xref: /openbmc/linux/fs/xfs/xfs_reflink.c (revision 7cf74d51)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_da_format.h"
15 #include "xfs_da_btree.h"
16 #include "xfs_inode.h"
17 #include "xfs_trans.h"
18 #include "xfs_inode_item.h"
19 #include "xfs_bmap.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_error.h"
22 #include "xfs_dir2.h"
23 #include "xfs_dir2_priv.h"
24 #include "xfs_ioctl.h"
25 #include "xfs_trace.h"
26 #include "xfs_log.h"
27 #include "xfs_icache.h"
28 #include "xfs_pnfs.h"
29 #include "xfs_btree.h"
30 #include "xfs_refcount_btree.h"
31 #include "xfs_refcount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_trans_space.h"
34 #include "xfs_bit.h"
35 #include "xfs_alloc.h"
36 #include "xfs_quota_defs.h"
37 #include "xfs_quota.h"
38 #include "xfs_reflink.h"
39 #include "xfs_iomap.h"
40 #include "xfs_rmap_btree.h"
41 #include "xfs_sb.h"
42 #include "xfs_ag_resv.h"
43 
44 /*
45  * Copy on Write of Shared Blocks
46  *
47  * XFS must preserve "the usual" file semantics even when two files share
48  * the same physical blocks.  This means that a write to one file must not
49  * alter the blocks in a different file; the way that we'll do that is
50  * through the use of a copy-on-write mechanism.  At a high level, that
51  * means that when we want to write to a shared block, we allocate a new
52  * block, write the data to the new block, and if that succeeds we map the
53  * new block into the file.
54  *
55  * XFS provides a "delayed allocation" mechanism that defers the allocation
56  * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
57  * possible.  This reduces fragmentation by enabling the filesystem to ask
58  * for bigger chunks less often, which is exactly what we want for CoW.
59  *
60  * The delalloc mechanism begins when the kernel wants to make a block
61  * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
62  * create a delalloc mapping, which is a regular in-core extent, but without
63  * a real startblock.  (For delalloc mappings, the startblock encodes both
64  * a flag that this is a delalloc mapping, and a worst-case estimate of how
65  * many blocks might be required to put the mapping into the BMBT.)  delalloc
66  * mappings are a reservation against the free space in the filesystem;
67  * adjacent mappings can also be combined into fewer larger mappings.
68  *
69  * As an optimization, the CoW extent size hint (cowextsz) creates
70  * outsized aligned delalloc reservations in the hope of landing out of
71  * order nearby CoW writes in a single extent on disk, thereby reducing
72  * fragmentation and improving future performance.
73  *
74  * D: --RRRRRRSSSRRRRRRRR--- (data fork)
75  * C: ------DDDDDDD--------- (CoW fork)
76  *
77  * When dirty pages are being written out (typically in writepage), the
78  * delalloc reservations are converted into unwritten mappings by
79  * allocating blocks and replacing the delalloc mapping with real ones.
80  * A delalloc mapping can be replaced by several unwritten ones if the
81  * free space is fragmented.
82  *
83  * D: --RRRRRRSSSRRRRRRRR---
84  * C: ------UUUUUUU---------
85  *
86  * We want to adapt the delalloc mechanism for copy-on-write, since the
87  * write paths are similar.  The first two steps (creating the reservation
88  * and allocating the blocks) are exactly the same as delalloc except that
89  * the mappings must be stored in a separate CoW fork because we do not want
90  * to disturb the mapping in the data fork until we're sure that the write
91  * succeeded.  IO completion in this case is the process of removing the old
92  * mapping from the data fork and moving the new mapping from the CoW fork to
93  * the data fork.  This will be discussed shortly.
94  *
95  * For now, unaligned directio writes will be bounced back to the page cache.
96  * Block-aligned directio writes will use the same mechanism as buffered
97  * writes.
98  *
99  * Just prior to submitting the actual disk write requests, we convert
100  * the extents representing the range of the file actually being written
101  * (as opposed to extra pieces created for the cowextsize hint) to real
102  * extents.  This will become important in the next step:
103  *
104  * D: --RRRRRRSSSRRRRRRRR---
105  * C: ------UUrrUUU---------
106  *
107  * CoW remapping must be done after the data block write completes,
108  * because we don't want to destroy the old data fork map until we're sure
109  * the new block has been written.  Since the new mappings are kept in a
110  * separate fork, we can simply iterate these mappings to find the ones
111  * that cover the file blocks that we just CoW'd.  For each extent, simply
112  * unmap the corresponding range in the data fork, map the new range into
113  * the data fork, and remove the extent from the CoW fork.  Because of
114  * the presence of the cowextsize hint, however, we must be careful
115  * only to remap the blocks that we've actually written out --  we must
116  * never remap delalloc reservations nor CoW staging blocks that have
117  * yet to be written.  This corresponds exactly to the real extents in
118  * the CoW fork:
119  *
120  * D: --RRRRRRrrSRRRRRRRR---
121  * C: ------UU--UUU---------
122  *
123  * Since the remapping operation can be applied to an arbitrary file
124  * range, we record the need for the remap step as a flag in the ioend
125  * instead of declaring a new IO type.  This is required for direct io
126  * because we only have ioend for the whole dio, and we have to be able to
127  * remember the presence of unwritten blocks and CoW blocks with a single
128  * ioend structure.  Better yet, the more ground we can cover with one
129  * ioend, the better.
130  */
131 
132 /*
133  * Given an AG extent, find the lowest-numbered run of shared blocks
134  * within that range and return the range in fbno/flen.  If
135  * find_end_of_shared is true, return the longest contiguous extent of
136  * shared blocks.  If there are no shared extents, fbno and flen will
137  * be set to NULLAGBLOCK and 0, respectively.
138  */
139 int
140 xfs_reflink_find_shared(
141 	struct xfs_mount	*mp,
142 	struct xfs_trans	*tp,
143 	xfs_agnumber_t		agno,
144 	xfs_agblock_t		agbno,
145 	xfs_extlen_t		aglen,
146 	xfs_agblock_t		*fbno,
147 	xfs_extlen_t		*flen,
148 	bool			find_end_of_shared)
149 {
150 	struct xfs_buf		*agbp;
151 	struct xfs_btree_cur	*cur;
152 	int			error;
153 
154 	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
155 	if (error)
156 		return error;
157 	if (!agbp)
158 		return -ENOMEM;
159 
160 	cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno);
161 
162 	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
163 			find_end_of_shared);
164 
165 	xfs_btree_del_cursor(cur, error);
166 
167 	xfs_trans_brelse(tp, agbp);
168 	return error;
169 }
170 
171 /*
172  * Trim the mapping to the next block where there's a change in the
173  * shared/unshared status.  More specifically, this means that we
174  * find the lowest-numbered extent of shared blocks that coincides with
175  * the given block mapping.  If the shared extent overlaps the start of
176  * the mapping, trim the mapping to the end of the shared extent.  If
177  * the shared region intersects the mapping, trim the mapping to the
178  * start of the shared extent.  If there are no shared regions that
179  * overlap, just return the original extent.
180  */
181 int
182 xfs_reflink_trim_around_shared(
183 	struct xfs_inode	*ip,
184 	struct xfs_bmbt_irec	*irec,
185 	bool			*shared)
186 {
187 	xfs_agnumber_t		agno;
188 	xfs_agblock_t		agbno;
189 	xfs_extlen_t		aglen;
190 	xfs_agblock_t		fbno;
191 	xfs_extlen_t		flen;
192 	int			error = 0;
193 
194 	/* Holes, unwritten, and delalloc extents cannot be shared */
195 	if (!xfs_is_reflink_inode(ip) || !xfs_bmap_is_real_extent(irec)) {
196 		*shared = false;
197 		return 0;
198 	}
199 
200 	trace_xfs_reflink_trim_around_shared(ip, irec);
201 
202 	agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
203 	agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
204 	aglen = irec->br_blockcount;
205 
206 	error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
207 			aglen, &fbno, &flen, true);
208 	if (error)
209 		return error;
210 
211 	*shared = false;
212 	if (fbno == NULLAGBLOCK) {
213 		/* No shared blocks at all. */
214 		return 0;
215 	} else if (fbno == agbno) {
216 		/*
217 		 * The start of this extent is shared.  Truncate the
218 		 * mapping at the end of the shared region so that a
219 		 * subsequent iteration starts at the start of the
220 		 * unshared region.
221 		 */
222 		irec->br_blockcount = flen;
223 		*shared = true;
224 		return 0;
225 	} else {
226 		/*
227 		 * There's a shared extent midway through this extent.
228 		 * Truncate the mapping at the start of the shared
229 		 * extent so that a subsequent iteration starts at the
230 		 * start of the shared region.
231 		 */
232 		irec->br_blockcount = fbno - agbno;
233 		return 0;
234 	}
235 }
236 
237 /*
238  * Trim the passed in imap to the next shared/unshared extent boundary, and
239  * if imap->br_startoff points to a shared extent reserve space for it in the
240  * COW fork.
241  *
242  * Note that imap will always contain the block numbers for the existing blocks
243  * in the data fork, as the upper layers need them for read-modify-write
244  * operations.
245  */
246 int
247 xfs_reflink_reserve_cow(
248 	struct xfs_inode	*ip,
249 	struct xfs_bmbt_irec	*imap)
250 {
251 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
252 	struct xfs_bmbt_irec	got;
253 	int			error = 0;
254 	bool			eof = false;
255 	struct xfs_iext_cursor	icur;
256 	bool			shared;
257 
258 	/*
259 	 * Search the COW fork extent list first.  This serves two purposes:
260 	 * first this implement the speculative preallocation using cowextisze,
261 	 * so that we also unshared block adjacent to shared blocks instead
262 	 * of just the shared blocks themselves.  Second the lookup in the
263 	 * extent list is generally faster than going out to the shared extent
264 	 * tree.
265 	 */
266 
267 	if (!xfs_iext_lookup_extent(ip, ifp, imap->br_startoff, &icur, &got))
268 		eof = true;
269 	if (!eof && got.br_startoff <= imap->br_startoff) {
270 		trace_xfs_reflink_cow_found(ip, imap);
271 		xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
272 		return 0;
273 	}
274 
275 	/* Trim the mapping to the nearest shared extent boundary. */
276 	error = xfs_reflink_trim_around_shared(ip, imap, &shared);
277 	if (error)
278 		return error;
279 
280 	/* Not shared?  Just report the (potentially capped) extent. */
281 	if (!shared)
282 		return 0;
283 
284 	/*
285 	 * Fork all the shared blocks from our write offset until the end of
286 	 * the extent.
287 	 */
288 	error = xfs_qm_dqattach_locked(ip, false);
289 	if (error)
290 		return error;
291 
292 	error = xfs_bmapi_reserve_delalloc(ip, XFS_COW_FORK, imap->br_startoff,
293 			imap->br_blockcount, 0, &got, &icur, eof);
294 	if (error == -ENOSPC || error == -EDQUOT)
295 		trace_xfs_reflink_cow_enospc(ip, imap);
296 	if (error)
297 		return error;
298 
299 	xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
300 	trace_xfs_reflink_cow_alloc(ip, &got);
301 	return 0;
302 }
303 
304 /* Convert part of an unwritten CoW extent to a real one. */
305 STATIC int
306 xfs_reflink_convert_cow_extent(
307 	struct xfs_inode		*ip,
308 	struct xfs_bmbt_irec		*imap,
309 	xfs_fileoff_t			offset_fsb,
310 	xfs_filblks_t			count_fsb)
311 {
312 	int				nimaps = 1;
313 
314 	if (imap->br_state == XFS_EXT_NORM)
315 		return 0;
316 
317 	xfs_trim_extent(imap, offset_fsb, count_fsb);
318 	trace_xfs_reflink_convert_cow(ip, imap);
319 	if (imap->br_blockcount == 0)
320 		return 0;
321 	return xfs_bmapi_write(NULL, ip, imap->br_startoff, imap->br_blockcount,
322 			XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT, 0, imap,
323 			&nimaps);
324 }
325 
326 /* Convert all of the unwritten CoW extents in a file's range to real ones. */
327 int
328 xfs_reflink_convert_cow(
329 	struct xfs_inode	*ip,
330 	xfs_off_t		offset,
331 	xfs_off_t		count)
332 {
333 	struct xfs_mount	*mp = ip->i_mount;
334 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
335 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
336 	xfs_filblks_t		count_fsb = end_fsb - offset_fsb;
337 	struct xfs_bmbt_irec	imap;
338 	int			nimaps = 1, error = 0;
339 
340 	ASSERT(count != 0);
341 
342 	xfs_ilock(ip, XFS_ILOCK_EXCL);
343 	error = xfs_bmapi_write(NULL, ip, offset_fsb, count_fsb,
344 			XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT |
345 			XFS_BMAPI_CONVERT_ONLY, 0, &imap, &nimaps);
346 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
347 	return error;
348 }
349 
350 /*
351  * Find the extent that maps the given range in the COW fork. Even if the extent
352  * is not shared we might have a preallocation for it in the COW fork. If so we
353  * use it that rather than trigger a new allocation.
354  */
355 static int
356 xfs_find_trim_cow_extent(
357 	struct xfs_inode	*ip,
358 	struct xfs_bmbt_irec	*imap,
359 	bool			*shared,
360 	bool			*found)
361 {
362 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
363 	xfs_filblks_t		count_fsb = imap->br_blockcount;
364 	struct xfs_iext_cursor	icur;
365 	struct xfs_bmbt_irec	got;
366 
367 	*found = false;
368 
369 	/*
370 	 * If we don't find an overlapping extent, trim the range we need to
371 	 * allocate to fit the hole we found.
372 	 */
373 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
374 		got.br_startoff = offset_fsb + count_fsb;
375 	if (got.br_startoff > offset_fsb) {
376 		xfs_trim_extent(imap, imap->br_startoff,
377 				got.br_startoff - imap->br_startoff);
378 		return xfs_reflink_trim_around_shared(ip, imap, shared);
379 	}
380 
381 	*shared = true;
382 	if (isnullstartblock(got.br_startblock)) {
383 		xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
384 		return 0;
385 	}
386 
387 	/* real extent found - no need to allocate */
388 	xfs_trim_extent(&got, offset_fsb, count_fsb);
389 	*imap = got;
390 	*found = true;
391 	return 0;
392 }
393 
394 /* Allocate all CoW reservations covering a range of blocks in a file. */
395 int
396 xfs_reflink_allocate_cow(
397 	struct xfs_inode	*ip,
398 	struct xfs_bmbt_irec	*imap,
399 	bool			*shared,
400 	uint			*lockmode)
401 {
402 	struct xfs_mount	*mp = ip->i_mount;
403 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
404 	xfs_filblks_t		count_fsb = imap->br_blockcount;
405 	struct xfs_trans	*tp;
406 	int			nimaps, error = 0;
407 	bool			found;
408 	xfs_filblks_t		resaligned;
409 	xfs_extlen_t		resblks = 0;
410 
411 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
412 	ASSERT(xfs_is_reflink_inode(ip));
413 
414 	error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
415 	if (error || !*shared)
416 		return error;
417 	if (found)
418 		goto convert;
419 
420 	resaligned = xfs_aligned_fsb_count(imap->br_startoff,
421 		imap->br_blockcount, xfs_get_cowextsz_hint(ip));
422 	resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
423 
424 	xfs_iunlock(ip, *lockmode);
425 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
426 	*lockmode = XFS_ILOCK_EXCL;
427 	xfs_ilock(ip, *lockmode);
428 
429 	if (error)
430 		return error;
431 
432 	error = xfs_qm_dqattach_locked(ip, false);
433 	if (error)
434 		goto out_trans_cancel;
435 
436 	/*
437 	 * Check for an overlapping extent again now that we dropped the ilock.
438 	 */
439 	error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
440 	if (error || !*shared)
441 		goto out_trans_cancel;
442 	if (found) {
443 		xfs_trans_cancel(tp);
444 		goto convert;
445 	}
446 
447 	error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0,
448 			XFS_QMOPT_RES_REGBLKS);
449 	if (error)
450 		goto out_trans_cancel;
451 
452 	xfs_trans_ijoin(tp, ip, 0);
453 
454 	/* Allocate the entire reservation as unwritten blocks. */
455 	nimaps = 1;
456 	error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
457 			XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC,
458 			resblks, imap, &nimaps);
459 	if (error)
460 		goto out_unreserve;
461 
462 	xfs_inode_set_cowblocks_tag(ip);
463 	error = xfs_trans_commit(tp);
464 	if (error)
465 		return error;
466 
467 	/*
468 	 * Allocation succeeded but the requested range was not even partially
469 	 * satisfied?  Bail out!
470 	 */
471 	if (nimaps == 0)
472 		return -ENOSPC;
473 convert:
474 	return xfs_reflink_convert_cow_extent(ip, imap, offset_fsb, count_fsb);
475 
476 out_unreserve:
477 	xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0,
478 			XFS_QMOPT_RES_REGBLKS);
479 out_trans_cancel:
480 	xfs_trans_cancel(tp);
481 	return error;
482 }
483 
484 /*
485  * Cancel CoW reservations for some block range of an inode.
486  *
487  * If cancel_real is true this function cancels all COW fork extents for the
488  * inode; if cancel_real is false, real extents are not cleared.
489  *
490  * Caller must have already joined the inode to the current transaction. The
491  * inode will be joined to the transaction returned to the caller.
492  */
493 int
494 xfs_reflink_cancel_cow_blocks(
495 	struct xfs_inode		*ip,
496 	struct xfs_trans		**tpp,
497 	xfs_fileoff_t			offset_fsb,
498 	xfs_fileoff_t			end_fsb,
499 	bool				cancel_real)
500 {
501 	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
502 	struct xfs_bmbt_irec		got, del;
503 	struct xfs_iext_cursor		icur;
504 	int				error = 0;
505 
506 	if (!xfs_inode_has_cow_data(ip))
507 		return 0;
508 	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
509 		return 0;
510 
511 	/* Walk backwards until we're out of the I/O range... */
512 	while (got.br_startoff + got.br_blockcount > offset_fsb) {
513 		del = got;
514 		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
515 
516 		/* Extent delete may have bumped ext forward */
517 		if (!del.br_blockcount) {
518 			xfs_iext_prev(ifp, &icur);
519 			goto next_extent;
520 		}
521 
522 		trace_xfs_reflink_cancel_cow(ip, &del);
523 
524 		if (isnullstartblock(del.br_startblock)) {
525 			error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
526 					&icur, &got, &del);
527 			if (error)
528 				break;
529 		} else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
530 			ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
531 
532 			/* Free the CoW orphan record. */
533 			error = xfs_refcount_free_cow_extent(*tpp,
534 					del.br_startblock, del.br_blockcount);
535 			if (error)
536 				break;
537 
538 			xfs_bmap_add_free(*tpp, del.br_startblock,
539 					  del.br_blockcount, NULL);
540 
541 			/* Roll the transaction */
542 			error = xfs_defer_finish(tpp);
543 			if (error)
544 				break;
545 
546 			/* Remove the mapping from the CoW fork. */
547 			xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
548 
549 			/* Remove the quota reservation */
550 			error = xfs_trans_reserve_quota_nblks(NULL, ip,
551 					-(long)del.br_blockcount, 0,
552 					XFS_QMOPT_RES_REGBLKS);
553 			if (error)
554 				break;
555 		} else {
556 			/* Didn't do anything, push cursor back. */
557 			xfs_iext_prev(ifp, &icur);
558 		}
559 next_extent:
560 		if (!xfs_iext_get_extent(ifp, &icur, &got))
561 			break;
562 	}
563 
564 	/* clear tag if cow fork is emptied */
565 	if (!ifp->if_bytes)
566 		xfs_inode_clear_cowblocks_tag(ip);
567 	return error;
568 }
569 
570 /*
571  * Cancel CoW reservations for some byte range of an inode.
572  *
573  * If cancel_real is true this function cancels all COW fork extents for the
574  * inode; if cancel_real is false, real extents are not cleared.
575  */
576 int
577 xfs_reflink_cancel_cow_range(
578 	struct xfs_inode	*ip,
579 	xfs_off_t		offset,
580 	xfs_off_t		count,
581 	bool			cancel_real)
582 {
583 	struct xfs_trans	*tp;
584 	xfs_fileoff_t		offset_fsb;
585 	xfs_fileoff_t		end_fsb;
586 	int			error;
587 
588 	trace_xfs_reflink_cancel_cow_range(ip, offset, count);
589 	ASSERT(xfs_is_reflink_inode(ip));
590 
591 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
592 	if (count == NULLFILEOFF)
593 		end_fsb = NULLFILEOFF;
594 	else
595 		end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
596 
597 	/* Start a rolling transaction to remove the mappings */
598 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
599 			0, 0, XFS_TRANS_NOFS, &tp);
600 	if (error)
601 		goto out;
602 
603 	xfs_ilock(ip, XFS_ILOCK_EXCL);
604 	xfs_trans_ijoin(tp, ip, 0);
605 
606 	/* Scrape out the old CoW reservations */
607 	error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
608 			cancel_real);
609 	if (error)
610 		goto out_cancel;
611 
612 	error = xfs_trans_commit(tp);
613 
614 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
615 	return error;
616 
617 out_cancel:
618 	xfs_trans_cancel(tp);
619 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
620 out:
621 	trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
622 	return error;
623 }
624 
625 /*
626  * Remap part of the CoW fork into the data fork.
627  *
628  * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
629  * into the data fork; this function will remap what it can (at the end of the
630  * range) and update @end_fsb appropriately.  Each remap gets its own
631  * transaction because we can end up merging and splitting bmbt blocks for
632  * every remap operation and we'd like to keep the block reservation
633  * requirements as low as possible.
634  */
635 STATIC int
636 xfs_reflink_end_cow_extent(
637 	struct xfs_inode	*ip,
638 	xfs_fileoff_t		offset_fsb,
639 	xfs_fileoff_t		*end_fsb)
640 {
641 	struct xfs_bmbt_irec	got, del;
642 	struct xfs_iext_cursor	icur;
643 	struct xfs_mount	*mp = ip->i_mount;
644 	struct xfs_trans	*tp;
645 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
646 	xfs_filblks_t		rlen;
647 	unsigned int		resblks;
648 	int			error;
649 
650 	/* No COW extents?  That's easy! */
651 	if (ifp->if_bytes == 0) {
652 		*end_fsb = offset_fsb;
653 		return 0;
654 	}
655 
656 	resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
657 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
658 			XFS_TRANS_RESERVE | XFS_TRANS_NOFS, &tp);
659 	if (error)
660 		return error;
661 
662 	/*
663 	 * Lock the inode.  We have to ijoin without automatic unlock because
664 	 * the lead transaction is the refcountbt record deletion; the data
665 	 * fork update follows as a deferred log item.
666 	 */
667 	xfs_ilock(ip, XFS_ILOCK_EXCL);
668 	xfs_trans_ijoin(tp, ip, 0);
669 
670 	/*
671 	 * In case of racing, overlapping AIO writes no COW extents might be
672 	 * left by the time I/O completes for the loser of the race.  In that
673 	 * case we are done.
674 	 */
675 	if (!xfs_iext_lookup_extent_before(ip, ifp, end_fsb, &icur, &got) ||
676 	    got.br_startoff + got.br_blockcount <= offset_fsb) {
677 		*end_fsb = offset_fsb;
678 		goto out_cancel;
679 	}
680 
681 	/*
682 	 * Structure copy @got into @del, then trim @del to the range that we
683 	 * were asked to remap.  We preserve @got for the eventual CoW fork
684 	 * deletion; from now on @del represents the mapping that we're
685 	 * actually remapping.
686 	 */
687 	del = got;
688 	xfs_trim_extent(&del, offset_fsb, *end_fsb - offset_fsb);
689 
690 	ASSERT(del.br_blockcount > 0);
691 
692 	/*
693 	 * Only remap real extents that contain data.  With AIO, speculative
694 	 * preallocations can leak into the range we are called upon, and we
695 	 * need to skip them.
696 	 */
697 	if (!xfs_bmap_is_real_extent(&got)) {
698 		*end_fsb = del.br_startoff;
699 		goto out_cancel;
700 	}
701 
702 	/* Unmap the old blocks in the data fork. */
703 	rlen = del.br_blockcount;
704 	error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
705 	if (error)
706 		goto out_cancel;
707 
708 	/* Trim the extent to whatever got unmapped. */
709 	xfs_trim_extent(&del, del.br_startoff + rlen, del.br_blockcount - rlen);
710 	trace_xfs_reflink_cow_remap(ip, &del);
711 
712 	/* Free the CoW orphan record. */
713 	error = xfs_refcount_free_cow_extent(tp, del.br_startblock,
714 			del.br_blockcount);
715 	if (error)
716 		goto out_cancel;
717 
718 	/* Map the new blocks into the data fork. */
719 	error = xfs_bmap_map_extent(tp, ip, &del);
720 	if (error)
721 		goto out_cancel;
722 
723 	/* Charge this new data fork mapping to the on-disk quota. */
724 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
725 			(long)del.br_blockcount);
726 
727 	/* Remove the mapping from the CoW fork. */
728 	xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
729 
730 	error = xfs_trans_commit(tp);
731 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
732 	if (error)
733 		return error;
734 
735 	/* Update the caller about how much progress we made. */
736 	*end_fsb = del.br_startoff;
737 	return 0;
738 
739 out_cancel:
740 	xfs_trans_cancel(tp);
741 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
742 	return error;
743 }
744 
745 /*
746  * Remap parts of a file's data fork after a successful CoW.
747  */
748 int
749 xfs_reflink_end_cow(
750 	struct xfs_inode		*ip,
751 	xfs_off_t			offset,
752 	xfs_off_t			count)
753 {
754 	xfs_fileoff_t			offset_fsb;
755 	xfs_fileoff_t			end_fsb;
756 	int				error = 0;
757 
758 	trace_xfs_reflink_end_cow(ip, offset, count);
759 
760 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
761 	end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
762 
763 	/*
764 	 * Walk backwards until we're out of the I/O range.  The loop function
765 	 * repeatedly cycles the ILOCK to allocate one transaction per remapped
766 	 * extent.
767 	 *
768 	 * If we're being called by writeback then the the pages will still
769 	 * have PageWriteback set, which prevents races with reflink remapping
770 	 * and truncate.  Reflink remapping prevents races with writeback by
771 	 * taking the iolock and mmaplock before flushing the pages and
772 	 * remapping, which means there won't be any further writeback or page
773 	 * cache dirtying until the reflink completes.
774 	 *
775 	 * We should never have two threads issuing writeback for the same file
776 	 * region.  There are also have post-eof checks in the writeback
777 	 * preparation code so that we don't bother writing out pages that are
778 	 * about to be truncated.
779 	 *
780 	 * If we're being called as part of directio write completion, the dio
781 	 * count is still elevated, which reflink and truncate will wait for.
782 	 * Reflink remapping takes the iolock and mmaplock and waits for
783 	 * pending dio to finish, which should prevent any directio until the
784 	 * remap completes.  Multiple concurrent directio writes to the same
785 	 * region are handled by end_cow processing only occurring for the
786 	 * threads which succeed; the outcome of multiple overlapping direct
787 	 * writes is not well defined anyway.
788 	 *
789 	 * It's possible that a buffered write and a direct write could collide
790 	 * here (the buffered write stumbles in after the dio flushes and
791 	 * invalidates the page cache and immediately queues writeback), but we
792 	 * have never supported this 100%.  If either disk write succeeds the
793 	 * blocks will be remapped.
794 	 */
795 	while (end_fsb > offset_fsb && !error)
796 		error = xfs_reflink_end_cow_extent(ip, offset_fsb, &end_fsb);
797 
798 	if (error)
799 		trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
800 	return error;
801 }
802 
803 /*
804  * Free leftover CoW reservations that didn't get cleaned out.
805  */
806 int
807 xfs_reflink_recover_cow(
808 	struct xfs_mount	*mp)
809 {
810 	xfs_agnumber_t		agno;
811 	int			error = 0;
812 
813 	if (!xfs_sb_version_hasreflink(&mp->m_sb))
814 		return 0;
815 
816 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
817 		error = xfs_refcount_recover_cow_leftovers(mp, agno);
818 		if (error)
819 			break;
820 	}
821 
822 	return error;
823 }
824 
825 /*
826  * Reflinking (Block) Ranges of Two Files Together
827  *
828  * First, ensure that the reflink flag is set on both inodes.  The flag is an
829  * optimization to avoid unnecessary refcount btree lookups in the write path.
830  *
831  * Now we can iteratively remap the range of extents (and holes) in src to the
832  * corresponding ranges in dest.  Let drange and srange denote the ranges of
833  * logical blocks in dest and src touched by the reflink operation.
834  *
835  * While the length of drange is greater than zero,
836  *    - Read src's bmbt at the start of srange ("imap")
837  *    - If imap doesn't exist, make imap appear to start at the end of srange
838  *      with zero length.
839  *    - If imap starts before srange, advance imap to start at srange.
840  *    - If imap goes beyond srange, truncate imap to end at the end of srange.
841  *    - Punch (imap start - srange start + imap len) blocks from dest at
842  *      offset (drange start).
843  *    - If imap points to a real range of pblks,
844  *         > Increase the refcount of the imap's pblks
845  *         > Map imap's pblks into dest at the offset
846  *           (drange start + imap start - srange start)
847  *    - Advance drange and srange by (imap start - srange start + imap len)
848  *
849  * Finally, if the reflink made dest longer, update both the in-core and
850  * on-disk file sizes.
851  *
852  * ASCII Art Demonstration:
853  *
854  * Let's say we want to reflink this source file:
855  *
856  * ----SSSSSSS-SSSSS----SSSSSS (src file)
857  *   <-------------------->
858  *
859  * into this destination file:
860  *
861  * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
862  *        <-------------------->
863  * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
864  * Observe that the range has different logical offsets in either file.
865  *
866  * Consider that the first extent in the source file doesn't line up with our
867  * reflink range.  Unmapping  and remapping are separate operations, so we can
868  * unmap more blocks from the destination file than we remap.
869  *
870  * ----SSSSSSS-SSSSS----SSSSSS
871  *   <------->
872  * --DDDDD---------DDDDD--DDD
873  *        <------->
874  *
875  * Now remap the source extent into the destination file:
876  *
877  * ----SSSSSSS-SSSSS----SSSSSS
878  *   <------->
879  * --DDDDD--SSSSSSSDDDDD--DDD
880  *        <------->
881  *
882  * Do likewise with the second hole and extent in our range.  Holes in the
883  * unmap range don't affect our operation.
884  *
885  * ----SSSSSSS-SSSSS----SSSSSS
886  *            <---->
887  * --DDDDD--SSSSSSS-SSSSS-DDD
888  *                 <---->
889  *
890  * Finally, unmap and remap part of the third extent.  This will increase the
891  * size of the destination file.
892  *
893  * ----SSSSSSS-SSSSS----SSSSSS
894  *                  <----->
895  * --DDDDD--SSSSSSS-SSSSS----SSS
896  *                       <----->
897  *
898  * Once we update the destination file's i_size, we're done.
899  */
900 
901 /*
902  * Ensure the reflink bit is set in both inodes.
903  */
904 STATIC int
905 xfs_reflink_set_inode_flag(
906 	struct xfs_inode	*src,
907 	struct xfs_inode	*dest)
908 {
909 	struct xfs_mount	*mp = src->i_mount;
910 	int			error;
911 	struct xfs_trans	*tp;
912 
913 	if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
914 		return 0;
915 
916 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
917 	if (error)
918 		goto out_error;
919 
920 	/* Lock both files against IO */
921 	if (src->i_ino == dest->i_ino)
922 		xfs_ilock(src, XFS_ILOCK_EXCL);
923 	else
924 		xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
925 
926 	if (!xfs_is_reflink_inode(src)) {
927 		trace_xfs_reflink_set_inode_flag(src);
928 		xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
929 		src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
930 		xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
931 		xfs_ifork_init_cow(src);
932 	} else
933 		xfs_iunlock(src, XFS_ILOCK_EXCL);
934 
935 	if (src->i_ino == dest->i_ino)
936 		goto commit_flags;
937 
938 	if (!xfs_is_reflink_inode(dest)) {
939 		trace_xfs_reflink_set_inode_flag(dest);
940 		xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
941 		dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
942 		xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
943 		xfs_ifork_init_cow(dest);
944 	} else
945 		xfs_iunlock(dest, XFS_ILOCK_EXCL);
946 
947 commit_flags:
948 	error = xfs_trans_commit(tp);
949 	if (error)
950 		goto out_error;
951 	return error;
952 
953 out_error:
954 	trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
955 	return error;
956 }
957 
958 /*
959  * Update destination inode size & cowextsize hint, if necessary.
960  */
961 int
962 xfs_reflink_update_dest(
963 	struct xfs_inode	*dest,
964 	xfs_off_t		newlen,
965 	xfs_extlen_t		cowextsize,
966 	unsigned int		remap_flags)
967 {
968 	struct xfs_mount	*mp = dest->i_mount;
969 	struct xfs_trans	*tp;
970 	int			error;
971 
972 	if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
973 		return 0;
974 
975 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
976 	if (error)
977 		goto out_error;
978 
979 	xfs_ilock(dest, XFS_ILOCK_EXCL);
980 	xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
981 
982 	if (newlen > i_size_read(VFS_I(dest))) {
983 		trace_xfs_reflink_update_inode_size(dest, newlen);
984 		i_size_write(VFS_I(dest), newlen);
985 		dest->i_d.di_size = newlen;
986 	}
987 
988 	if (cowextsize) {
989 		dest->i_d.di_cowextsize = cowextsize;
990 		dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
991 	}
992 
993 	xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
994 
995 	error = xfs_trans_commit(tp);
996 	if (error)
997 		goto out_error;
998 	return error;
999 
1000 out_error:
1001 	trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
1002 	return error;
1003 }
1004 
1005 /*
1006  * Do we have enough reserve in this AG to handle a reflink?  The refcount
1007  * btree already reserved all the space it needs, but the rmap btree can grow
1008  * infinitely, so we won't allow more reflinks when the AG is down to the
1009  * btree reserves.
1010  */
1011 static int
1012 xfs_reflink_ag_has_free_space(
1013 	struct xfs_mount	*mp,
1014 	xfs_agnumber_t		agno)
1015 {
1016 	struct xfs_perag	*pag;
1017 	int			error = 0;
1018 
1019 	if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
1020 		return 0;
1021 
1022 	pag = xfs_perag_get(mp, agno);
1023 	if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
1024 	    xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
1025 		error = -ENOSPC;
1026 	xfs_perag_put(pag);
1027 	return error;
1028 }
1029 
1030 /*
1031  * Unmap a range of blocks from a file, then map other blocks into the hole.
1032  * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
1033  * The extent irec is mapped into dest at irec->br_startoff.
1034  */
1035 STATIC int
1036 xfs_reflink_remap_extent(
1037 	struct xfs_inode	*ip,
1038 	struct xfs_bmbt_irec	*irec,
1039 	xfs_fileoff_t		destoff,
1040 	xfs_off_t		new_isize)
1041 {
1042 	struct xfs_mount	*mp = ip->i_mount;
1043 	bool			real_extent = xfs_bmap_is_real_extent(irec);
1044 	struct xfs_trans	*tp;
1045 	unsigned int		resblks;
1046 	struct xfs_bmbt_irec	uirec;
1047 	xfs_filblks_t		rlen;
1048 	xfs_filblks_t		unmap_len;
1049 	xfs_off_t		newlen;
1050 	int			error;
1051 
1052 	unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
1053 	trace_xfs_reflink_punch_range(ip, destoff, unmap_len);
1054 
1055 	/* No reflinking if we're low on space */
1056 	if (real_extent) {
1057 		error = xfs_reflink_ag_has_free_space(mp,
1058 				XFS_FSB_TO_AGNO(mp, irec->br_startblock));
1059 		if (error)
1060 			goto out;
1061 	}
1062 
1063 	/* Start a rolling transaction to switch the mappings */
1064 	resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
1065 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1066 	if (error)
1067 		goto out;
1068 
1069 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1070 	xfs_trans_ijoin(tp, ip, 0);
1071 
1072 	/* If we're not just clearing space, then do we have enough quota? */
1073 	if (real_extent) {
1074 		error = xfs_trans_reserve_quota_nblks(tp, ip,
1075 				irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS);
1076 		if (error)
1077 			goto out_cancel;
1078 	}
1079 
1080 	trace_xfs_reflink_remap(ip, irec->br_startoff,
1081 				irec->br_blockcount, irec->br_startblock);
1082 
1083 	/* Unmap the old blocks in the data fork. */
1084 	rlen = unmap_len;
1085 	while (rlen) {
1086 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1087 		error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1);
1088 		if (error)
1089 			goto out_cancel;
1090 
1091 		/*
1092 		 * Trim the extent to whatever got unmapped.
1093 		 * Remember, bunmapi works backwards.
1094 		 */
1095 		uirec.br_startblock = irec->br_startblock + rlen;
1096 		uirec.br_startoff = irec->br_startoff + rlen;
1097 		uirec.br_blockcount = unmap_len - rlen;
1098 		unmap_len = rlen;
1099 
1100 		/* If this isn't a real mapping, we're done. */
1101 		if (!real_extent || uirec.br_blockcount == 0)
1102 			goto next_extent;
1103 
1104 		trace_xfs_reflink_remap(ip, uirec.br_startoff,
1105 				uirec.br_blockcount, uirec.br_startblock);
1106 
1107 		/* Update the refcount tree */
1108 		error = xfs_refcount_increase_extent(tp, &uirec);
1109 		if (error)
1110 			goto out_cancel;
1111 
1112 		/* Map the new blocks into the data fork. */
1113 		error = xfs_bmap_map_extent(tp, ip, &uirec);
1114 		if (error)
1115 			goto out_cancel;
1116 
1117 		/* Update quota accounting. */
1118 		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
1119 				uirec.br_blockcount);
1120 
1121 		/* Update dest isize if needed. */
1122 		newlen = XFS_FSB_TO_B(mp,
1123 				uirec.br_startoff + uirec.br_blockcount);
1124 		newlen = min_t(xfs_off_t, newlen, new_isize);
1125 		if (newlen > i_size_read(VFS_I(ip))) {
1126 			trace_xfs_reflink_update_inode_size(ip, newlen);
1127 			i_size_write(VFS_I(ip), newlen);
1128 			ip->i_d.di_size = newlen;
1129 			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1130 		}
1131 
1132 next_extent:
1133 		/* Process all the deferred stuff. */
1134 		error = xfs_defer_finish(&tp);
1135 		if (error)
1136 			goto out_cancel;
1137 	}
1138 
1139 	error = xfs_trans_commit(tp);
1140 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1141 	if (error)
1142 		goto out;
1143 	return 0;
1144 
1145 out_cancel:
1146 	xfs_trans_cancel(tp);
1147 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1148 out:
1149 	trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1150 	return error;
1151 }
1152 
1153 /*
1154  * Iteratively remap one file's extents (and holes) to another's.
1155  */
1156 int
1157 xfs_reflink_remap_blocks(
1158 	struct xfs_inode	*src,
1159 	loff_t			pos_in,
1160 	struct xfs_inode	*dest,
1161 	loff_t			pos_out,
1162 	loff_t			remap_len,
1163 	loff_t			*remapped)
1164 {
1165 	struct xfs_bmbt_irec	imap;
1166 	xfs_fileoff_t		srcoff;
1167 	xfs_fileoff_t		destoff;
1168 	xfs_filblks_t		len;
1169 	xfs_filblks_t		range_len;
1170 	xfs_filblks_t		remapped_len = 0;
1171 	xfs_off_t		new_isize = pos_out + remap_len;
1172 	int			nimaps;
1173 	int			error = 0;
1174 
1175 	destoff = XFS_B_TO_FSBT(src->i_mount, pos_out);
1176 	srcoff = XFS_B_TO_FSBT(src->i_mount, pos_in);
1177 	len = XFS_B_TO_FSB(src->i_mount, remap_len);
1178 
1179 	/* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
1180 	while (len) {
1181 		uint		lock_mode;
1182 
1183 		trace_xfs_reflink_remap_blocks_loop(src, srcoff, len,
1184 				dest, destoff);
1185 
1186 		/* Read extent from the source file */
1187 		nimaps = 1;
1188 		lock_mode = xfs_ilock_data_map_shared(src);
1189 		error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1190 		xfs_iunlock(src, lock_mode);
1191 		if (error)
1192 			break;
1193 		ASSERT(nimaps == 1);
1194 
1195 		trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_IO_OVERWRITE,
1196 				&imap);
1197 
1198 		/* Translate imap into the destination file. */
1199 		range_len = imap.br_startoff + imap.br_blockcount - srcoff;
1200 		imap.br_startoff += destoff - srcoff;
1201 
1202 		/* Clear dest from destoff to the end of imap and map it in. */
1203 		error = xfs_reflink_remap_extent(dest, &imap, destoff,
1204 				new_isize);
1205 		if (error)
1206 			break;
1207 
1208 		if (fatal_signal_pending(current)) {
1209 			error = -EINTR;
1210 			break;
1211 		}
1212 
1213 		/* Advance drange/srange */
1214 		srcoff += range_len;
1215 		destoff += range_len;
1216 		len -= range_len;
1217 		remapped_len += range_len;
1218 	}
1219 
1220 	if (error)
1221 		trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1222 	*remapped = min_t(loff_t, remap_len,
1223 			  XFS_FSB_TO_B(src->i_mount, remapped_len));
1224 	return error;
1225 }
1226 
1227 /*
1228  * Grab the exclusive iolock for a data copy from src to dest, making
1229  * sure to abide vfs locking order (lowest pointer value goes first) and
1230  * breaking the pnfs layout leases on dest before proceeding.  The loop
1231  * is needed because we cannot call the blocking break_layout() with the
1232  * src iolock held, and therefore have to back out both locks.
1233  */
1234 static int
1235 xfs_iolock_two_inodes_and_break_layout(
1236 	struct inode		*src,
1237 	struct inode		*dest)
1238 {
1239 	int			error;
1240 
1241 retry:
1242 	if (src < dest) {
1243 		inode_lock_shared(src);
1244 		inode_lock_nested(dest, I_MUTEX_NONDIR2);
1245 	} else {
1246 		/* src >= dest */
1247 		inode_lock(dest);
1248 	}
1249 
1250 	error = break_layout(dest, false);
1251 	if (error == -EWOULDBLOCK) {
1252 		inode_unlock(dest);
1253 		if (src < dest)
1254 			inode_unlock_shared(src);
1255 		error = break_layout(dest, true);
1256 		if (error)
1257 			return error;
1258 		goto retry;
1259 	}
1260 	if (error) {
1261 		inode_unlock(dest);
1262 		if (src < dest)
1263 			inode_unlock_shared(src);
1264 		return error;
1265 	}
1266 	if (src > dest)
1267 		inode_lock_shared_nested(src, I_MUTEX_NONDIR2);
1268 	return 0;
1269 }
1270 
1271 /* Unlock both inodes after they've been prepped for a range clone. */
1272 void
1273 xfs_reflink_remap_unlock(
1274 	struct file		*file_in,
1275 	struct file		*file_out)
1276 {
1277 	struct inode		*inode_in = file_inode(file_in);
1278 	struct xfs_inode	*src = XFS_I(inode_in);
1279 	struct inode		*inode_out = file_inode(file_out);
1280 	struct xfs_inode	*dest = XFS_I(inode_out);
1281 	bool			same_inode = (inode_in == inode_out);
1282 
1283 	xfs_iunlock(dest, XFS_MMAPLOCK_EXCL);
1284 	if (!same_inode)
1285 		xfs_iunlock(src, XFS_MMAPLOCK_SHARED);
1286 	inode_unlock(inode_out);
1287 	if (!same_inode)
1288 		inode_unlock_shared(inode_in);
1289 }
1290 
1291 /*
1292  * If we're reflinking to a point past the destination file's EOF, we must
1293  * zero any speculative post-EOF preallocations that sit between the old EOF
1294  * and the destination file offset.
1295  */
1296 static int
1297 xfs_reflink_zero_posteof(
1298 	struct xfs_inode	*ip,
1299 	loff_t			pos)
1300 {
1301 	loff_t			isize = i_size_read(VFS_I(ip));
1302 
1303 	if (pos <= isize)
1304 		return 0;
1305 
1306 	trace_xfs_zero_eof(ip, isize, pos - isize);
1307 	return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL,
1308 			&xfs_iomap_ops);
1309 }
1310 
1311 /*
1312  * Prepare two files for range cloning.  Upon a successful return both inodes
1313  * will have the iolock and mmaplock held, the page cache of the out file will
1314  * be truncated, and any leases on the out file will have been broken.  This
1315  * function borrows heavily from xfs_file_aio_write_checks.
1316  *
1317  * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1318  * checked that the bytes beyond EOF physically match. Hence we cannot use the
1319  * EOF block in the source dedupe range because it's not a complete block match,
1320  * hence can introduce a corruption into the file that has it's block replaced.
1321  *
1322  * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1323  * "block aligned" for the purposes of cloning entire files.  However, if the
1324  * source file range includes the EOF block and it lands within the existing EOF
1325  * of the destination file, then we can expose stale data from beyond the source
1326  * file EOF in the destination file.
1327  *
1328  * XFS doesn't support partial block sharing, so in both cases we have check
1329  * these cases ourselves. For dedupe, we can simply round the length to dedupe
1330  * down to the previous whole block and ignore the partial EOF block. While this
1331  * means we can't dedupe the last block of a file, this is an acceptible
1332  * tradeoff for simplicity on implementation.
1333  *
1334  * For cloning, we want to share the partial EOF block if it is also the new EOF
1335  * block of the destination file. If the partial EOF block lies inside the
1336  * existing destination EOF, then we have to abort the clone to avoid exposing
1337  * stale data in the destination file. Hence we reject these clone attempts with
1338  * -EINVAL in this case.
1339  */
1340 int
1341 xfs_reflink_remap_prep(
1342 	struct file		*file_in,
1343 	loff_t			pos_in,
1344 	struct file		*file_out,
1345 	loff_t			pos_out,
1346 	loff_t			*len,
1347 	unsigned int		remap_flags)
1348 {
1349 	struct inode		*inode_in = file_inode(file_in);
1350 	struct xfs_inode	*src = XFS_I(inode_in);
1351 	struct inode		*inode_out = file_inode(file_out);
1352 	struct xfs_inode	*dest = XFS_I(inode_out);
1353 	bool			same_inode = (inode_in == inode_out);
1354 	ssize_t			ret;
1355 
1356 	/* Lock both files against IO */
1357 	ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out);
1358 	if (ret)
1359 		return ret;
1360 	if (same_inode)
1361 		xfs_ilock(src, XFS_MMAPLOCK_EXCL);
1362 	else
1363 		xfs_lock_two_inodes(src, XFS_MMAPLOCK_SHARED, dest,
1364 				XFS_MMAPLOCK_EXCL);
1365 
1366 	/* Check file eligibility and prepare for block sharing. */
1367 	ret = -EINVAL;
1368 	/* Don't reflink realtime inodes */
1369 	if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1370 		goto out_unlock;
1371 
1372 	/* Don't share DAX file data for now. */
1373 	if (IS_DAX(inode_in) || IS_DAX(inode_out))
1374 		goto out_unlock;
1375 
1376 	ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
1377 			len, remap_flags);
1378 	if (ret < 0 || *len == 0)
1379 		goto out_unlock;
1380 
1381 	/* Attach dquots to dest inode before changing block map */
1382 	ret = xfs_qm_dqattach(dest);
1383 	if (ret)
1384 		goto out_unlock;
1385 
1386 	/*
1387 	 * Zero existing post-eof speculative preallocations in the destination
1388 	 * file.
1389 	 */
1390 	ret = xfs_reflink_zero_posteof(dest, pos_out);
1391 	if (ret)
1392 		goto out_unlock;
1393 
1394 	/* Set flags and remap blocks. */
1395 	ret = xfs_reflink_set_inode_flag(src, dest);
1396 	if (ret)
1397 		goto out_unlock;
1398 
1399 	/*
1400 	 * If pos_out > EOF, we may have dirtied blocks between EOF and
1401 	 * pos_out. In that case, we need to extend the flush and unmap to cover
1402 	 * from EOF to the end of the copy length.
1403 	 */
1404 	if (pos_out > XFS_ISIZE(dest)) {
1405 		loff_t	flen = *len + (pos_out - XFS_ISIZE(dest));
1406 		ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1407 	} else {
1408 		ret = xfs_flush_unmap_range(dest, pos_out, *len);
1409 	}
1410 	if (ret)
1411 		goto out_unlock;
1412 
1413 	return 1;
1414 out_unlock:
1415 	xfs_reflink_remap_unlock(file_in, file_out);
1416 	return ret;
1417 }
1418 
1419 /*
1420  * The user wants to preemptively CoW all shared blocks in this file,
1421  * which enables us to turn off the reflink flag.  Iterate all
1422  * extents which are not prealloc/delalloc to see which ranges are
1423  * mentioned in the refcount tree, then read those blocks into the
1424  * pagecache, dirty them, fsync them back out, and then we can update
1425  * the inode flag.  What happens if we run out of memory? :)
1426  */
1427 STATIC int
1428 xfs_reflink_dirty_extents(
1429 	struct xfs_inode	*ip,
1430 	xfs_fileoff_t		fbno,
1431 	xfs_filblks_t		end,
1432 	xfs_off_t		isize)
1433 {
1434 	struct xfs_mount	*mp = ip->i_mount;
1435 	xfs_agnumber_t		agno;
1436 	xfs_agblock_t		agbno;
1437 	xfs_extlen_t		aglen;
1438 	xfs_agblock_t		rbno;
1439 	xfs_extlen_t		rlen;
1440 	xfs_off_t		fpos;
1441 	xfs_off_t		flen;
1442 	struct xfs_bmbt_irec	map[2];
1443 	int			nmaps;
1444 	int			error = 0;
1445 
1446 	while (end - fbno > 0) {
1447 		nmaps = 1;
1448 		/*
1449 		 * Look for extents in the file.  Skip holes, delalloc, or
1450 		 * unwritten extents; they can't be reflinked.
1451 		 */
1452 		error = xfs_bmapi_read(ip, fbno, end - fbno, map, &nmaps, 0);
1453 		if (error)
1454 			goto out;
1455 		if (nmaps == 0)
1456 			break;
1457 		if (!xfs_bmap_is_real_extent(&map[0]))
1458 			goto next;
1459 
1460 		map[1] = map[0];
1461 		while (map[1].br_blockcount) {
1462 			agno = XFS_FSB_TO_AGNO(mp, map[1].br_startblock);
1463 			agbno = XFS_FSB_TO_AGBNO(mp, map[1].br_startblock);
1464 			aglen = map[1].br_blockcount;
1465 
1466 			error = xfs_reflink_find_shared(mp, NULL, agno, agbno,
1467 					aglen, &rbno, &rlen, true);
1468 			if (error)
1469 				goto out;
1470 			if (rbno == NULLAGBLOCK)
1471 				break;
1472 
1473 			/* Dirty the pages */
1474 			xfs_iunlock(ip, XFS_ILOCK_EXCL);
1475 			fpos = XFS_FSB_TO_B(mp, map[1].br_startoff +
1476 					(rbno - agbno));
1477 			flen = XFS_FSB_TO_B(mp, rlen);
1478 			if (fpos + flen > isize)
1479 				flen = isize - fpos;
1480 			error = iomap_file_dirty(VFS_I(ip), fpos, flen,
1481 					&xfs_iomap_ops);
1482 			xfs_ilock(ip, XFS_ILOCK_EXCL);
1483 			if (error)
1484 				goto out;
1485 
1486 			map[1].br_blockcount -= (rbno - agbno + rlen);
1487 			map[1].br_startoff += (rbno - agbno + rlen);
1488 			map[1].br_startblock += (rbno - agbno + rlen);
1489 		}
1490 
1491 next:
1492 		fbno = map[0].br_startoff + map[0].br_blockcount;
1493 	}
1494 out:
1495 	return error;
1496 }
1497 
1498 /* Does this inode need the reflink flag? */
1499 int
1500 xfs_reflink_inode_has_shared_extents(
1501 	struct xfs_trans		*tp,
1502 	struct xfs_inode		*ip,
1503 	bool				*has_shared)
1504 {
1505 	struct xfs_bmbt_irec		got;
1506 	struct xfs_mount		*mp = ip->i_mount;
1507 	struct xfs_ifork		*ifp;
1508 	xfs_agnumber_t			agno;
1509 	xfs_agblock_t			agbno;
1510 	xfs_extlen_t			aglen;
1511 	xfs_agblock_t			rbno;
1512 	xfs_extlen_t			rlen;
1513 	struct xfs_iext_cursor		icur;
1514 	bool				found;
1515 	int				error;
1516 
1517 	ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1518 	if (!(ifp->if_flags & XFS_IFEXTENTS)) {
1519 		error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1520 		if (error)
1521 			return error;
1522 	}
1523 
1524 	*has_shared = false;
1525 	found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1526 	while (found) {
1527 		if (isnullstartblock(got.br_startblock) ||
1528 		    got.br_state != XFS_EXT_NORM)
1529 			goto next;
1530 		agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1531 		agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1532 		aglen = got.br_blockcount;
1533 
1534 		error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1535 				&rbno, &rlen, false);
1536 		if (error)
1537 			return error;
1538 		/* Is there still a shared block here? */
1539 		if (rbno != NULLAGBLOCK) {
1540 			*has_shared = true;
1541 			return 0;
1542 		}
1543 next:
1544 		found = xfs_iext_next_extent(ifp, &icur, &got);
1545 	}
1546 
1547 	return 0;
1548 }
1549 
1550 /*
1551  * Clear the inode reflink flag if there are no shared extents.
1552  *
1553  * The caller is responsible for joining the inode to the transaction passed in.
1554  * The inode will be joined to the transaction that is returned to the caller.
1555  */
1556 int
1557 xfs_reflink_clear_inode_flag(
1558 	struct xfs_inode	*ip,
1559 	struct xfs_trans	**tpp)
1560 {
1561 	bool			needs_flag;
1562 	int			error = 0;
1563 
1564 	ASSERT(xfs_is_reflink_inode(ip));
1565 
1566 	error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1567 	if (error || needs_flag)
1568 		return error;
1569 
1570 	/*
1571 	 * We didn't find any shared blocks so turn off the reflink flag.
1572 	 * First, get rid of any leftover CoW mappings.
1573 	 */
1574 	error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF, true);
1575 	if (error)
1576 		return error;
1577 
1578 	/* Clear the inode flag. */
1579 	trace_xfs_reflink_unset_inode_flag(ip);
1580 	ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1581 	xfs_inode_clear_cowblocks_tag(ip);
1582 	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1583 
1584 	return error;
1585 }
1586 
1587 /*
1588  * Clear the inode reflink flag if there are no shared extents and the size
1589  * hasn't changed.
1590  */
1591 STATIC int
1592 xfs_reflink_try_clear_inode_flag(
1593 	struct xfs_inode	*ip)
1594 {
1595 	struct xfs_mount	*mp = ip->i_mount;
1596 	struct xfs_trans	*tp;
1597 	int			error = 0;
1598 
1599 	/* Start a rolling transaction to remove the mappings */
1600 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1601 	if (error)
1602 		return error;
1603 
1604 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1605 	xfs_trans_ijoin(tp, ip, 0);
1606 
1607 	error = xfs_reflink_clear_inode_flag(ip, &tp);
1608 	if (error)
1609 		goto cancel;
1610 
1611 	error = xfs_trans_commit(tp);
1612 	if (error)
1613 		goto out;
1614 
1615 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1616 	return 0;
1617 cancel:
1618 	xfs_trans_cancel(tp);
1619 out:
1620 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1621 	return error;
1622 }
1623 
1624 /*
1625  * Pre-COW all shared blocks within a given byte range of a file and turn off
1626  * the reflink flag if we unshare all of the file's blocks.
1627  */
1628 int
1629 xfs_reflink_unshare(
1630 	struct xfs_inode	*ip,
1631 	xfs_off_t		offset,
1632 	xfs_off_t		len)
1633 {
1634 	struct xfs_mount	*mp = ip->i_mount;
1635 	xfs_fileoff_t		fbno;
1636 	xfs_filblks_t		end;
1637 	xfs_off_t		isize;
1638 	int			error;
1639 
1640 	if (!xfs_is_reflink_inode(ip))
1641 		return 0;
1642 
1643 	trace_xfs_reflink_unshare(ip, offset, len);
1644 
1645 	inode_dio_wait(VFS_I(ip));
1646 
1647 	/* Try to CoW the selected ranges */
1648 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1649 	fbno = XFS_B_TO_FSBT(mp, offset);
1650 	isize = i_size_read(VFS_I(ip));
1651 	end = XFS_B_TO_FSB(mp, offset + len);
1652 	error = xfs_reflink_dirty_extents(ip, fbno, end, isize);
1653 	if (error)
1654 		goto out_unlock;
1655 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1656 
1657 	/* Wait for the IO to finish */
1658 	error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1659 	if (error)
1660 		goto out;
1661 
1662 	/* Turn off the reflink flag if possible. */
1663 	error = xfs_reflink_try_clear_inode_flag(ip);
1664 	if (error)
1665 		goto out;
1666 
1667 	return 0;
1668 
1669 out_unlock:
1670 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1671 out:
1672 	trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1673 	return error;
1674 }
1675