372 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb); 373 if (!error) 374 cmap->br_state = XFS_EXT_NORM; 375 376 return error; 377 } 378 379 static int 380 xfs_reflink_fill_cow_hole( 381 struct xfs_inode *ip, 382 struct xfs_bmbt_irec *imap, 383 struct xfs_bmbt_irec *cmap, 384 bool *shared, 385 uint *lockmode, 386 bool convert_now) 387 { 388 struct xfs_mount *mp = ip->i_mount; 389 struct xfs_trans *tp; 390 xfs_filblks_t resaligned; 391 xfs_extlen_t resblks; 392 int nimaps; 393 int error; 394 bool found; 395 396 resaligned = xfs_aligned_fsb_count(imap->br_startoff, 397 imap->br_blockcount, xfs_get_cowextsz_hint(ip)); 398 resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned); 399 400 xfs_iunlock(ip, *lockmode); 401 *lockmode = 0; 402 403 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0, 404 false, &tp); 405 if (error) 406 return error; 407 408 *lockmode = XFS_ILOCK_EXCL; 409 410 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found); 411 if (error || !*shared) 412 goto out_trans_cancel; 413 414 if (found) { 415 xfs_trans_cancel(tp); 416 goto convert; 417 } 418 419 /* Allocate the entire reservation as unwritten blocks. */ 420 nimaps = 1; 421 error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount, 422 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap, 423 &nimaps); 424 if (error) 425 goto out_trans_cancel; 426 427 xfs_inode_set_cowblocks_tag(ip); 428 error = xfs_trans_commit(tp); 429 if (error) 430 return error; 431 432 /* 433 * Allocation succeeded but the requested range was not even partially 434 * satisfied? Bail out! 435 */ 436 if (nimaps == 0) 437 return -ENOSPC; 438 439 convert: 440 return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now); 441 442 out_trans_cancel: 443 xfs_trans_cancel(tp); 444 return error; 445 } 446 447 static int 448 xfs_reflink_fill_delalloc( 449 struct xfs_inode *ip, 450 struct xfs_bmbt_irec *imap, 451 struct xfs_bmbt_irec *cmap, 452 bool *shared, 453 uint *lockmode, 454 bool convert_now) 455 { 456 struct xfs_mount *mp = ip->i_mount; 457 struct xfs_trans *tp; 458 int nimaps; 459 int error; 460 bool found; 461 462 do { 463 xfs_iunlock(ip, *lockmode); 464 *lockmode = 0; 465 466 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 0, 0, 467 false, &tp); 468 if (error) 469 return error; 470 471 *lockmode = XFS_ILOCK_EXCL; 472 473 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, 474 &found); 475 if (error || !*shared) 476 goto out_trans_cancel; 477 478 if (found) { 479 xfs_trans_cancel(tp); 480 break; 481 } 482 483 ASSERT(isnullstartblock(cmap->br_startblock) || 484 cmap->br_startblock == DELAYSTARTBLOCK); 485 486 /* 487 * Replace delalloc reservation with an unwritten extent. 488 */ 489 nimaps = 1; 490 error = xfs_bmapi_write(tp, ip, cmap->br_startoff, 491 cmap->br_blockcount, 492 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, 493 cmap, &nimaps); 494 if (error) 495 goto out_trans_cancel; 496 497 xfs_inode_set_cowblocks_tag(ip); 498 error = xfs_trans_commit(tp); 499 if (error) 500 return error; 501 502 /* 503 * Allocation succeeded but the requested range was not even 504 * partially satisfied? Bail out! 505 */ 506 if (nimaps == 0) 507 return -ENOSPC; 508 } while (cmap->br_startoff + cmap->br_blockcount <= imap->br_startoff); 509 510 return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now); 511 512 out_trans_cancel: 513 xfs_trans_cancel(tp); 514 return error; 515 } 516 517 /* Allocate all CoW reservations covering a range of blocks in a file. */ 518 int 519 xfs_reflink_allocate_cow( 520 struct xfs_inode *ip, 521 struct xfs_bmbt_irec *imap, 522 struct xfs_bmbt_irec *cmap, 523 bool *shared, 524 uint *lockmode, 525 bool convert_now) 526 { 527 int error; 528 bool found; 529 530 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 531 if (!ip->i_cowfp) { 532 ASSERT(!xfs_is_reflink_inode(ip)); 533 xfs_ifork_init_cow(ip); 534 } 535 536 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found); 537 if (error || !*shared) 538 return error; 539 540 /* CoW fork has a real extent */ 541 if (found) 542 return xfs_reflink_convert_unwritten(ip, imap, cmap, 543 convert_now); 544 545 /* 546 * CoW fork does not have an extent and data extent is shared. 547 * Allocate a real extent in the CoW fork. 548 */ 549 if (cmap->br_startoff > imap->br_startoff) 550 return xfs_reflink_fill_cow_hole(ip, imap, cmap, shared, 551 lockmode, convert_now); 552 553 /* 554 * CoW fork has a delalloc reservation. Replace it with a real extent. 555 * There may or may not be a data fork mapping. 556 */ 557 if (isnullstartblock(cmap->br_startblock) || 558 cmap->br_startblock == DELAYSTARTBLOCK) 559 return xfs_reflink_fill_delalloc(ip, imap, cmap, shared, 560 lockmode, convert_now); 561 562 /* Shouldn't get here. */ 563 ASSERT(0); 564 return -EFSCORRUPTED; 565 } 566 567 /* 568 * Cancel CoW reservations for some block range of an inode. 569 * 570 * If cancel_real is true this function cancels all COW fork extents for the 571 * inode; if cancel_real is false, real extents are not cleared. 572 * 573 * Caller must have already joined the inode to the current transaction. The 574 * inode will be joined to the transaction returned to the caller. 575 */ 576 int 577 xfs_reflink_cancel_cow_blocks( 578 struct xfs_inode *ip, 579 struct xfs_trans **tpp, 580 xfs_fileoff_t offset_fsb, 581 xfs_fileoff_t end_fsb, 582 bool cancel_real) 583 { 584 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); 585 struct xfs_bmbt_irec got, del; 586 struct xfs_iext_cursor icur; 587 int error = 0; 588 589 if (!xfs_inode_has_cow_data(ip)) 590 return 0; 591 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got)) 592 return 0; 593 594 /* Walk backwards until we're out of the I/O range... */ 595 while (got.br_startoff + got.br_blockcount > offset_fsb) { 596 del = got; 597 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb); 598 599 /* Extent delete may have bumped ext forward */ 600 if (!del.br_blockcount) { 601 xfs_iext_prev(ifp, &icur); 602 goto next_extent; 603 } 604 605 trace_xfs_reflink_cancel_cow(ip, &del); 606 607 if (isnullstartblock(del.br_startblock)) { 608 error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK, 609 &icur, &got, &del); 610 if (error) 611 break; 612 } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) { 613 ASSERT((*tpp)->t_highest_agno == NULLAGNUMBER); 614 615 /* Free the CoW orphan record. */ 616 xfs_refcount_free_cow_extent(*tpp, del.br_startblock, 617 del.br_blockcount); 618 619 error = xfs_free_extent_later(*tpp, del.br_startblock, 620 del.br_blockcount, NULL, 621 XFS_AG_RESV_NONE); 622 if (error) 623 break; 624 625 /* Roll the transaction */ 626 error = xfs_defer_finish(tpp); 627 if (error) 628 break; 629 630 /* Remove the mapping from the CoW fork. */ 631 xfs_bmap_del_extent_cow(ip, &icur, &got, &del); 632 633 /* Remove the quota reservation */ 634 error = xfs_quota_unreserve_blkres(ip, 635 del.br_blockcount); 636 if (error) 637 break; 638 } else { 639 /* Didn't do anything, push cursor back. */ 640 xfs_iext_prev(ifp, &icur); 641 } 642 next_extent: 643 if (!xfs_iext_get_extent(ifp, &icur, &got)) 644 break; 645 } 646 647 /* clear tag if cow fork is emptied */ 648 if (!ifp->if_bytes) 649 xfs_inode_clear_cowblocks_tag(ip); 650 return error; 651 } 652 653 /* 654 * Cancel CoW reservations for some byte range of an inode. 655 * 656 * If cancel_real is true this function cancels all COW fork extents for the 657 * inode; if cancel_real is false, real extents are not cleared. 658 */ 659 int 660 xfs_reflink_cancel_cow_range( 661 struct xfs_inode *ip, 662 xfs_off_t offset, 663 xfs_off_t count, 664 bool cancel_real) 665 { 666 struct xfs_trans *tp; 667 xfs_fileoff_t offset_fsb; 668 xfs_fileoff_t end_fsb; 669 int error; 670 671 trace_xfs_reflink_cancel_cow_range(ip, offset, count); 672 ASSERT(ip->i_cowfp); 673 674 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 675 if (count == NULLFILEOFF) 676 end_fsb = NULLFILEOFF; 677 else 678 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count); 679 680 /* Start a rolling transaction to remove the mappings */ 681 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write, 682 0, 0, 0, &tp); 683 if (error) 684 goto out; 685 686 xfs_ilock(ip, XFS_ILOCK_EXCL); 687 xfs_trans_ijoin(tp, ip, 0); 688 689 /* Scrape out the old CoW reservations */ 690 error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb, 691 cancel_real); 692 if (error) 693 goto out_cancel; 694 695 error = xfs_trans_commit(tp); 696 697 xfs_iunlock(ip, XFS_ILOCK_EXCL); 698 return error; 699 700 out_cancel: 701 xfs_trans_cancel(tp); 702 xfs_iunlock(ip, XFS_ILOCK_EXCL); 703 out: 704 trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_); 705 return error; 706 } 707 708 /* 709 * Remap part of the CoW fork into the data fork. 710 * 711 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb 712 * into the data fork; this function will remap what it can (at the end of the 713 * range) and update @end_fsb appropriately. Each remap gets its own 714 * transaction because we can end up merging and splitting bmbt blocks for 715 * every remap operation and we'd like to keep the block reservation 716 * requirements as low as possible. 717 */ 718 STATIC int 719 xfs_reflink_end_cow_extent( 720 struct xfs_inode *ip, 721 xfs_fileoff_t *offset_fsb, 722 xfs_fileoff_t end_fsb) 723 { 724 struct xfs_iext_cursor icur; 725 struct xfs_bmbt_irec got, del, data; 726 struct xfs_mount *mp = ip->i_mount; 727 struct xfs_trans *tp; 728 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); 729 unsigned int resblks; 730 int nmaps; 731 int error; 732 733 /* No COW extents? That's easy! */ 734 if (ifp->if_bytes == 0) { 735 *offset_fsb = end_fsb; 736 return 0; 737 } 738 739 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK); 740 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 741 XFS_TRANS_RESERVE, &tp); 742 if (error) 743 return error; 744 745 /* 746 * Lock the inode. We have to ijoin without automatic unlock because 747 * the lead transaction is the refcountbt record deletion; the data 748 * fork update follows as a deferred log item. 749 */ 750 xfs_ilock(ip, XFS_ILOCK_EXCL); 751 xfs_trans_ijoin(tp, ip, 0); 752 753 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, 754 XFS_IEXT_REFLINK_END_COW_CNT); 755 if (error == -EFBIG) 756 error = xfs_iext_count_upgrade(tp, ip, 757 XFS_IEXT_REFLINK_END_COW_CNT); 758 if (error) 759 goto out_cancel; 760 761 /* 762 * In case of racing, overlapping AIO writes no COW extents might be 763 * left by the time I/O completes for the loser of the race. In that 764 * case we are done. 765 */ 766 if (!xfs_iext_lookup_extent(ip, ifp, *offset_fsb, &icur, &got) || 767 got.br_startoff >= end_fsb) { 768 *offset_fsb = end_fsb; 769 goto out_cancel; 770 } 771 772 /* 773 * Only remap real extents that contain data. With AIO, speculative 774 * preallocations can leak into the range we are called upon, and we 775 * need to skip them. Preserve @got for the eventual CoW fork 776 * deletion; from now on @del represents the mapping that we're 777 * actually remapping. 778 */ 779 while (!xfs_bmap_is_written_extent(&got)) { 780 if (!xfs_iext_next_extent(ifp, &icur, &got) || 781 got.br_startoff >= end_fsb) { 782 *offset_fsb = end_fsb; 783 goto out_cancel; 784 } 785 } 786 del = got; 787 788 /* Grab the corresponding mapping in the data fork. */ 789 nmaps = 1; 790 error = xfs_bmapi_read(ip, del.br_startoff, del.br_blockcount, &data, 791 &nmaps, 0); 792 if (error) 793 goto out_cancel; 794 795 /* We can only remap the smaller of the two extent sizes. */ 796 data.br_blockcount = min(data.br_blockcount, del.br_blockcount); 797 del.br_blockcount = data.br_blockcount; 798 799 trace_xfs_reflink_cow_remap_from(ip, &del); 800 trace_xfs_reflink_cow_remap_to(ip, &data); 801 802 if (xfs_bmap_is_real_extent(&data)) { 803 /* 804 * If the extent we're remapping is backed by storage (written 805 * or not), unmap the extent and drop its refcount. 806 */ 807 xfs_bmap_unmap_extent(tp, ip, &data); 808 xfs_refcount_decrease_extent(tp, &data); 809 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, 810 -data.br_blockcount); 811 } else if (data.br_startblock == DELAYSTARTBLOCK) { 812 int done; 813 814 /* 815 * If the extent we're remapping is a delalloc reservation, 816 * we can use the regular bunmapi function to release the 817 * incore state. Dropping the delalloc reservation takes care 818 * of the quota reservation for us. 819 */ 820 error = xfs_bunmapi(NULL, ip, data.br_startoff, 821 data.br_blockcount, 0, 1, &done); 822 if (error) 823 goto out_cancel; 824 ASSERT(done); 825 } 826 827 /* Free the CoW orphan record. */ 828 xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount); 829 830 /* Map the new blocks into the data fork. */ 831 xfs_bmap_map_extent(tp, ip, &del); 832 833 /* Charge this new data fork mapping to the on-disk quota. */ 834 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT, 835 (long)del.br_blockcount); 836 837 /* Remove the mapping from the CoW fork. */ 838 xfs_bmap_del_extent_cow(ip, &icur, &got, &del); 839 840 error = xfs_trans_commit(tp); 841 xfs_iunlock(ip, XFS_ILOCK_EXCL); 842 if (error) 843 return error; 844 845 /* Update the caller about how much progress we made. */ 846 *offset_fsb = del.br_startoff + del.br_blockcount; 847 return 0; 848 849 out_cancel: 850 xfs_trans_cancel(tp); 851 xfs_iunlock(ip, XFS_ILOCK_EXCL); 852 return error; 853 } 854 855 /* 856 * Remap parts of a file's data fork after a successful CoW. 857 */ 858 int 859 xfs_reflink_end_cow( 860 struct xfs_inode *ip, 861 xfs_off_t offset, 862 xfs_off_t count) 863 { 864 xfs_fileoff_t offset_fsb; 865 xfs_fileoff_t end_fsb; 866 int error = 0; 867 868 trace_xfs_reflink_end_cow(ip, offset, count); 869 870 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 871 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count); 872 873 /* 874 * Walk forwards until we've remapped the I/O range. The loop function 875 * repeatedly cycles the ILOCK to allocate one transaction per remapped 876 * extent. 877 * 878 * If we're being called by writeback then the pages will still 879 * have PageWriteback set, which prevents races with reflink remapping 880 * and truncate. Reflink remapping prevents races with writeback by 881 * taking the iolock and mmaplock before flushing the pages and 882 * remapping, which means there won't be any further writeback or page 883 * cache dirtying until the reflink completes. 884 * 885 * We should never have two threads issuing writeback for the same file 886 * region. There are also have post-eof checks in the writeback 887 * preparation code so that we don't bother writing out pages that are 888 * about to be truncated. 889 * 890 * If we're being called as part of directio write completion, the dio 891 * count is still elevated, which reflink and truncate will wait for. 892 * Reflink remapping takes the iolock and mmaplock and waits for 893 * pending dio to finish, which should prevent any directio until the 894 * remap completes. Multiple concurrent directio writes to the same 895 * region are handled by end_cow processing only occurring for the 896 * threads which succeed; the outcome of multiple overlapping direct 897 * writes is not well defined anyway. 898 * 899 * It's possible that a buffered write and a direct write could collide 900 * here (the buffered write stumbles in after the dio flushes and 901 * invalidates the page cache and immediately queues writeback), but we 902 * have never supported this 100%. If either disk write succeeds the 903 * blocks will be remapped. 904 */ 905 while (end_fsb > offset_fsb && !error) 906 error = xfs_reflink_end_cow_extent(ip, &offset_fsb, end_fsb); 907 908 if (error) 909 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_); 910 return error; 911 } 912 913 /* 914 * Free all CoW staging blocks that are still referenced by the ondisk refcount 915 * metadata. The ondisk metadata does not track which inode created the 916 * staging extent, so callers must ensure that there are no cached inodes with 917 * live CoW staging extents. 918 */ 919 int 920 xfs_reflink_recover_cow( 921 struct xfs_mount *mp) 922 { 923 struct xfs_perag *pag; 924 xfs_agnumber_t agno; 925 int error = 0; 926 927 if (!xfs_has_reflink(mp)) 928 return 0; 929 930 for_each_perag(mp, agno, pag) { 931 error = xfs_refcount_recover_cow_leftovers(mp, pag); 932 if (error) { 933 xfs_perag_rele(pag); 934 break; 935 } 936 } 937 938 return error; 939 } 940 941 /* 942 * Reflinking (Block) Ranges of Two Files Together 943 * 944 * First, ensure that the reflink flag is set on both inodes. The flag is an 945 * optimization to avoid unnecessary refcount btree lookups in the write path. 946 * 947 * Now we can iteratively remap the range of extents (and holes) in src to the 948 * corresponding ranges in dest. Let drange and srange denote the ranges of 949 * logical blocks in dest and src touched by the reflink operation. 950 * 951 * While the length of drange is greater than zero, 952 * - Read src's bmbt at the start of srange ("imap") 953 * - If imap doesn't exist, make imap appear to start at the end of srange 954 * with zero length. 955 * - If imap starts before srange, advance imap to start at srange. 956 * - If imap goes beyond srange, truncate imap to end at the end of srange. 957 * - Punch (imap start - srange start + imap len) blocks from dest at 958 * offset (drange start). 959 * - If imap points to a real range of pblks, 960 * > Increase the refcount of the imap's pblks 961 * > Map imap's pblks into dest at the offset 962 * (drange start + imap start - srange start) 963 * - Advance drange and srange by (imap start - srange start + imap len) 964 * 965 * Finally, if the reflink made dest longer, update both the in-core and 966 * on-disk file sizes. 967 * 968 * ASCII Art Demonstration: 969 * 970 * Let's say we want to reflink this source file: 971 * 972 * ----SSSSSSS-SSSSS----SSSSSS (src file) 973 * <--------------------> 974 * 975 * into this destination file: 976 * 977 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file) 978 * <--------------------> 979 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest. 980 * Observe that the range has different logical offsets in either file. 981 * 982 * Consider that the first extent in the source file doesn't line up with our 983 * reflink range. Unmapping and remapping are separate operations, so we can 984 * unmap more blocks from the destination file than we remap. 985 * 986 * ----SSSSSSS-SSSSS----SSSSSS 987 * <-------> 988 * --DDDDD---------DDDDD--DDD 989 * <-------> 990 * 991 * Now remap the source extent into the destination file: 992 * 993 * ----SSSSSSS-SSSSS----SSSSSS 994 * <-------> 995 * --DDDDD--SSSSSSSDDDDD--DDD 996 * <-------> 997 * 998 * Do likewise with the second hole and extent in our range. Holes in the 999 * unmap range don't affect our operation. 1000 * 1001 * ----SSSSSSS-SSSSS----SSSSSS 1002 * <----> 1003 * --DDDDD--SSSSSSS-SSSSS-DDD 1004 * <----> 1005 * 1006 * Finally, unmap and remap part of the third extent. This will increase the 1007 * size of the destination file. 1008 * 1009 * ----SSSSSSS-SSSSS----SSSSSS 1010 * <-----> 1011 * --DDDDD--SSSSSSS-SSSSS----SSS 1012 * <-----> 1013 * 1014 * Once we update the destination file's i_size, we're done. 1015 */ 1016 1017 /* 1018 * Ensure the reflink bit is set in both inodes. 1019 */ 1020 STATIC int 1021 xfs_reflink_set_inode_flag( 1022 struct xfs_inode *src, 1023 struct xfs_inode *dest) 1024 { 1025 struct xfs_mount *mp = src->i_mount; 1026 int error; 1027 struct xfs_trans *tp; 1028 1029 if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest)) 1030 return 0; 1031 1032 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); 1033 if (error) 1034 goto out_error; 1035 1036 /* Lock both files against IO */ 1037 if (src->i_ino == dest->i_ino) 1038 xfs_ilock(src, XFS_ILOCK_EXCL); 1039 else 1040 xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL); 1041 1042 if (!xfs_is_reflink_inode(src)) { 1043 trace_xfs_reflink_set_inode_flag(src); 1044 xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL); 1045 src->i_diflags2 |= XFS_DIFLAG2_REFLINK; 1046 xfs_trans_log_inode(tp, src, XFS_ILOG_CORE); 1047 xfs_ifork_init_cow(src); 1048 } else 1049 xfs_iunlock(src, XFS_ILOCK_EXCL); 1050 1051 if (src->i_ino == dest->i_ino) 1052 goto commit_flags; 1053 1054 if (!xfs_is_reflink_inode(dest)) { 1055 trace_xfs_reflink_set_inode_flag(dest); 1056 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL); 1057 dest->i_diflags2 |= XFS_DIFLAG2_REFLINK; 1058 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE); 1059 xfs_ifork_init_cow(dest); 1060 } else 1061 xfs_iunlock(dest, XFS_ILOCK_EXCL); 1062 1063 commit_flags: 1064 error = xfs_trans_commit(tp); 1065 if (error) 1066 goto out_error; 1067 return error; 1068 1069 out_error: 1070 trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_); 1071 return error; 1072 } 1073 1074 /* 1075 * Update destination inode size & cowextsize hint, if necessary. 1076 */ 1077 int 1078 xfs_reflink_update_dest( 1079 struct xfs_inode *dest, 1080 xfs_off_t newlen, 1081 xfs_extlen_t cowextsize, 1082 unsigned int remap_flags) 1083 { 1084 struct xfs_mount *mp = dest->i_mount; 1085 struct xfs_trans *tp; 1086 int error; 1087 1088 if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0) 1089 return 0; 1090 1091 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); 1092 if (error) 1093 goto out_error; 1094 1095 xfs_ilock(dest, XFS_ILOCK_EXCL); 1096 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL); 1097 1098 if (newlen > i_size_read(VFS_I(dest))) { 1099 trace_xfs_reflink_update_inode_size(dest, newlen); 1100 i_size_write(VFS_I(dest), newlen); 1101 dest->i_disk_size = newlen; 1102 } 1103 1104 if (cowextsize) { 1105 dest->i_cowextsize = cowextsize; 1106 dest->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE; 1107 } 1108 1109 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE); 1110 1111 error = xfs_trans_commit(tp); 1112 if (error) 1113 goto out_error; 1114 return error; 1115 1116 out_error: 1117 trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_); 1118 return error; 1119 } 1120 1121 /* 1122 * Do we have enough reserve in this AG to handle a reflink? The refcount 1123 * btree already reserved all the space it needs, but the rmap btree can grow 1124 * infinitely, so we won't allow more reflinks when the AG is down to the 1125 * btree reserves. 1126 */ 1127 static int 1128 xfs_reflink_ag_has_free_space( 1129 struct xfs_mount *mp, 1130 xfs_agnumber_t agno) 1131 { 1132 struct xfs_perag *pag; 1133 int error = 0; 1134 1135 if (!xfs_has_rmapbt(mp)) 1136 return 0; 1137 1138 pag = xfs_perag_get(mp, agno); 1139 if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) || 1140 xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA)) 1141 error = -ENOSPC; 1142 xfs_perag_put(pag); 1143 return error; 1144 } 1145 1146 /* 1147 * Remap the given extent into the file. The dmap blockcount will be set to 1148 * the number of blocks that were actually remapped. 1149 */ 1150 STATIC int 1151 xfs_reflink_remap_extent( 1152 struct xfs_inode *ip, 1153 struct xfs_bmbt_irec *dmap, 1154 xfs_off_t new_isize) 1155 { 1156 struct xfs_bmbt_irec smap; 1157 struct xfs_mount *mp = ip->i_mount; 1158 struct xfs_trans *tp; 1159 xfs_off_t newlen; 1160 int64_t qdelta = 0; 1161 unsigned int resblks; 1162 bool quota_reserved = true; 1163 bool smap_real; 1164 bool dmap_written = xfs_bmap_is_written_extent(dmap); 1165 int iext_delta = 0; 1166 int nimaps; 1167 int error; 1168 1169 /* 1170 * Start a rolling transaction to switch the mappings. 1171 * 1172 * Adding a written extent to the extent map can cause a bmbt split, 1173 * and removing a mapped extent from the extent can cause a bmbt split. 1174 * The two operations cannot both cause a split since they operate on 1175 * the same index in the bmap btree, so we only need a reservation for 1176 * one bmbt split if either thing is happening. However, we haven't 1177 * locked the inode yet, so we reserve assuming this is the case. 1178 * 1179 * The first allocation call tries to reserve enough space to handle 1180 * mapping dmap into a sparse part of the file plus the bmbt split. We 1181 * haven't locked the inode or read the existing mapping yet, so we do 1182 * not know for sure that we need the space. This should succeed most 1183 * of the time. 1184 * 1185 * If the first attempt fails, try again but reserving only enough 1186 * space to handle a bmbt split. This is the hard minimum requirement, 1187 * and we revisit quota reservations later when we know more about what 1188 * we're remapping. 1189 */ 1190 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK); 1191 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 1192 resblks + dmap->br_blockcount, 0, false, &tp); 1193 if (error == -EDQUOT || error == -ENOSPC) { 1194 quota_reserved = false; 1195 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 1196 resblks, 0, false, &tp); 1197 } 1198 if (error) 1199 goto out; 1200 1201 /* 1202 * Read what's currently mapped in the destination file into smap. 1203 * If smap isn't a hole, we will have to remove it before we can add 1204 * dmap to the destination file. 1205 */ 1206 nimaps = 1; 1207 error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount, 1208 &smap, &nimaps, 0); 1209 if (error) 1210 goto out_cancel; 1211 ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff); 1212 smap_real = xfs_bmap_is_real_extent(&smap); 1213 1214 /* 1215 * We can only remap as many blocks as the smaller of the two extent 1216 * maps, because we can only remap one extent at a time. 1217 */ 1218 dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount); 1219 ASSERT(dmap->br_blockcount == smap.br_blockcount); 1220 1221 trace_xfs_reflink_remap_extent_dest(ip, &smap); 1222 1223 /* 1224 * Two extents mapped to the same physical block must not have 1225 * different states; that's filesystem corruption. Move on to the next 1226 * extent if they're both holes or both the same physical extent. 1227 */ 1228 if (dmap->br_startblock == smap.br_startblock) { 1229 if (dmap->br_state != smap.br_state) 1230 error = -EFSCORRUPTED; 1231 goto out_cancel; 1232 } 1233 1234 /* If both extents are unwritten, leave them alone. */ 1235 if (dmap->br_state == XFS_EXT_UNWRITTEN && 1236 smap.br_state == XFS_EXT_UNWRITTEN) 1237 goto out_cancel; 1238 1239 /* No reflinking if the AG of the dest mapping is low on space. */ 1240 if (dmap_written) { 1241 error = xfs_reflink_ag_has_free_space(mp, 1242 XFS_FSB_TO_AGNO(mp, dmap->br_startblock)); 1243 if (error) 1244 goto out_cancel; 1245 } 1246 1247 /* 1248 * Increase quota reservation if we think the quota block counter for 1249 * this file could increase. 1250 * 1251 * If we are mapping a written extent into the file, we need to have 1252 * enough quota block count reservation to handle the blocks in that 1253 * extent. We log only the delta to the quota block counts, so if the 1254 * extent we're unmapping also has blocks allocated to it, we don't 1255 * need a quota reservation for the extent itself. 1256 * 1257 * Note that if we're replacing a delalloc reservation with a written 1258 * extent, we have to take the full quota reservation because removing 1259 * the delalloc reservation gives the block count back to the quota 1260 * count. This is suboptimal, but the VFS flushed the dest range 1261 * before we started. That should have removed all the delalloc 1262 * reservations, but we code defensively. 1263 * 1264 * xfs_trans_alloc_inode above already tried to grab an even larger 1265 * quota reservation, and kicked off a blockgc scan if it couldn't. 1266 * If we can't get a potentially smaller quota reservation now, we're 1267 * done. 1268 */ 1269 if (!quota_reserved && !smap_real && dmap_written) { 1270 error = xfs_trans_reserve_quota_nblks(tp, ip, 1271 dmap->br_blockcount, 0, false); 1272 if (error) 1273 goto out_cancel; 1274 } 1275 1276 if (smap_real) 1277 ++iext_delta; 1278 1279 if (dmap_written) 1280 ++iext_delta; 1281 1282 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, iext_delta); 1283 if (error == -EFBIG) 1284 error = xfs_iext_count_upgrade(tp, ip, iext_delta); 1285 if (error) 1286 goto out_cancel; 1287 1288 if (smap_real) { 1289 /* 1290 * If the extent we're unmapping is backed by storage (written 1291 * or not), unmap the extent and drop its refcount. 1292 */ 1293 xfs_bmap_unmap_extent(tp, ip, &smap); 1294 xfs_refcount_decrease_extent(tp, &smap); 1295 qdelta -= smap.br_blockcount; 1296 } else if (smap.br_startblock == DELAYSTARTBLOCK) { 1297 int done; 1298 1299 /* 1300 * If the extent we're unmapping is a delalloc reservation, 1301 * we can use the regular bunmapi function to release the 1302 * incore state. Dropping the delalloc reservation takes care 1303 * of the quota reservation for us. 1304 */ 1305 error = xfs_bunmapi(NULL, ip, smap.br_startoff, 1306 smap.br_blockcount, 0, 1, &done); 1307 if (error) 1308 goto out_cancel; 1309 ASSERT(done); 1310 } 1311 1312 /* 1313 * If the extent we're sharing is backed by written storage, increase 1314 * its refcount and map it into the file. 1315 */ 1316 if (dmap_written) { 1317 xfs_refcount_increase_extent(tp, dmap); 1318 xfs_bmap_map_extent(tp, ip, dmap); 1319 qdelta += dmap->br_blockcount; 1320 } 1321 1322 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta); 1323 1324 /* Update dest isize if needed. */ 1325 newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount); 1326 newlen = min_t(xfs_off_t, newlen, new_isize); 1327 if (newlen > i_size_read(VFS_I(ip))) { 1328 trace_xfs_reflink_update_inode_size(ip, newlen); 1329 i_size_write(VFS_I(ip), newlen); 1330 ip->i_disk_size = newlen; 1331 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1332 } 1333 1334 /* Commit everything and unlock. */ 1335 error = xfs_trans_commit(tp); 1336 goto out_unlock; 1337 1338 out_cancel: 1339 xfs_trans_cancel(tp); 1340 out_unlock: 1341 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1342 out: 1343 if (error) 1344 trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_); 1345 return error; 1346 } 1347 1348 /* Remap a range of one file to the other. */ 1349 int 1350 xfs_reflink_remap_blocks( 1351 struct xfs_inode *src, 1352 loff_t pos_in, 1353 struct xfs_inode *dest, 1354 loff_t pos_out, 1355 loff_t remap_len, 1356 loff_t *remapped) 1357 { 1358 struct xfs_bmbt_irec imap; 1359 struct xfs_mount *mp = src->i_mount; 1360 xfs_fileoff_t srcoff = XFS_B_TO_FSBT(mp, pos_in); 1361 xfs_fileoff_t destoff = XFS_B_TO_FSBT(mp, pos_out); 1362 xfs_filblks_t len; 1363 xfs_filblks_t remapped_len = 0; 1364 xfs_off_t new_isize = pos_out + remap_len; 1365 int nimaps; 1366 int error = 0; 1367 1368 len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len), 1369 XFS_MAX_FILEOFF); 1370 1371 trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff); 1372 1373 while (len > 0) { 1374 unsigned int lock_mode; 1375 1376 /* Read extent from the source file */ 1377 nimaps = 1; 1378 lock_mode = xfs_ilock_data_map_shared(src); 1379 error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0); 1380 xfs_iunlock(src, lock_mode); 1381 if (error) 1382 break; 1383 /* 1384 * The caller supposedly flushed all dirty pages in the source 1385 * file range, which means that writeback should have allocated 1386 * or deleted all delalloc reservations in that range. If we 1387 * find one, that's a good sign that something is seriously 1388 * wrong here. 1389 */ 1390 ASSERT(nimaps == 1 && imap.br_startoff == srcoff); 1391 if (imap.br_startblock == DELAYSTARTBLOCK) { 1392 ASSERT(imap.br_startblock != DELAYSTARTBLOCK); 1393 error = -EFSCORRUPTED; 1394 break; 1395 } 1396 1397 trace_xfs_reflink_remap_extent_src(src, &imap); 1398 1399 /* Remap into the destination file at the given offset. */ 1400 imap.br_startoff = destoff; 1401 error = xfs_reflink_remap_extent(dest, &imap, new_isize); 1402 if (error) 1403 break; 1404 1405 if (fatal_signal_pending(current)) { 1406 error = -EINTR; 1407 break; 1408 } 1409 1410 /* Advance drange/srange */ 1411 srcoff += imap.br_blockcount; 1412 destoff += imap.br_blockcount; 1413 len -= imap.br_blockcount; 1414 remapped_len += imap.br_blockcount; 1415 } 1416 1417 if (error) 1418 trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_); 1419 *remapped = min_t(loff_t, remap_len, 1420 XFS_FSB_TO_B(src->i_mount, remapped_len)); 1421 return error; 1422 } 1423 1424 /* 1425 * If we're reflinking to a point past the destination file's EOF, we must 1426 * zero any speculative post-EOF preallocations that sit between the old EOF 1427 * and the destination file offset. 1428 */ 1429 static int 1430 xfs_reflink_zero_posteof( 1431 struct xfs_inode *ip, 1432 loff_t pos) 1433 { 1434 loff_t isize = i_size_read(VFS_I(ip)); 1435 1436 if (pos <= isize) 1437 return 0; 1438 1439 trace_xfs_zero_eof(ip, isize, pos - isize); 1440 return xfs_zero_range(ip, isize, pos - isize, NULL); 1441 } 1442 1443 /* 1444 * Prepare two files for range cloning. Upon a successful return both inodes 1445 * will have the iolock and mmaplock held, the page cache of the out file will 1446 * be truncated, and any leases on the out file will have been broken. This 1447 * function borrows heavily from xfs_file_aio_write_checks. 1448 * 1449 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't 1450 * checked that the bytes beyond EOF physically match. Hence we cannot use the 1451 * EOF block in the source dedupe range because it's not a complete block match, 1452 * hence can introduce a corruption into the file that has it's block replaced. 1453 * 1454 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be 1455 * "block aligned" for the purposes of cloning entire files. However, if the 1456 * source file range includes the EOF block and it lands within the existing EOF 1457 * of the destination file, then we can expose stale data from beyond the source 1458 * file EOF in the destination file. 1459 * 1460 * XFS doesn't support partial block sharing, so in both cases we have check 1461 * these cases ourselves. For dedupe, we can simply round the length to dedupe 1462 * down to the previous whole block and ignore the partial EOF block. While this 1463 * means we can't dedupe the last block of a file, this is an acceptible 1464 * tradeoff for simplicity on implementation. 1465 * 1466 * For cloning, we want to share the partial EOF block if it is also the new EOF 1467 * block of the destination file. If the partial EOF block lies inside the 1468 * existing destination EOF, then we have to abort the clone to avoid exposing 1469 * stale data in the destination file. Hence we reject these clone attempts with 1470 * -EINVAL in this case. 1471 */ 1472 int 1473 xfs_reflink_remap_prep( 1474 struct file *file_in, 1475 loff_t pos_in, 1476 struct file *file_out, 1477 loff_t pos_out, 1478 loff_t *len, 1479 unsigned int remap_flags) 1480 { 1481 struct inode *inode_in = file_inode(file_in); 1482 struct xfs_inode *src = XFS_I(inode_in); 1483 struct inode *inode_out = file_inode(file_out); 1484 struct xfs_inode *dest = XFS_I(inode_out); 1485 int ret; 1486 1487 /* Lock both files against IO */ 1488 ret = xfs_ilock2_io_mmap(src, dest); 1489 if (ret) 1490 return ret; 1491 1492 /* Check file eligibility and prepare for block sharing. */ 1493 ret = -EINVAL; 1494 /* Don't reflink realtime inodes */ 1495 if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest)) 1496 goto out_unlock; 1497 1498 /* Don't share DAX file data with non-DAX file. */ 1499 if (IS_DAX(inode_in) != IS_DAX(inode_out)) 1500 goto out_unlock; 1501 1502 if (!IS_DAX(inode_in)) 1503 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, 1504 pos_out, len, remap_flags); 1505 else 1506 ret = dax_remap_file_range_prep(file_in, pos_in, file_out, 1507 pos_out, len, remap_flags, &xfs_read_iomap_ops); 1508 if (ret || *len == 0) 1509 goto out_unlock; 1510 1511 /* Attach dquots to dest inode before changing block map */ 1512 ret = xfs_qm_dqattach(dest); 1513 if (ret) 1514 goto out_unlock; 1515 1516 /* 1517 * Zero existing post-eof speculative preallocations in the destination 1518 * file. 1519 */ 1520 ret = xfs_reflink_zero_posteof(dest, pos_out); 1521 if (ret) 1522 goto out_unlock; 1523 1524 /* Set flags and remap blocks. */ 1525 ret = xfs_reflink_set_inode_flag(src, dest); 1526 if (ret) 1527 goto out_unlock; 1528 1529 /* 1530 * If pos_out > EOF, we may have dirtied blocks between EOF and 1531 * pos_out. In that case, we need to extend the flush and unmap to cover 1532 * from EOF to the end of the copy length. 1533 */ 1534 if (pos_out > XFS_ISIZE(dest)) { 1535 loff_t flen = *len + (pos_out - XFS_ISIZE(dest)); 1536 ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen); 1537 } else { 1538 ret = xfs_flush_unmap_range(dest, pos_out, *len); 1539 } 1540 if (ret) 1541 goto out_unlock; 1542 1543 return 0; 1544 out_unlock: 1545 xfs_iunlock2_io_mmap(src, dest); 1546 return ret; 1547 } 1548 1549 /* Does this inode need the reflink flag? */ 1550 int 1551 xfs_reflink_inode_has_shared_extents( 1552 struct xfs_trans *tp, 1553 struct xfs_inode *ip, 1554 bool *has_shared) 1555 { 1556 struct xfs_bmbt_irec got; 1557 struct xfs_mount *mp = ip->i_mount; 1558 struct xfs_ifork *ifp; 1559 struct xfs_iext_cursor icur; 1560 bool found; 1561 int error; 1562 1563 ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); 1564 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK); 1565 if (error) 1566 return error; 1567 1568 *has_shared = false; 1569 found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got); 1570 while (found) { 1571 struct xfs_perag *pag; 1572 xfs_agblock_t agbno; 1573 xfs_extlen_t aglen; 1574 xfs_agblock_t rbno; 1575 xfs_extlen_t rlen; 1576 1577 if (isnullstartblock(got.br_startblock) || 1578 got.br_state != XFS_EXT_NORM) 1579 goto next; 1580 1581 pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, got.br_startblock)); 1582 agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock); 1583 aglen = got.br_blockcount; 1584 error = xfs_reflink_find_shared(pag, tp, agbno, aglen, 1585 &rbno, &rlen, false); 1586 xfs_perag_put(pag); 1587 if (error) 1588 return error; 1589 1590 /* Is there still a shared block here? */ 1591 if (rbno != NULLAGBLOCK) { 1592 *has_shared = true; 1593 return 0; 1594 } 1595 next: 1596 found = xfs_iext_next_extent(ifp, &icur, &got); 1597 } 1598 1599 return 0; 1600 } 1601 1602 /* 1603 * Clear the inode reflink flag if there are no shared extents. 1604 * 1605 * The caller is responsible for joining the inode to the transaction passed in. 1606 * The inode will be joined to the transaction that is returned to the caller. 1607 */ 1608 int 1609 xfs_reflink_clear_inode_flag( 1610 struct xfs_inode *ip, 1611 struct xfs_trans **tpp) 1612 { 1613 bool needs_flag; 1614 int error = 0; 1615 1616 ASSERT(xfs_is_reflink_inode(ip)); 1617 1618 error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag); 1619 if (error || needs_flag) 1620 return error; 1621 1622 /* 1623 * We didn't find any shared blocks so turn off the reflink flag. 1624 * First, get rid of any leftover CoW mappings. 1625 */ 1626 error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF, 1627 true); 1628 if (error) 1629 return error; 1630 1631 /* Clear the inode flag. */ 1632 trace_xfs_reflink_unset_inode_flag(ip); 1633 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; 1634 xfs_inode_clear_cowblocks_tag(ip); 1635 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE); 1636 1637 return error; 1638 } 1639 1640 /* 1641 * Clear the inode reflink flag if there are no shared extents and the size 1642 * hasn't changed. 1643 */ 1644 STATIC int 1645 xfs_reflink_try_clear_inode_flag( 1646 struct xfs_inode *ip) 1647 { 1648 struct xfs_mount *mp = ip->i_mount; 1649 struct xfs_trans *tp; 1650 int error = 0; 1651 1652 /* Start a rolling transaction to remove the mappings */ 1653 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp); 1654 if (error) 1655 return error; 1656 1657 xfs_ilock(ip, XFS_ILOCK_EXCL); 1658 xfs_trans_ijoin(tp, ip, 0); 1659 1660 error = xfs_reflink_clear_inode_flag(ip, &tp); 1661 if (error) 1662 goto cancel; 1663 1664 error = xfs_trans_commit(tp); 1665 if (error) 1666 goto out; 1667 1668 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1669 return 0; 1670 cancel: 1671 xfs_trans_cancel(tp); 1672 out: 1673 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1674 return error; 1675 } 1676 1677 /* 1678 * Pre-COW all shared blocks within a given byte range of a file and turn off 1679 * the reflink flag if we unshare all of the file's blocks. 1680 */ 1681 int 1682 xfs_reflink_unshare( 1683 struct xfs_inode *ip, 1684 xfs_off_t offset, 1685 xfs_off_t len) 1686 { 1687 struct inode *inode = VFS_I(ip); 1688 int error; 1689 1690 if (!xfs_is_reflink_inode(ip)) 1691 return 0; 1692 1693 trace_xfs_reflink_unshare(ip, offset, len); 1694 1695 inode_dio_wait(inode); 1696 1697 if (IS_DAX(inode)) 1698 error = dax_file_unshare(inode, offset, len, 1699 &xfs_dax_write_iomap_ops); 1700 else 1701 error = iomap_file_unshare(inode, offset, len, 1702 &xfs_buffered_write_iomap_ops); 1703 if (error) 1704 goto out; 1705 1706 error = filemap_write_and_wait_range(inode->i_mapping, offset, 1707 offset + len - 1); 1708 if (error) 1709 goto out; 1710 1711 /* Turn off the reflink flag if possible. */ 1712 error = xfs_reflink_try_clear_inode_flag(ip); 1713 if (error) 1714 goto out; 1715 return 0; 1716 1717 out: 1718 trace_xfs_reflink_unshare_error(ip, error, _RET_IP_); 1719 return error; 1720 } 1721