xref: /openbmc/linux/fs/xfs/xfs_reflink.c (revision 7c768f84)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_da_format.h"
15 #include "xfs_da_btree.h"
16 #include "xfs_inode.h"
17 #include "xfs_trans.h"
18 #include "xfs_inode_item.h"
19 #include "xfs_bmap.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_error.h"
22 #include "xfs_dir2.h"
23 #include "xfs_dir2_priv.h"
24 #include "xfs_ioctl.h"
25 #include "xfs_trace.h"
26 #include "xfs_log.h"
27 #include "xfs_icache.h"
28 #include "xfs_pnfs.h"
29 #include "xfs_btree.h"
30 #include "xfs_refcount_btree.h"
31 #include "xfs_refcount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_trans_space.h"
34 #include "xfs_bit.h"
35 #include "xfs_alloc.h"
36 #include "xfs_quota_defs.h"
37 #include "xfs_quota.h"
38 #include "xfs_reflink.h"
39 #include "xfs_iomap.h"
40 #include "xfs_rmap_btree.h"
41 #include "xfs_sb.h"
42 #include "xfs_ag_resv.h"
43 
44 /*
45  * Copy on Write of Shared Blocks
46  *
47  * XFS must preserve "the usual" file semantics even when two files share
48  * the same physical blocks.  This means that a write to one file must not
49  * alter the blocks in a different file; the way that we'll do that is
50  * through the use of a copy-on-write mechanism.  At a high level, that
51  * means that when we want to write to a shared block, we allocate a new
52  * block, write the data to the new block, and if that succeeds we map the
53  * new block into the file.
54  *
55  * XFS provides a "delayed allocation" mechanism that defers the allocation
56  * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
57  * possible.  This reduces fragmentation by enabling the filesystem to ask
58  * for bigger chunks less often, which is exactly what we want for CoW.
59  *
60  * The delalloc mechanism begins when the kernel wants to make a block
61  * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
62  * create a delalloc mapping, which is a regular in-core extent, but without
63  * a real startblock.  (For delalloc mappings, the startblock encodes both
64  * a flag that this is a delalloc mapping, and a worst-case estimate of how
65  * many blocks might be required to put the mapping into the BMBT.)  delalloc
66  * mappings are a reservation against the free space in the filesystem;
67  * adjacent mappings can also be combined into fewer larger mappings.
68  *
69  * As an optimization, the CoW extent size hint (cowextsz) creates
70  * outsized aligned delalloc reservations in the hope of landing out of
71  * order nearby CoW writes in a single extent on disk, thereby reducing
72  * fragmentation and improving future performance.
73  *
74  * D: --RRRRRRSSSRRRRRRRR--- (data fork)
75  * C: ------DDDDDDD--------- (CoW fork)
76  *
77  * When dirty pages are being written out (typically in writepage), the
78  * delalloc reservations are converted into unwritten mappings by
79  * allocating blocks and replacing the delalloc mapping with real ones.
80  * A delalloc mapping can be replaced by several unwritten ones if the
81  * free space is fragmented.
82  *
83  * D: --RRRRRRSSSRRRRRRRR---
84  * C: ------UUUUUUU---------
85  *
86  * We want to adapt the delalloc mechanism for copy-on-write, since the
87  * write paths are similar.  The first two steps (creating the reservation
88  * and allocating the blocks) are exactly the same as delalloc except that
89  * the mappings must be stored in a separate CoW fork because we do not want
90  * to disturb the mapping in the data fork until we're sure that the write
91  * succeeded.  IO completion in this case is the process of removing the old
92  * mapping from the data fork and moving the new mapping from the CoW fork to
93  * the data fork.  This will be discussed shortly.
94  *
95  * For now, unaligned directio writes will be bounced back to the page cache.
96  * Block-aligned directio writes will use the same mechanism as buffered
97  * writes.
98  *
99  * Just prior to submitting the actual disk write requests, we convert
100  * the extents representing the range of the file actually being written
101  * (as opposed to extra pieces created for the cowextsize hint) to real
102  * extents.  This will become important in the next step:
103  *
104  * D: --RRRRRRSSSRRRRRRRR---
105  * C: ------UUrrUUU---------
106  *
107  * CoW remapping must be done after the data block write completes,
108  * because we don't want to destroy the old data fork map until we're sure
109  * the new block has been written.  Since the new mappings are kept in a
110  * separate fork, we can simply iterate these mappings to find the ones
111  * that cover the file blocks that we just CoW'd.  For each extent, simply
112  * unmap the corresponding range in the data fork, map the new range into
113  * the data fork, and remove the extent from the CoW fork.  Because of
114  * the presence of the cowextsize hint, however, we must be careful
115  * only to remap the blocks that we've actually written out --  we must
116  * never remap delalloc reservations nor CoW staging blocks that have
117  * yet to be written.  This corresponds exactly to the real extents in
118  * the CoW fork:
119  *
120  * D: --RRRRRRrrSRRRRRRRR---
121  * C: ------UU--UUU---------
122  *
123  * Since the remapping operation can be applied to an arbitrary file
124  * range, we record the need for the remap step as a flag in the ioend
125  * instead of declaring a new IO type.  This is required for direct io
126  * because we only have ioend for the whole dio, and we have to be able to
127  * remember the presence of unwritten blocks and CoW blocks with a single
128  * ioend structure.  Better yet, the more ground we can cover with one
129  * ioend, the better.
130  */
131 
132 /*
133  * Given an AG extent, find the lowest-numbered run of shared blocks
134  * within that range and return the range in fbno/flen.  If
135  * find_end_of_shared is true, return the longest contiguous extent of
136  * shared blocks.  If there are no shared extents, fbno and flen will
137  * be set to NULLAGBLOCK and 0, respectively.
138  */
139 int
140 xfs_reflink_find_shared(
141 	struct xfs_mount	*mp,
142 	struct xfs_trans	*tp,
143 	xfs_agnumber_t		agno,
144 	xfs_agblock_t		agbno,
145 	xfs_extlen_t		aglen,
146 	xfs_agblock_t		*fbno,
147 	xfs_extlen_t		*flen,
148 	bool			find_end_of_shared)
149 {
150 	struct xfs_buf		*agbp;
151 	struct xfs_btree_cur	*cur;
152 	int			error;
153 
154 	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
155 	if (error)
156 		return error;
157 	if (!agbp)
158 		return -ENOMEM;
159 
160 	cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno);
161 
162 	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
163 			find_end_of_shared);
164 
165 	xfs_btree_del_cursor(cur, error);
166 
167 	xfs_trans_brelse(tp, agbp);
168 	return error;
169 }
170 
171 /*
172  * Trim the mapping to the next block where there's a change in the
173  * shared/unshared status.  More specifically, this means that we
174  * find the lowest-numbered extent of shared blocks that coincides with
175  * the given block mapping.  If the shared extent overlaps the start of
176  * the mapping, trim the mapping to the end of the shared extent.  If
177  * the shared region intersects the mapping, trim the mapping to the
178  * start of the shared extent.  If there are no shared regions that
179  * overlap, just return the original extent.
180  */
181 int
182 xfs_reflink_trim_around_shared(
183 	struct xfs_inode	*ip,
184 	struct xfs_bmbt_irec	*irec,
185 	bool			*shared,
186 	bool			*trimmed)
187 {
188 	xfs_agnumber_t		agno;
189 	xfs_agblock_t		agbno;
190 	xfs_extlen_t		aglen;
191 	xfs_agblock_t		fbno;
192 	xfs_extlen_t		flen;
193 	int			error = 0;
194 
195 	/* Holes, unwritten, and delalloc extents cannot be shared */
196 	if (!xfs_is_reflink_inode(ip) || !xfs_bmap_is_real_extent(irec)) {
197 		*shared = false;
198 		return 0;
199 	}
200 
201 	trace_xfs_reflink_trim_around_shared(ip, irec);
202 
203 	agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
204 	agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
205 	aglen = irec->br_blockcount;
206 
207 	error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
208 			aglen, &fbno, &flen, true);
209 	if (error)
210 		return error;
211 
212 	*shared = *trimmed = false;
213 	if (fbno == NULLAGBLOCK) {
214 		/* No shared blocks at all. */
215 		return 0;
216 	} else if (fbno == agbno) {
217 		/*
218 		 * The start of this extent is shared.  Truncate the
219 		 * mapping at the end of the shared region so that a
220 		 * subsequent iteration starts at the start of the
221 		 * unshared region.
222 		 */
223 		irec->br_blockcount = flen;
224 		*shared = true;
225 		if (flen != aglen)
226 			*trimmed = true;
227 		return 0;
228 	} else {
229 		/*
230 		 * There's a shared extent midway through this extent.
231 		 * Truncate the mapping at the start of the shared
232 		 * extent so that a subsequent iteration starts at the
233 		 * start of the shared region.
234 		 */
235 		irec->br_blockcount = fbno - agbno;
236 		*trimmed = true;
237 		return 0;
238 	}
239 }
240 
241 /*
242  * Trim the passed in imap to the next shared/unshared extent boundary, and
243  * if imap->br_startoff points to a shared extent reserve space for it in the
244  * COW fork.  In this case *shared is set to true, else to false.
245  *
246  * Note that imap will always contain the block numbers for the existing blocks
247  * in the data fork, as the upper layers need them for read-modify-write
248  * operations.
249  */
250 int
251 xfs_reflink_reserve_cow(
252 	struct xfs_inode	*ip,
253 	struct xfs_bmbt_irec	*imap,
254 	bool			*shared)
255 {
256 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
257 	struct xfs_bmbt_irec	got;
258 	int			error = 0;
259 	bool			eof = false, trimmed;
260 	struct xfs_iext_cursor	icur;
261 
262 	/*
263 	 * Search the COW fork extent list first.  This serves two purposes:
264 	 * first this implement the speculative preallocation using cowextisze,
265 	 * so that we also unshared block adjacent to shared blocks instead
266 	 * of just the shared blocks themselves.  Second the lookup in the
267 	 * extent list is generally faster than going out to the shared extent
268 	 * tree.
269 	 */
270 
271 	if (!xfs_iext_lookup_extent(ip, ifp, imap->br_startoff, &icur, &got))
272 		eof = true;
273 	if (!eof && got.br_startoff <= imap->br_startoff) {
274 		trace_xfs_reflink_cow_found(ip, imap);
275 		xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
276 
277 		*shared = true;
278 		return 0;
279 	}
280 
281 	/* Trim the mapping to the nearest shared extent boundary. */
282 	error = xfs_reflink_trim_around_shared(ip, imap, shared, &trimmed);
283 	if (error)
284 		return error;
285 
286 	/* Not shared?  Just report the (potentially capped) extent. */
287 	if (!*shared)
288 		return 0;
289 
290 	/*
291 	 * Fork all the shared blocks from our write offset until the end of
292 	 * the extent.
293 	 */
294 	error = xfs_qm_dqattach_locked(ip, false);
295 	if (error)
296 		return error;
297 
298 	error = xfs_bmapi_reserve_delalloc(ip, XFS_COW_FORK, imap->br_startoff,
299 			imap->br_blockcount, 0, &got, &icur, eof);
300 	if (error == -ENOSPC || error == -EDQUOT)
301 		trace_xfs_reflink_cow_enospc(ip, imap);
302 	if (error)
303 		return error;
304 
305 	trace_xfs_reflink_cow_alloc(ip, &got);
306 	return 0;
307 }
308 
309 /* Convert part of an unwritten CoW extent to a real one. */
310 STATIC int
311 xfs_reflink_convert_cow_extent(
312 	struct xfs_inode		*ip,
313 	struct xfs_bmbt_irec		*imap,
314 	xfs_fileoff_t			offset_fsb,
315 	xfs_filblks_t			count_fsb)
316 {
317 	int				nimaps = 1;
318 
319 	if (imap->br_state == XFS_EXT_NORM)
320 		return 0;
321 
322 	xfs_trim_extent(imap, offset_fsb, count_fsb);
323 	trace_xfs_reflink_convert_cow(ip, imap);
324 	if (imap->br_blockcount == 0)
325 		return 0;
326 	return xfs_bmapi_write(NULL, ip, imap->br_startoff, imap->br_blockcount,
327 			XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT, 0, imap,
328 			&nimaps);
329 }
330 
331 /* Convert all of the unwritten CoW extents in a file's range to real ones. */
332 int
333 xfs_reflink_convert_cow(
334 	struct xfs_inode	*ip,
335 	xfs_off_t		offset,
336 	xfs_off_t		count)
337 {
338 	struct xfs_mount	*mp = ip->i_mount;
339 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
340 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
341 	xfs_filblks_t		count_fsb = end_fsb - offset_fsb;
342 	struct xfs_bmbt_irec	imap;
343 	int			nimaps = 1, error = 0;
344 
345 	ASSERT(count != 0);
346 
347 	xfs_ilock(ip, XFS_ILOCK_EXCL);
348 	error = xfs_bmapi_write(NULL, ip, offset_fsb, count_fsb,
349 			XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT |
350 			XFS_BMAPI_CONVERT_ONLY, 0, &imap, &nimaps);
351 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
352 	return error;
353 }
354 
355 /*
356  * Find the extent that maps the given range in the COW fork. Even if the extent
357  * is not shared we might have a preallocation for it in the COW fork. If so we
358  * use it that rather than trigger a new allocation.
359  */
360 static int
361 xfs_find_trim_cow_extent(
362 	struct xfs_inode	*ip,
363 	struct xfs_bmbt_irec	*imap,
364 	bool			*shared,
365 	bool			*found)
366 {
367 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
368 	xfs_filblks_t		count_fsb = imap->br_blockcount;
369 	struct xfs_iext_cursor	icur;
370 	struct xfs_bmbt_irec	got;
371 	bool			trimmed;
372 
373 	*found = false;
374 
375 	/*
376 	 * If we don't find an overlapping extent, trim the range we need to
377 	 * allocate to fit the hole we found.
378 	 */
379 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got) ||
380 	    got.br_startoff > offset_fsb)
381 		return xfs_reflink_trim_around_shared(ip, imap, shared, &trimmed);
382 
383 	*shared = true;
384 	if (isnullstartblock(got.br_startblock)) {
385 		xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
386 		return 0;
387 	}
388 
389 	/* real extent found - no need to allocate */
390 	xfs_trim_extent(&got, offset_fsb, count_fsb);
391 	*imap = got;
392 	*found = true;
393 	return 0;
394 }
395 
396 /* Allocate all CoW reservations covering a range of blocks in a file. */
397 int
398 xfs_reflink_allocate_cow(
399 	struct xfs_inode	*ip,
400 	struct xfs_bmbt_irec	*imap,
401 	bool			*shared,
402 	uint			*lockmode)
403 {
404 	struct xfs_mount	*mp = ip->i_mount;
405 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
406 	xfs_filblks_t		count_fsb = imap->br_blockcount;
407 	struct xfs_trans	*tp;
408 	int			nimaps, error = 0;
409 	bool			found;
410 	xfs_filblks_t		resaligned;
411 	xfs_extlen_t		resblks = 0;
412 
413 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
414 	ASSERT(xfs_is_reflink_inode(ip));
415 
416 	error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
417 	if (error || !*shared)
418 		return error;
419 	if (found)
420 		goto convert;
421 
422 	resaligned = xfs_aligned_fsb_count(imap->br_startoff,
423 		imap->br_blockcount, xfs_get_cowextsz_hint(ip));
424 	resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
425 
426 	xfs_iunlock(ip, *lockmode);
427 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
428 	*lockmode = XFS_ILOCK_EXCL;
429 	xfs_ilock(ip, *lockmode);
430 
431 	if (error)
432 		return error;
433 
434 	error = xfs_qm_dqattach_locked(ip, false);
435 	if (error)
436 		goto out_trans_cancel;
437 
438 	/*
439 	 * Check for an overlapping extent again now that we dropped the ilock.
440 	 */
441 	error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
442 	if (error || !*shared)
443 		goto out_trans_cancel;
444 	if (found) {
445 		xfs_trans_cancel(tp);
446 		goto convert;
447 	}
448 
449 	error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0,
450 			XFS_QMOPT_RES_REGBLKS);
451 	if (error)
452 		goto out_trans_cancel;
453 
454 	xfs_trans_ijoin(tp, ip, 0);
455 
456 	/* Allocate the entire reservation as unwritten blocks. */
457 	nimaps = 1;
458 	error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
459 			XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC,
460 			resblks, imap, &nimaps);
461 	if (error)
462 		goto out_unreserve;
463 
464 	xfs_inode_set_cowblocks_tag(ip);
465 	error = xfs_trans_commit(tp);
466 	if (error)
467 		return error;
468 
469 	/*
470 	 * Allocation succeeded but the requested range was not even partially
471 	 * satisfied?  Bail out!
472 	 */
473 	if (nimaps == 0)
474 		return -ENOSPC;
475 convert:
476 	return xfs_reflink_convert_cow_extent(ip, imap, offset_fsb, count_fsb);
477 
478 out_unreserve:
479 	xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0,
480 			XFS_QMOPT_RES_REGBLKS);
481 out_trans_cancel:
482 	xfs_trans_cancel(tp);
483 	return error;
484 }
485 
486 /*
487  * Cancel CoW reservations for some block range of an inode.
488  *
489  * If cancel_real is true this function cancels all COW fork extents for the
490  * inode; if cancel_real is false, real extents are not cleared.
491  *
492  * Caller must have already joined the inode to the current transaction. The
493  * inode will be joined to the transaction returned to the caller.
494  */
495 int
496 xfs_reflink_cancel_cow_blocks(
497 	struct xfs_inode		*ip,
498 	struct xfs_trans		**tpp,
499 	xfs_fileoff_t			offset_fsb,
500 	xfs_fileoff_t			end_fsb,
501 	bool				cancel_real)
502 {
503 	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
504 	struct xfs_bmbt_irec		got, del;
505 	struct xfs_iext_cursor		icur;
506 	int				error = 0;
507 
508 	if (!xfs_inode_has_cow_data(ip))
509 		return 0;
510 	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
511 		return 0;
512 
513 	/* Walk backwards until we're out of the I/O range... */
514 	while (got.br_startoff + got.br_blockcount > offset_fsb) {
515 		del = got;
516 		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
517 
518 		/* Extent delete may have bumped ext forward */
519 		if (!del.br_blockcount) {
520 			xfs_iext_prev(ifp, &icur);
521 			goto next_extent;
522 		}
523 
524 		trace_xfs_reflink_cancel_cow(ip, &del);
525 
526 		if (isnullstartblock(del.br_startblock)) {
527 			error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
528 					&icur, &got, &del);
529 			if (error)
530 				break;
531 		} else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
532 			ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
533 
534 			/* Free the CoW orphan record. */
535 			error = xfs_refcount_free_cow_extent(*tpp,
536 					del.br_startblock, del.br_blockcount);
537 			if (error)
538 				break;
539 
540 			xfs_bmap_add_free(*tpp, del.br_startblock,
541 					  del.br_blockcount, NULL);
542 
543 			/* Roll the transaction */
544 			error = xfs_defer_finish(tpp);
545 			if (error)
546 				break;
547 
548 			/* Remove the mapping from the CoW fork. */
549 			xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
550 
551 			/* Remove the quota reservation */
552 			error = xfs_trans_reserve_quota_nblks(NULL, ip,
553 					-(long)del.br_blockcount, 0,
554 					XFS_QMOPT_RES_REGBLKS);
555 			if (error)
556 				break;
557 		} else {
558 			/* Didn't do anything, push cursor back. */
559 			xfs_iext_prev(ifp, &icur);
560 		}
561 next_extent:
562 		if (!xfs_iext_get_extent(ifp, &icur, &got))
563 			break;
564 	}
565 
566 	/* clear tag if cow fork is emptied */
567 	if (!ifp->if_bytes)
568 		xfs_inode_clear_cowblocks_tag(ip);
569 	return error;
570 }
571 
572 /*
573  * Cancel CoW reservations for some byte range of an inode.
574  *
575  * If cancel_real is true this function cancels all COW fork extents for the
576  * inode; if cancel_real is false, real extents are not cleared.
577  */
578 int
579 xfs_reflink_cancel_cow_range(
580 	struct xfs_inode	*ip,
581 	xfs_off_t		offset,
582 	xfs_off_t		count,
583 	bool			cancel_real)
584 {
585 	struct xfs_trans	*tp;
586 	xfs_fileoff_t		offset_fsb;
587 	xfs_fileoff_t		end_fsb;
588 	int			error;
589 
590 	trace_xfs_reflink_cancel_cow_range(ip, offset, count);
591 	ASSERT(xfs_is_reflink_inode(ip));
592 
593 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
594 	if (count == NULLFILEOFF)
595 		end_fsb = NULLFILEOFF;
596 	else
597 		end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
598 
599 	/* Start a rolling transaction to remove the mappings */
600 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
601 			0, 0, XFS_TRANS_NOFS, &tp);
602 	if (error)
603 		goto out;
604 
605 	xfs_ilock(ip, XFS_ILOCK_EXCL);
606 	xfs_trans_ijoin(tp, ip, 0);
607 
608 	/* Scrape out the old CoW reservations */
609 	error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
610 			cancel_real);
611 	if (error)
612 		goto out_cancel;
613 
614 	error = xfs_trans_commit(tp);
615 
616 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
617 	return error;
618 
619 out_cancel:
620 	xfs_trans_cancel(tp);
621 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
622 out:
623 	trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
624 	return error;
625 }
626 
627 /*
628  * Remap parts of a file's data fork after a successful CoW.
629  */
630 int
631 xfs_reflink_end_cow(
632 	struct xfs_inode		*ip,
633 	xfs_off_t			offset,
634 	xfs_off_t			count)
635 {
636 	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
637 	struct xfs_bmbt_irec		got, del;
638 	struct xfs_trans		*tp;
639 	xfs_fileoff_t			offset_fsb;
640 	xfs_fileoff_t			end_fsb;
641 	int				error;
642 	unsigned int			resblks;
643 	xfs_filblks_t			rlen;
644 	struct xfs_iext_cursor		icur;
645 
646 	trace_xfs_reflink_end_cow(ip, offset, count);
647 
648 	/* No COW extents?  That's easy! */
649 	if (ifp->if_bytes == 0)
650 		return 0;
651 
652 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
653 	end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
654 
655 	/*
656 	 * Start a rolling transaction to switch the mappings.  We're
657 	 * unlikely ever to have to remap 16T worth of single-block
658 	 * extents, so just cap the worst case extent count to 2^32-1.
659 	 * Stick a warning in just in case, and avoid 64-bit division.
660 	 */
661 	BUILD_BUG_ON(MAX_RW_COUNT > UINT_MAX);
662 	if (end_fsb - offset_fsb > UINT_MAX) {
663 		error = -EFSCORRUPTED;
664 		xfs_force_shutdown(ip->i_mount, SHUTDOWN_CORRUPT_INCORE);
665 		ASSERT(0);
666 		goto out;
667 	}
668 	resblks = XFS_NEXTENTADD_SPACE_RES(ip->i_mount,
669 			(unsigned int)(end_fsb - offset_fsb),
670 			XFS_DATA_FORK);
671 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
672 			resblks, 0, XFS_TRANS_RESERVE | XFS_TRANS_NOFS, &tp);
673 	if (error)
674 		goto out;
675 
676 	xfs_ilock(ip, XFS_ILOCK_EXCL);
677 	xfs_trans_ijoin(tp, ip, 0);
678 
679 	/*
680 	 * In case of racing, overlapping AIO writes no COW extents might be
681 	 * left by the time I/O completes for the loser of the race.  In that
682 	 * case we are done.
683 	 */
684 	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
685 		goto out_cancel;
686 
687 	/* Walk backwards until we're out of the I/O range... */
688 	while (got.br_startoff + got.br_blockcount > offset_fsb) {
689 		del = got;
690 		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
691 
692 		/* Extent delete may have bumped ext forward */
693 		if (!del.br_blockcount)
694 			goto prev_extent;
695 
696 		/*
697 		 * Only remap real extent that contain data.  With AIO
698 		 * speculatively preallocations can leak into the range we
699 		 * are called upon, and we need to skip them.
700 		 */
701 		if (!xfs_bmap_is_real_extent(&got))
702 			goto prev_extent;
703 
704 		/* Unmap the old blocks in the data fork. */
705 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
706 		rlen = del.br_blockcount;
707 		error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
708 		if (error)
709 			goto out_cancel;
710 
711 		/* Trim the extent to whatever got unmapped. */
712 		if (rlen) {
713 			xfs_trim_extent(&del, del.br_startoff + rlen,
714 				del.br_blockcount - rlen);
715 		}
716 		trace_xfs_reflink_cow_remap(ip, &del);
717 
718 		/* Free the CoW orphan record. */
719 		error = xfs_refcount_free_cow_extent(tp, del.br_startblock,
720 				del.br_blockcount);
721 		if (error)
722 			goto out_cancel;
723 
724 		/* Map the new blocks into the data fork. */
725 		error = xfs_bmap_map_extent(tp, ip, &del);
726 		if (error)
727 			goto out_cancel;
728 
729 		/* Charge this new data fork mapping to the on-disk quota. */
730 		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
731 				(long)del.br_blockcount);
732 
733 		/* Remove the mapping from the CoW fork. */
734 		xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
735 
736 		error = xfs_defer_finish(&tp);
737 		if (error)
738 			goto out_cancel;
739 		if (!xfs_iext_get_extent(ifp, &icur, &got))
740 			break;
741 		continue;
742 prev_extent:
743 		if (!xfs_iext_prev_extent(ifp, &icur, &got))
744 			break;
745 	}
746 
747 	error = xfs_trans_commit(tp);
748 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
749 	if (error)
750 		goto out;
751 	return 0;
752 
753 out_cancel:
754 	xfs_trans_cancel(tp);
755 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
756 out:
757 	trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
758 	return error;
759 }
760 
761 /*
762  * Free leftover CoW reservations that didn't get cleaned out.
763  */
764 int
765 xfs_reflink_recover_cow(
766 	struct xfs_mount	*mp)
767 {
768 	xfs_agnumber_t		agno;
769 	int			error = 0;
770 
771 	if (!xfs_sb_version_hasreflink(&mp->m_sb))
772 		return 0;
773 
774 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
775 		error = xfs_refcount_recover_cow_leftovers(mp, agno);
776 		if (error)
777 			break;
778 	}
779 
780 	return error;
781 }
782 
783 /*
784  * Reflinking (Block) Ranges of Two Files Together
785  *
786  * First, ensure that the reflink flag is set on both inodes.  The flag is an
787  * optimization to avoid unnecessary refcount btree lookups in the write path.
788  *
789  * Now we can iteratively remap the range of extents (and holes) in src to the
790  * corresponding ranges in dest.  Let drange and srange denote the ranges of
791  * logical blocks in dest and src touched by the reflink operation.
792  *
793  * While the length of drange is greater than zero,
794  *    - Read src's bmbt at the start of srange ("imap")
795  *    - If imap doesn't exist, make imap appear to start at the end of srange
796  *      with zero length.
797  *    - If imap starts before srange, advance imap to start at srange.
798  *    - If imap goes beyond srange, truncate imap to end at the end of srange.
799  *    - Punch (imap start - srange start + imap len) blocks from dest at
800  *      offset (drange start).
801  *    - If imap points to a real range of pblks,
802  *         > Increase the refcount of the imap's pblks
803  *         > Map imap's pblks into dest at the offset
804  *           (drange start + imap start - srange start)
805  *    - Advance drange and srange by (imap start - srange start + imap len)
806  *
807  * Finally, if the reflink made dest longer, update both the in-core and
808  * on-disk file sizes.
809  *
810  * ASCII Art Demonstration:
811  *
812  * Let's say we want to reflink this source file:
813  *
814  * ----SSSSSSS-SSSSS----SSSSSS (src file)
815  *   <-------------------->
816  *
817  * into this destination file:
818  *
819  * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
820  *        <-------------------->
821  * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
822  * Observe that the range has different logical offsets in either file.
823  *
824  * Consider that the first extent in the source file doesn't line up with our
825  * reflink range.  Unmapping  and remapping are separate operations, so we can
826  * unmap more blocks from the destination file than we remap.
827  *
828  * ----SSSSSSS-SSSSS----SSSSSS
829  *   <------->
830  * --DDDDD---------DDDDD--DDD
831  *        <------->
832  *
833  * Now remap the source extent into the destination file:
834  *
835  * ----SSSSSSS-SSSSS----SSSSSS
836  *   <------->
837  * --DDDDD--SSSSSSSDDDDD--DDD
838  *        <------->
839  *
840  * Do likewise with the second hole and extent in our range.  Holes in the
841  * unmap range don't affect our operation.
842  *
843  * ----SSSSSSS-SSSSS----SSSSSS
844  *            <---->
845  * --DDDDD--SSSSSSS-SSSSS-DDD
846  *                 <---->
847  *
848  * Finally, unmap and remap part of the third extent.  This will increase the
849  * size of the destination file.
850  *
851  * ----SSSSSSS-SSSSS----SSSSSS
852  *                  <----->
853  * --DDDDD--SSSSSSS-SSSSS----SSS
854  *                       <----->
855  *
856  * Once we update the destination file's i_size, we're done.
857  */
858 
859 /*
860  * Ensure the reflink bit is set in both inodes.
861  */
862 STATIC int
863 xfs_reflink_set_inode_flag(
864 	struct xfs_inode	*src,
865 	struct xfs_inode	*dest)
866 {
867 	struct xfs_mount	*mp = src->i_mount;
868 	int			error;
869 	struct xfs_trans	*tp;
870 
871 	if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
872 		return 0;
873 
874 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
875 	if (error)
876 		goto out_error;
877 
878 	/* Lock both files against IO */
879 	if (src->i_ino == dest->i_ino)
880 		xfs_ilock(src, XFS_ILOCK_EXCL);
881 	else
882 		xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
883 
884 	if (!xfs_is_reflink_inode(src)) {
885 		trace_xfs_reflink_set_inode_flag(src);
886 		xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
887 		src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
888 		xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
889 		xfs_ifork_init_cow(src);
890 	} else
891 		xfs_iunlock(src, XFS_ILOCK_EXCL);
892 
893 	if (src->i_ino == dest->i_ino)
894 		goto commit_flags;
895 
896 	if (!xfs_is_reflink_inode(dest)) {
897 		trace_xfs_reflink_set_inode_flag(dest);
898 		xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
899 		dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
900 		xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
901 		xfs_ifork_init_cow(dest);
902 	} else
903 		xfs_iunlock(dest, XFS_ILOCK_EXCL);
904 
905 commit_flags:
906 	error = xfs_trans_commit(tp);
907 	if (error)
908 		goto out_error;
909 	return error;
910 
911 out_error:
912 	trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
913 	return error;
914 }
915 
916 /*
917  * Update destination inode size & cowextsize hint, if necessary.
918  */
919 STATIC int
920 xfs_reflink_update_dest(
921 	struct xfs_inode	*dest,
922 	xfs_off_t		newlen,
923 	xfs_extlen_t		cowextsize,
924 	bool			is_dedupe)
925 {
926 	struct xfs_mount	*mp = dest->i_mount;
927 	struct xfs_trans	*tp;
928 	int			error;
929 
930 	if (is_dedupe && newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
931 		return 0;
932 
933 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
934 	if (error)
935 		goto out_error;
936 
937 	xfs_ilock(dest, XFS_ILOCK_EXCL);
938 	xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
939 
940 	if (newlen > i_size_read(VFS_I(dest))) {
941 		trace_xfs_reflink_update_inode_size(dest, newlen);
942 		i_size_write(VFS_I(dest), newlen);
943 		dest->i_d.di_size = newlen;
944 	}
945 
946 	if (cowextsize) {
947 		dest->i_d.di_cowextsize = cowextsize;
948 		dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
949 	}
950 
951 	if (!is_dedupe) {
952 		xfs_trans_ichgtime(tp, dest,
953 				   XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
954 	}
955 	xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
956 
957 	error = xfs_trans_commit(tp);
958 	if (error)
959 		goto out_error;
960 	return error;
961 
962 out_error:
963 	trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
964 	return error;
965 }
966 
967 /*
968  * Do we have enough reserve in this AG to handle a reflink?  The refcount
969  * btree already reserved all the space it needs, but the rmap btree can grow
970  * infinitely, so we won't allow more reflinks when the AG is down to the
971  * btree reserves.
972  */
973 static int
974 xfs_reflink_ag_has_free_space(
975 	struct xfs_mount	*mp,
976 	xfs_agnumber_t		agno)
977 {
978 	struct xfs_perag	*pag;
979 	int			error = 0;
980 
981 	if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
982 		return 0;
983 
984 	pag = xfs_perag_get(mp, agno);
985 	if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
986 	    xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
987 		error = -ENOSPC;
988 	xfs_perag_put(pag);
989 	return error;
990 }
991 
992 /*
993  * Unmap a range of blocks from a file, then map other blocks into the hole.
994  * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
995  * The extent irec is mapped into dest at irec->br_startoff.
996  */
997 STATIC int
998 xfs_reflink_remap_extent(
999 	struct xfs_inode	*ip,
1000 	struct xfs_bmbt_irec	*irec,
1001 	xfs_fileoff_t		destoff,
1002 	xfs_off_t		new_isize)
1003 {
1004 	struct xfs_mount	*mp = ip->i_mount;
1005 	bool			real_extent = xfs_bmap_is_real_extent(irec);
1006 	struct xfs_trans	*tp;
1007 	unsigned int		resblks;
1008 	struct xfs_bmbt_irec	uirec;
1009 	xfs_filblks_t		rlen;
1010 	xfs_filblks_t		unmap_len;
1011 	xfs_off_t		newlen;
1012 	int			error;
1013 
1014 	unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
1015 	trace_xfs_reflink_punch_range(ip, destoff, unmap_len);
1016 
1017 	/* No reflinking if we're low on space */
1018 	if (real_extent) {
1019 		error = xfs_reflink_ag_has_free_space(mp,
1020 				XFS_FSB_TO_AGNO(mp, irec->br_startblock));
1021 		if (error)
1022 			goto out;
1023 	}
1024 
1025 	/* Start a rolling transaction to switch the mappings */
1026 	resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
1027 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1028 	if (error)
1029 		goto out;
1030 
1031 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1032 	xfs_trans_ijoin(tp, ip, 0);
1033 
1034 	/* If we're not just clearing space, then do we have enough quota? */
1035 	if (real_extent) {
1036 		error = xfs_trans_reserve_quota_nblks(tp, ip,
1037 				irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS);
1038 		if (error)
1039 			goto out_cancel;
1040 	}
1041 
1042 	trace_xfs_reflink_remap(ip, irec->br_startoff,
1043 				irec->br_blockcount, irec->br_startblock);
1044 
1045 	/* Unmap the old blocks in the data fork. */
1046 	rlen = unmap_len;
1047 	while (rlen) {
1048 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1049 		error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1);
1050 		if (error)
1051 			goto out_cancel;
1052 
1053 		/*
1054 		 * Trim the extent to whatever got unmapped.
1055 		 * Remember, bunmapi works backwards.
1056 		 */
1057 		uirec.br_startblock = irec->br_startblock + rlen;
1058 		uirec.br_startoff = irec->br_startoff + rlen;
1059 		uirec.br_blockcount = unmap_len - rlen;
1060 		unmap_len = rlen;
1061 
1062 		/* If this isn't a real mapping, we're done. */
1063 		if (!real_extent || uirec.br_blockcount == 0)
1064 			goto next_extent;
1065 
1066 		trace_xfs_reflink_remap(ip, uirec.br_startoff,
1067 				uirec.br_blockcount, uirec.br_startblock);
1068 
1069 		/* Update the refcount tree */
1070 		error = xfs_refcount_increase_extent(tp, &uirec);
1071 		if (error)
1072 			goto out_cancel;
1073 
1074 		/* Map the new blocks into the data fork. */
1075 		error = xfs_bmap_map_extent(tp, ip, &uirec);
1076 		if (error)
1077 			goto out_cancel;
1078 
1079 		/* Update quota accounting. */
1080 		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
1081 				uirec.br_blockcount);
1082 
1083 		/* Update dest isize if needed. */
1084 		newlen = XFS_FSB_TO_B(mp,
1085 				uirec.br_startoff + uirec.br_blockcount);
1086 		newlen = min_t(xfs_off_t, newlen, new_isize);
1087 		if (newlen > i_size_read(VFS_I(ip))) {
1088 			trace_xfs_reflink_update_inode_size(ip, newlen);
1089 			i_size_write(VFS_I(ip), newlen);
1090 			ip->i_d.di_size = newlen;
1091 			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1092 		}
1093 
1094 next_extent:
1095 		/* Process all the deferred stuff. */
1096 		error = xfs_defer_finish(&tp);
1097 		if (error)
1098 			goto out_cancel;
1099 	}
1100 
1101 	error = xfs_trans_commit(tp);
1102 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1103 	if (error)
1104 		goto out;
1105 	return 0;
1106 
1107 out_cancel:
1108 	xfs_trans_cancel(tp);
1109 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1110 out:
1111 	trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1112 	return error;
1113 }
1114 
1115 /*
1116  * Iteratively remap one file's extents (and holes) to another's.
1117  */
1118 STATIC int
1119 xfs_reflink_remap_blocks(
1120 	struct xfs_inode	*src,
1121 	xfs_fileoff_t		srcoff,
1122 	struct xfs_inode	*dest,
1123 	xfs_fileoff_t		destoff,
1124 	xfs_filblks_t		len,
1125 	xfs_off_t		new_isize)
1126 {
1127 	struct xfs_bmbt_irec	imap;
1128 	int			nimaps;
1129 	int			error = 0;
1130 	xfs_filblks_t		range_len;
1131 
1132 	/* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
1133 	while (len) {
1134 		uint		lock_mode;
1135 
1136 		trace_xfs_reflink_remap_blocks_loop(src, srcoff, len,
1137 				dest, destoff);
1138 
1139 		/* Read extent from the source file */
1140 		nimaps = 1;
1141 		lock_mode = xfs_ilock_data_map_shared(src);
1142 		error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1143 		xfs_iunlock(src, lock_mode);
1144 		if (error)
1145 			goto err;
1146 		ASSERT(nimaps == 1);
1147 
1148 		trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_IO_OVERWRITE,
1149 				&imap);
1150 
1151 		/* Translate imap into the destination file. */
1152 		range_len = imap.br_startoff + imap.br_blockcount - srcoff;
1153 		imap.br_startoff += destoff - srcoff;
1154 
1155 		/* Clear dest from destoff to the end of imap and map it in. */
1156 		error = xfs_reflink_remap_extent(dest, &imap, destoff,
1157 				new_isize);
1158 		if (error)
1159 			goto err;
1160 
1161 		if (fatal_signal_pending(current)) {
1162 			error = -EINTR;
1163 			goto err;
1164 		}
1165 
1166 		/* Advance drange/srange */
1167 		srcoff += range_len;
1168 		destoff += range_len;
1169 		len -= range_len;
1170 	}
1171 
1172 	return 0;
1173 
1174 err:
1175 	trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1176 	return error;
1177 }
1178 
1179 /*
1180  * Grab the exclusive iolock for a data copy from src to dest, making
1181  * sure to abide vfs locking order (lowest pointer value goes first) and
1182  * breaking the pnfs layout leases on dest before proceeding.  The loop
1183  * is needed because we cannot call the blocking break_layout() with the
1184  * src iolock held, and therefore have to back out both locks.
1185  */
1186 static int
1187 xfs_iolock_two_inodes_and_break_layout(
1188 	struct inode		*src,
1189 	struct inode		*dest)
1190 {
1191 	int			error;
1192 
1193 retry:
1194 	if (src < dest) {
1195 		inode_lock_shared(src);
1196 		inode_lock_nested(dest, I_MUTEX_NONDIR2);
1197 	} else {
1198 		/* src >= dest */
1199 		inode_lock(dest);
1200 	}
1201 
1202 	error = break_layout(dest, false);
1203 	if (error == -EWOULDBLOCK) {
1204 		inode_unlock(dest);
1205 		if (src < dest)
1206 			inode_unlock_shared(src);
1207 		error = break_layout(dest, true);
1208 		if (error)
1209 			return error;
1210 		goto retry;
1211 	}
1212 	if (error) {
1213 		inode_unlock(dest);
1214 		if (src < dest)
1215 			inode_unlock_shared(src);
1216 		return error;
1217 	}
1218 	if (src > dest)
1219 		inode_lock_shared_nested(src, I_MUTEX_NONDIR2);
1220 	return 0;
1221 }
1222 
1223 /* Unlock both inodes after they've been prepped for a range clone. */
1224 STATIC void
1225 xfs_reflink_remap_unlock(
1226 	struct file		*file_in,
1227 	struct file		*file_out)
1228 {
1229 	struct inode		*inode_in = file_inode(file_in);
1230 	struct xfs_inode	*src = XFS_I(inode_in);
1231 	struct inode		*inode_out = file_inode(file_out);
1232 	struct xfs_inode	*dest = XFS_I(inode_out);
1233 	bool			same_inode = (inode_in == inode_out);
1234 
1235 	xfs_iunlock(dest, XFS_MMAPLOCK_EXCL);
1236 	if (!same_inode)
1237 		xfs_iunlock(src, XFS_MMAPLOCK_SHARED);
1238 	inode_unlock(inode_out);
1239 	if (!same_inode)
1240 		inode_unlock_shared(inode_in);
1241 }
1242 
1243 /*
1244  * If we're reflinking to a point past the destination file's EOF, we must
1245  * zero any speculative post-EOF preallocations that sit between the old EOF
1246  * and the destination file offset.
1247  */
1248 static int
1249 xfs_reflink_zero_posteof(
1250 	struct xfs_inode	*ip,
1251 	loff_t			pos)
1252 {
1253 	loff_t			isize = i_size_read(VFS_I(ip));
1254 
1255 	if (pos <= isize)
1256 		return 0;
1257 
1258 	trace_xfs_zero_eof(ip, isize, pos - isize);
1259 	return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL,
1260 			&xfs_iomap_ops);
1261 }
1262 
1263 /*
1264  * Prepare two files for range cloning.  Upon a successful return both inodes
1265  * will have the iolock and mmaplock held, the page cache of the out file will
1266  * be truncated, and any leases on the out file will have been broken.  This
1267  * function borrows heavily from xfs_file_aio_write_checks.
1268  *
1269  * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1270  * checked that the bytes beyond EOF physically match. Hence we cannot use the
1271  * EOF block in the source dedupe range because it's not a complete block match,
1272  * hence can introduce a corruption into the file that has it's block replaced.
1273  *
1274  * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1275  * "block aligned" for the purposes of cloning entire files.  However, if the
1276  * source file range includes the EOF block and it lands within the existing EOF
1277  * of the destination file, then we can expose stale data from beyond the source
1278  * file EOF in the destination file.
1279  *
1280  * XFS doesn't support partial block sharing, so in both cases we have check
1281  * these cases ourselves. For dedupe, we can simply round the length to dedupe
1282  * down to the previous whole block and ignore the partial EOF block. While this
1283  * means we can't dedupe the last block of a file, this is an acceptible
1284  * tradeoff for simplicity on implementation.
1285  *
1286  * For cloning, we want to share the partial EOF block if it is also the new EOF
1287  * block of the destination file. If the partial EOF block lies inside the
1288  * existing destination EOF, then we have to abort the clone to avoid exposing
1289  * stale data in the destination file. Hence we reject these clone attempts with
1290  * -EINVAL in this case.
1291  */
1292 STATIC int
1293 xfs_reflink_remap_prep(
1294 	struct file		*file_in,
1295 	loff_t			pos_in,
1296 	struct file		*file_out,
1297 	loff_t			pos_out,
1298 	u64			*len,
1299 	bool			is_dedupe)
1300 {
1301 	struct inode		*inode_in = file_inode(file_in);
1302 	struct xfs_inode	*src = XFS_I(inode_in);
1303 	struct inode		*inode_out = file_inode(file_out);
1304 	struct xfs_inode	*dest = XFS_I(inode_out);
1305 	bool			same_inode = (inode_in == inode_out);
1306 	u64			blkmask = i_blocksize(inode_in) - 1;
1307 	ssize_t			ret;
1308 
1309 	/* Lock both files against IO */
1310 	ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out);
1311 	if (ret)
1312 		return ret;
1313 	if (same_inode)
1314 		xfs_ilock(src, XFS_MMAPLOCK_EXCL);
1315 	else
1316 		xfs_lock_two_inodes(src, XFS_MMAPLOCK_SHARED, dest,
1317 				XFS_MMAPLOCK_EXCL);
1318 
1319 	/* Check file eligibility and prepare for block sharing. */
1320 	ret = -EINVAL;
1321 	/* Don't reflink realtime inodes */
1322 	if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1323 		goto out_unlock;
1324 
1325 	/* Don't share DAX file data for now. */
1326 	if (IS_DAX(inode_in) || IS_DAX(inode_out))
1327 		goto out_unlock;
1328 
1329 	ret = vfs_clone_file_prep_inodes(inode_in, pos_in, inode_out, pos_out,
1330 			len, is_dedupe);
1331 	if (ret <= 0)
1332 		goto out_unlock;
1333 
1334 	/*
1335 	 * If the dedupe data matches, chop off the partial EOF block
1336 	 * from the source file so we don't try to dedupe the partial
1337 	 * EOF block.
1338 	 */
1339 	if (is_dedupe) {
1340 		*len &= ~blkmask;
1341 	} else if (*len & blkmask) {
1342 		/*
1343 		 * The user is attempting to share a partial EOF block,
1344 		 * if it's inside the destination EOF then reject it.
1345 		 */
1346 		if (pos_out + *len < i_size_read(inode_out)) {
1347 			ret = -EINVAL;
1348 			goto out_unlock;
1349 		}
1350 	}
1351 
1352 	/* Attach dquots to dest inode before changing block map */
1353 	ret = xfs_qm_dqattach(dest);
1354 	if (ret)
1355 		goto out_unlock;
1356 
1357 	/*
1358 	 * Zero existing post-eof speculative preallocations in the destination
1359 	 * file.
1360 	 */
1361 	ret = xfs_reflink_zero_posteof(dest, pos_out);
1362 	if (ret)
1363 		goto out_unlock;
1364 
1365 	/* Set flags and remap blocks. */
1366 	ret = xfs_reflink_set_inode_flag(src, dest);
1367 	if (ret)
1368 		goto out_unlock;
1369 
1370 	/* Zap any page cache for the destination file's range. */
1371 	truncate_inode_pages_range(&inode_out->i_data, pos_out,
1372 				   PAGE_ALIGN(pos_out + *len) - 1);
1373 
1374 	/* If we're altering the file contents... */
1375 	if (!is_dedupe) {
1376 		/*
1377 		 * ...update the timestamps (which will grab the ilock again
1378 		 * from xfs_fs_dirty_inode, so we have to call it before we
1379 		 * take the ilock).
1380 		 */
1381 		if (!(file_out->f_mode & FMODE_NOCMTIME)) {
1382 			ret = file_update_time(file_out);
1383 			if (ret)
1384 				goto out_unlock;
1385 		}
1386 
1387 		/*
1388 		 * ...clear the security bits if the process is not being run
1389 		 * by root.  This keeps people from modifying setuid and setgid
1390 		 * binaries.
1391 		 */
1392 		ret = file_remove_privs(file_out);
1393 		if (ret)
1394 			goto out_unlock;
1395 	}
1396 
1397 	return 1;
1398 out_unlock:
1399 	xfs_reflink_remap_unlock(file_in, file_out);
1400 	return ret;
1401 }
1402 
1403 /*
1404  * Link a range of blocks from one file to another.
1405  */
1406 int
1407 xfs_reflink_remap_range(
1408 	struct file		*file_in,
1409 	loff_t			pos_in,
1410 	struct file		*file_out,
1411 	loff_t			pos_out,
1412 	u64			len,
1413 	bool			is_dedupe)
1414 {
1415 	struct inode		*inode_in = file_inode(file_in);
1416 	struct xfs_inode	*src = XFS_I(inode_in);
1417 	struct inode		*inode_out = file_inode(file_out);
1418 	struct xfs_inode	*dest = XFS_I(inode_out);
1419 	struct xfs_mount	*mp = src->i_mount;
1420 	xfs_fileoff_t		sfsbno, dfsbno;
1421 	xfs_filblks_t		fsblen;
1422 	xfs_extlen_t		cowextsize;
1423 	ssize_t			ret;
1424 
1425 	if (!xfs_sb_version_hasreflink(&mp->m_sb))
1426 		return -EOPNOTSUPP;
1427 
1428 	if (XFS_FORCED_SHUTDOWN(mp))
1429 		return -EIO;
1430 
1431 	/* Prepare and then clone file data. */
1432 	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1433 			&len, is_dedupe);
1434 	if (ret <= 0)
1435 		return ret;
1436 
1437 	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1438 
1439 	dfsbno = XFS_B_TO_FSBT(mp, pos_out);
1440 	sfsbno = XFS_B_TO_FSBT(mp, pos_in);
1441 	fsblen = XFS_B_TO_FSB(mp, len);
1442 	ret = xfs_reflink_remap_blocks(src, sfsbno, dest, dfsbno, fsblen,
1443 			pos_out + len);
1444 	if (ret)
1445 		goto out_unlock;
1446 
1447 	/*
1448 	 * Carry the cowextsize hint from src to dest if we're sharing the
1449 	 * entire source file to the entire destination file, the source file
1450 	 * has a cowextsize hint, and the destination file does not.
1451 	 */
1452 	cowextsize = 0;
1453 	if (pos_in == 0 && len == i_size_read(inode_in) &&
1454 	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1455 	    pos_out == 0 && len >= i_size_read(inode_out) &&
1456 	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1457 		cowextsize = src->i_d.di_cowextsize;
1458 
1459 	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1460 			is_dedupe);
1461 
1462 out_unlock:
1463 	xfs_reflink_remap_unlock(file_in, file_out);
1464 	if (ret)
1465 		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1466 	return ret;
1467 }
1468 
1469 /*
1470  * The user wants to preemptively CoW all shared blocks in this file,
1471  * which enables us to turn off the reflink flag.  Iterate all
1472  * extents which are not prealloc/delalloc to see which ranges are
1473  * mentioned in the refcount tree, then read those blocks into the
1474  * pagecache, dirty them, fsync them back out, and then we can update
1475  * the inode flag.  What happens if we run out of memory? :)
1476  */
1477 STATIC int
1478 xfs_reflink_dirty_extents(
1479 	struct xfs_inode	*ip,
1480 	xfs_fileoff_t		fbno,
1481 	xfs_filblks_t		end,
1482 	xfs_off_t		isize)
1483 {
1484 	struct xfs_mount	*mp = ip->i_mount;
1485 	xfs_agnumber_t		agno;
1486 	xfs_agblock_t		agbno;
1487 	xfs_extlen_t		aglen;
1488 	xfs_agblock_t		rbno;
1489 	xfs_extlen_t		rlen;
1490 	xfs_off_t		fpos;
1491 	xfs_off_t		flen;
1492 	struct xfs_bmbt_irec	map[2];
1493 	int			nmaps;
1494 	int			error = 0;
1495 
1496 	while (end - fbno > 0) {
1497 		nmaps = 1;
1498 		/*
1499 		 * Look for extents in the file.  Skip holes, delalloc, or
1500 		 * unwritten extents; they can't be reflinked.
1501 		 */
1502 		error = xfs_bmapi_read(ip, fbno, end - fbno, map, &nmaps, 0);
1503 		if (error)
1504 			goto out;
1505 		if (nmaps == 0)
1506 			break;
1507 		if (!xfs_bmap_is_real_extent(&map[0]))
1508 			goto next;
1509 
1510 		map[1] = map[0];
1511 		while (map[1].br_blockcount) {
1512 			agno = XFS_FSB_TO_AGNO(mp, map[1].br_startblock);
1513 			agbno = XFS_FSB_TO_AGBNO(mp, map[1].br_startblock);
1514 			aglen = map[1].br_blockcount;
1515 
1516 			error = xfs_reflink_find_shared(mp, NULL, agno, agbno,
1517 					aglen, &rbno, &rlen, true);
1518 			if (error)
1519 				goto out;
1520 			if (rbno == NULLAGBLOCK)
1521 				break;
1522 
1523 			/* Dirty the pages */
1524 			xfs_iunlock(ip, XFS_ILOCK_EXCL);
1525 			fpos = XFS_FSB_TO_B(mp, map[1].br_startoff +
1526 					(rbno - agbno));
1527 			flen = XFS_FSB_TO_B(mp, rlen);
1528 			if (fpos + flen > isize)
1529 				flen = isize - fpos;
1530 			error = iomap_file_dirty(VFS_I(ip), fpos, flen,
1531 					&xfs_iomap_ops);
1532 			xfs_ilock(ip, XFS_ILOCK_EXCL);
1533 			if (error)
1534 				goto out;
1535 
1536 			map[1].br_blockcount -= (rbno - agbno + rlen);
1537 			map[1].br_startoff += (rbno - agbno + rlen);
1538 			map[1].br_startblock += (rbno - agbno + rlen);
1539 		}
1540 
1541 next:
1542 		fbno = map[0].br_startoff + map[0].br_blockcount;
1543 	}
1544 out:
1545 	return error;
1546 }
1547 
1548 /* Does this inode need the reflink flag? */
1549 int
1550 xfs_reflink_inode_has_shared_extents(
1551 	struct xfs_trans		*tp,
1552 	struct xfs_inode		*ip,
1553 	bool				*has_shared)
1554 {
1555 	struct xfs_bmbt_irec		got;
1556 	struct xfs_mount		*mp = ip->i_mount;
1557 	struct xfs_ifork		*ifp;
1558 	xfs_agnumber_t			agno;
1559 	xfs_agblock_t			agbno;
1560 	xfs_extlen_t			aglen;
1561 	xfs_agblock_t			rbno;
1562 	xfs_extlen_t			rlen;
1563 	struct xfs_iext_cursor		icur;
1564 	bool				found;
1565 	int				error;
1566 
1567 	ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1568 	if (!(ifp->if_flags & XFS_IFEXTENTS)) {
1569 		error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1570 		if (error)
1571 			return error;
1572 	}
1573 
1574 	*has_shared = false;
1575 	found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1576 	while (found) {
1577 		if (isnullstartblock(got.br_startblock) ||
1578 		    got.br_state != XFS_EXT_NORM)
1579 			goto next;
1580 		agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1581 		agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1582 		aglen = got.br_blockcount;
1583 
1584 		error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1585 				&rbno, &rlen, false);
1586 		if (error)
1587 			return error;
1588 		/* Is there still a shared block here? */
1589 		if (rbno != NULLAGBLOCK) {
1590 			*has_shared = true;
1591 			return 0;
1592 		}
1593 next:
1594 		found = xfs_iext_next_extent(ifp, &icur, &got);
1595 	}
1596 
1597 	return 0;
1598 }
1599 
1600 /*
1601  * Clear the inode reflink flag if there are no shared extents.
1602  *
1603  * The caller is responsible for joining the inode to the transaction passed in.
1604  * The inode will be joined to the transaction that is returned to the caller.
1605  */
1606 int
1607 xfs_reflink_clear_inode_flag(
1608 	struct xfs_inode	*ip,
1609 	struct xfs_trans	**tpp)
1610 {
1611 	bool			needs_flag;
1612 	int			error = 0;
1613 
1614 	ASSERT(xfs_is_reflink_inode(ip));
1615 
1616 	error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1617 	if (error || needs_flag)
1618 		return error;
1619 
1620 	/*
1621 	 * We didn't find any shared blocks so turn off the reflink flag.
1622 	 * First, get rid of any leftover CoW mappings.
1623 	 */
1624 	error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF, true);
1625 	if (error)
1626 		return error;
1627 
1628 	/* Clear the inode flag. */
1629 	trace_xfs_reflink_unset_inode_flag(ip);
1630 	ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1631 	xfs_inode_clear_cowblocks_tag(ip);
1632 	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1633 
1634 	return error;
1635 }
1636 
1637 /*
1638  * Clear the inode reflink flag if there are no shared extents and the size
1639  * hasn't changed.
1640  */
1641 STATIC int
1642 xfs_reflink_try_clear_inode_flag(
1643 	struct xfs_inode	*ip)
1644 {
1645 	struct xfs_mount	*mp = ip->i_mount;
1646 	struct xfs_trans	*tp;
1647 	int			error = 0;
1648 
1649 	/* Start a rolling transaction to remove the mappings */
1650 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1651 	if (error)
1652 		return error;
1653 
1654 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1655 	xfs_trans_ijoin(tp, ip, 0);
1656 
1657 	error = xfs_reflink_clear_inode_flag(ip, &tp);
1658 	if (error)
1659 		goto cancel;
1660 
1661 	error = xfs_trans_commit(tp);
1662 	if (error)
1663 		goto out;
1664 
1665 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1666 	return 0;
1667 cancel:
1668 	xfs_trans_cancel(tp);
1669 out:
1670 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1671 	return error;
1672 }
1673 
1674 /*
1675  * Pre-COW all shared blocks within a given byte range of a file and turn off
1676  * the reflink flag if we unshare all of the file's blocks.
1677  */
1678 int
1679 xfs_reflink_unshare(
1680 	struct xfs_inode	*ip,
1681 	xfs_off_t		offset,
1682 	xfs_off_t		len)
1683 {
1684 	struct xfs_mount	*mp = ip->i_mount;
1685 	xfs_fileoff_t		fbno;
1686 	xfs_filblks_t		end;
1687 	xfs_off_t		isize;
1688 	int			error;
1689 
1690 	if (!xfs_is_reflink_inode(ip))
1691 		return 0;
1692 
1693 	trace_xfs_reflink_unshare(ip, offset, len);
1694 
1695 	inode_dio_wait(VFS_I(ip));
1696 
1697 	/* Try to CoW the selected ranges */
1698 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1699 	fbno = XFS_B_TO_FSBT(mp, offset);
1700 	isize = i_size_read(VFS_I(ip));
1701 	end = XFS_B_TO_FSB(mp, offset + len);
1702 	error = xfs_reflink_dirty_extents(ip, fbno, end, isize);
1703 	if (error)
1704 		goto out_unlock;
1705 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1706 
1707 	/* Wait for the IO to finish */
1708 	error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1709 	if (error)
1710 		goto out;
1711 
1712 	/* Turn off the reflink flag if possible. */
1713 	error = xfs_reflink_try_clear_inode_flag(ip);
1714 	if (error)
1715 		goto out;
1716 
1717 	return 0;
1718 
1719 out_unlock:
1720 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1721 out:
1722 	trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1723 	return error;
1724 }
1725