1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2016 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_defer.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_bmap.h" 17 #include "xfs_bmap_util.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_btree.h" 21 #include "xfs_refcount_btree.h" 22 #include "xfs_refcount.h" 23 #include "xfs_bmap_btree.h" 24 #include "xfs_trans_space.h" 25 #include "xfs_bit.h" 26 #include "xfs_alloc.h" 27 #include "xfs_quota.h" 28 #include "xfs_reflink.h" 29 #include "xfs_iomap.h" 30 #include "xfs_ag.h" 31 #include "xfs_ag_resv.h" 32 33 /* 34 * Copy on Write of Shared Blocks 35 * 36 * XFS must preserve "the usual" file semantics even when two files share 37 * the same physical blocks. This means that a write to one file must not 38 * alter the blocks in a different file; the way that we'll do that is 39 * through the use of a copy-on-write mechanism. At a high level, that 40 * means that when we want to write to a shared block, we allocate a new 41 * block, write the data to the new block, and if that succeeds we map the 42 * new block into the file. 43 * 44 * XFS provides a "delayed allocation" mechanism that defers the allocation 45 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as 46 * possible. This reduces fragmentation by enabling the filesystem to ask 47 * for bigger chunks less often, which is exactly what we want for CoW. 48 * 49 * The delalloc mechanism begins when the kernel wants to make a block 50 * writable (write_begin or page_mkwrite). If the offset is not mapped, we 51 * create a delalloc mapping, which is a regular in-core extent, but without 52 * a real startblock. (For delalloc mappings, the startblock encodes both 53 * a flag that this is a delalloc mapping, and a worst-case estimate of how 54 * many blocks might be required to put the mapping into the BMBT.) delalloc 55 * mappings are a reservation against the free space in the filesystem; 56 * adjacent mappings can also be combined into fewer larger mappings. 57 * 58 * As an optimization, the CoW extent size hint (cowextsz) creates 59 * outsized aligned delalloc reservations in the hope of landing out of 60 * order nearby CoW writes in a single extent on disk, thereby reducing 61 * fragmentation and improving future performance. 62 * 63 * D: --RRRRRRSSSRRRRRRRR--- (data fork) 64 * C: ------DDDDDDD--------- (CoW fork) 65 * 66 * When dirty pages are being written out (typically in writepage), the 67 * delalloc reservations are converted into unwritten mappings by 68 * allocating blocks and replacing the delalloc mapping with real ones. 69 * A delalloc mapping can be replaced by several unwritten ones if the 70 * free space is fragmented. 71 * 72 * D: --RRRRRRSSSRRRRRRRR--- 73 * C: ------UUUUUUU--------- 74 * 75 * We want to adapt the delalloc mechanism for copy-on-write, since the 76 * write paths are similar. The first two steps (creating the reservation 77 * and allocating the blocks) are exactly the same as delalloc except that 78 * the mappings must be stored in a separate CoW fork because we do not want 79 * to disturb the mapping in the data fork until we're sure that the write 80 * succeeded. IO completion in this case is the process of removing the old 81 * mapping from the data fork and moving the new mapping from the CoW fork to 82 * the data fork. This will be discussed shortly. 83 * 84 * For now, unaligned directio writes will be bounced back to the page cache. 85 * Block-aligned directio writes will use the same mechanism as buffered 86 * writes. 87 * 88 * Just prior to submitting the actual disk write requests, we convert 89 * the extents representing the range of the file actually being written 90 * (as opposed to extra pieces created for the cowextsize hint) to real 91 * extents. This will become important in the next step: 92 * 93 * D: --RRRRRRSSSRRRRRRRR--- 94 * C: ------UUrrUUU--------- 95 * 96 * CoW remapping must be done after the data block write completes, 97 * because we don't want to destroy the old data fork map until we're sure 98 * the new block has been written. Since the new mappings are kept in a 99 * separate fork, we can simply iterate these mappings to find the ones 100 * that cover the file blocks that we just CoW'd. For each extent, simply 101 * unmap the corresponding range in the data fork, map the new range into 102 * the data fork, and remove the extent from the CoW fork. Because of 103 * the presence of the cowextsize hint, however, we must be careful 104 * only to remap the blocks that we've actually written out -- we must 105 * never remap delalloc reservations nor CoW staging blocks that have 106 * yet to be written. This corresponds exactly to the real extents in 107 * the CoW fork: 108 * 109 * D: --RRRRRRrrSRRRRRRRR--- 110 * C: ------UU--UUU--------- 111 * 112 * Since the remapping operation can be applied to an arbitrary file 113 * range, we record the need for the remap step as a flag in the ioend 114 * instead of declaring a new IO type. This is required for direct io 115 * because we only have ioend for the whole dio, and we have to be able to 116 * remember the presence of unwritten blocks and CoW blocks with a single 117 * ioend structure. Better yet, the more ground we can cover with one 118 * ioend, the better. 119 */ 120 121 /* 122 * Given an AG extent, find the lowest-numbered run of shared blocks 123 * within that range and return the range in fbno/flen. If 124 * find_end_of_shared is true, return the longest contiguous extent of 125 * shared blocks. If there are no shared extents, fbno and flen will 126 * be set to NULLAGBLOCK and 0, respectively. 127 */ 128 static int 129 xfs_reflink_find_shared( 130 struct xfs_perag *pag, 131 struct xfs_trans *tp, 132 xfs_agblock_t agbno, 133 xfs_extlen_t aglen, 134 xfs_agblock_t *fbno, 135 xfs_extlen_t *flen, 136 bool find_end_of_shared) 137 { 138 struct xfs_buf *agbp; 139 struct xfs_btree_cur *cur; 140 int error; 141 142 error = xfs_alloc_read_agf(pag, tp, 0, &agbp); 143 if (error) 144 return error; 145 146 cur = xfs_refcountbt_init_cursor(pag->pag_mount, tp, agbp, pag); 147 148 error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen, 149 find_end_of_shared); 150 151 xfs_btree_del_cursor(cur, error); 152 153 xfs_trans_brelse(tp, agbp); 154 return error; 155 } 156 157 /* 158 * Trim the mapping to the next block where there's a change in the 159 * shared/unshared status. More specifically, this means that we 160 * find the lowest-numbered extent of shared blocks that coincides with 161 * the given block mapping. If the shared extent overlaps the start of 162 * the mapping, trim the mapping to the end of the shared extent. If 163 * the shared region intersects the mapping, trim the mapping to the 164 * start of the shared extent. If there are no shared regions that 165 * overlap, just return the original extent. 166 */ 167 int 168 xfs_reflink_trim_around_shared( 169 struct xfs_inode *ip, 170 struct xfs_bmbt_irec *irec, 171 bool *shared) 172 { 173 struct xfs_mount *mp = ip->i_mount; 174 struct xfs_perag *pag; 175 xfs_agblock_t agbno; 176 xfs_extlen_t aglen; 177 xfs_agblock_t fbno; 178 xfs_extlen_t flen; 179 int error = 0; 180 181 /* Holes, unwritten, and delalloc extents cannot be shared */ 182 if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) { 183 *shared = false; 184 return 0; 185 } 186 187 trace_xfs_reflink_trim_around_shared(ip, irec); 188 189 pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, irec->br_startblock)); 190 agbno = XFS_FSB_TO_AGBNO(mp, irec->br_startblock); 191 aglen = irec->br_blockcount; 192 193 error = xfs_reflink_find_shared(pag, NULL, agbno, aglen, &fbno, &flen, 194 true); 195 xfs_perag_put(pag); 196 if (error) 197 return error; 198 199 *shared = false; 200 if (fbno == NULLAGBLOCK) { 201 /* No shared blocks at all. */ 202 return 0; 203 } 204 205 if (fbno == agbno) { 206 /* 207 * The start of this extent is shared. Truncate the 208 * mapping at the end of the shared region so that a 209 * subsequent iteration starts at the start of the 210 * unshared region. 211 */ 212 irec->br_blockcount = flen; 213 *shared = true; 214 return 0; 215 } 216 217 /* 218 * There's a shared extent midway through this extent. 219 * Truncate the mapping at the start of the shared 220 * extent so that a subsequent iteration starts at the 221 * start of the shared region. 222 */ 223 irec->br_blockcount = fbno - agbno; 224 return 0; 225 } 226 227 int 228 xfs_bmap_trim_cow( 229 struct xfs_inode *ip, 230 struct xfs_bmbt_irec *imap, 231 bool *shared) 232 { 233 /* We can't update any real extents in always COW mode. */ 234 if (xfs_is_always_cow_inode(ip) && 235 !isnullstartblock(imap->br_startblock)) { 236 *shared = true; 237 return 0; 238 } 239 240 /* Trim the mapping to the nearest shared extent boundary. */ 241 return xfs_reflink_trim_around_shared(ip, imap, shared); 242 } 243 244 static int 245 xfs_reflink_convert_cow_locked( 246 struct xfs_inode *ip, 247 xfs_fileoff_t offset_fsb, 248 xfs_filblks_t count_fsb) 249 { 250 struct xfs_iext_cursor icur; 251 struct xfs_bmbt_irec got; 252 struct xfs_btree_cur *dummy_cur = NULL; 253 int dummy_logflags; 254 int error = 0; 255 256 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got)) 257 return 0; 258 259 do { 260 if (got.br_startoff >= offset_fsb + count_fsb) 261 break; 262 if (got.br_state == XFS_EXT_NORM) 263 continue; 264 if (WARN_ON_ONCE(isnullstartblock(got.br_startblock))) 265 return -EIO; 266 267 xfs_trim_extent(&got, offset_fsb, count_fsb); 268 if (!got.br_blockcount) 269 continue; 270 271 got.br_state = XFS_EXT_NORM; 272 error = xfs_bmap_add_extent_unwritten_real(NULL, ip, 273 XFS_COW_FORK, &icur, &dummy_cur, &got, 274 &dummy_logflags); 275 if (error) 276 return error; 277 } while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got)); 278 279 return error; 280 } 281 282 /* Convert all of the unwritten CoW extents in a file's range to real ones. */ 283 int 284 xfs_reflink_convert_cow( 285 struct xfs_inode *ip, 286 xfs_off_t offset, 287 xfs_off_t count) 288 { 289 struct xfs_mount *mp = ip->i_mount; 290 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 291 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); 292 xfs_filblks_t count_fsb = end_fsb - offset_fsb; 293 int error; 294 295 ASSERT(count != 0); 296 297 xfs_ilock(ip, XFS_ILOCK_EXCL); 298 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb); 299 xfs_iunlock(ip, XFS_ILOCK_EXCL); 300 return error; 301 } 302 303 /* 304 * Find the extent that maps the given range in the COW fork. Even if the extent 305 * is not shared we might have a preallocation for it in the COW fork. If so we 306 * use it that rather than trigger a new allocation. 307 */ 308 static int 309 xfs_find_trim_cow_extent( 310 struct xfs_inode *ip, 311 struct xfs_bmbt_irec *imap, 312 struct xfs_bmbt_irec *cmap, 313 bool *shared, 314 bool *found) 315 { 316 xfs_fileoff_t offset_fsb = imap->br_startoff; 317 xfs_filblks_t count_fsb = imap->br_blockcount; 318 struct xfs_iext_cursor icur; 319 320 *found = false; 321 322 /* 323 * If we don't find an overlapping extent, trim the range we need to 324 * allocate to fit the hole we found. 325 */ 326 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap)) 327 cmap->br_startoff = offset_fsb + count_fsb; 328 if (cmap->br_startoff > offset_fsb) { 329 xfs_trim_extent(imap, imap->br_startoff, 330 cmap->br_startoff - imap->br_startoff); 331 return xfs_bmap_trim_cow(ip, imap, shared); 332 } 333 334 *shared = true; 335 if (isnullstartblock(cmap->br_startblock)) { 336 xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount); 337 return 0; 338 } 339 340 /* real extent found - no need to allocate */ 341 xfs_trim_extent(cmap, offset_fsb, count_fsb); 342 *found = true; 343 return 0; 344 } 345 346 static int 347 xfs_reflink_convert_unwritten( 348 struct xfs_inode *ip, 349 struct xfs_bmbt_irec *imap, 350 struct xfs_bmbt_irec *cmap, 351 bool convert_now) 352 { 353 xfs_fileoff_t offset_fsb = imap->br_startoff; 354 xfs_filblks_t count_fsb = imap->br_blockcount; 355 int error; 356 357 /* 358 * cmap might larger than imap due to cowextsize hint. 359 */ 360 xfs_trim_extent(cmap, offset_fsb, count_fsb); 361 362 /* 363 * COW fork extents are supposed to remain unwritten until we're ready 364 * to initiate a disk write. For direct I/O we are going to write the 365 * data and need the conversion, but for buffered writes we're done. 366 */ 367 if (!convert_now || cmap->br_state == XFS_EXT_NORM) 368 return 0; 369 370 trace_xfs_reflink_convert_cow(ip, cmap); 371 372 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb); 373 if (!error) 374 cmap->br_state = XFS_EXT_NORM; 375 376 return error; 377 } 378 379 static int 380 xfs_reflink_fill_cow_hole( 381 struct xfs_inode *ip, 382 struct xfs_bmbt_irec *imap, 383 struct xfs_bmbt_irec *cmap, 384 bool *shared, 385 uint *lockmode, 386 bool convert_now) 387 { 388 struct xfs_mount *mp = ip->i_mount; 389 struct xfs_trans *tp; 390 xfs_filblks_t resaligned; 391 xfs_extlen_t resblks; 392 int nimaps; 393 int error; 394 bool found; 395 396 resaligned = xfs_aligned_fsb_count(imap->br_startoff, 397 imap->br_blockcount, xfs_get_cowextsz_hint(ip)); 398 resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned); 399 400 xfs_iunlock(ip, *lockmode); 401 *lockmode = 0; 402 403 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0, 404 false, &tp); 405 if (error) 406 return error; 407 408 *lockmode = XFS_ILOCK_EXCL; 409 410 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found); 411 if (error || !*shared) 412 goto out_trans_cancel; 413 414 if (found) { 415 xfs_trans_cancel(tp); 416 goto convert; 417 } 418 419 /* Allocate the entire reservation as unwritten blocks. */ 420 nimaps = 1; 421 error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount, 422 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap, 423 &nimaps); 424 if (error) 425 goto out_trans_cancel; 426 427 xfs_inode_set_cowblocks_tag(ip); 428 error = xfs_trans_commit(tp); 429 if (error) 430 return error; 431 432 convert: 433 return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now); 434 435 out_trans_cancel: 436 xfs_trans_cancel(tp); 437 return error; 438 } 439 440 static int 441 xfs_reflink_fill_delalloc( 442 struct xfs_inode *ip, 443 struct xfs_bmbt_irec *imap, 444 struct xfs_bmbt_irec *cmap, 445 bool *shared, 446 uint *lockmode, 447 bool convert_now) 448 { 449 struct xfs_mount *mp = ip->i_mount; 450 struct xfs_trans *tp; 451 int nimaps; 452 int error; 453 bool found; 454 455 do { 456 xfs_iunlock(ip, *lockmode); 457 *lockmode = 0; 458 459 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 0, 0, 460 false, &tp); 461 if (error) 462 return error; 463 464 *lockmode = XFS_ILOCK_EXCL; 465 466 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, 467 &found); 468 if (error || !*shared) 469 goto out_trans_cancel; 470 471 if (found) { 472 xfs_trans_cancel(tp); 473 break; 474 } 475 476 ASSERT(isnullstartblock(cmap->br_startblock) || 477 cmap->br_startblock == DELAYSTARTBLOCK); 478 479 /* 480 * Replace delalloc reservation with an unwritten extent. 481 */ 482 nimaps = 1; 483 error = xfs_bmapi_write(tp, ip, cmap->br_startoff, 484 cmap->br_blockcount, 485 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, 486 cmap, &nimaps); 487 if (error) 488 goto out_trans_cancel; 489 490 xfs_inode_set_cowblocks_tag(ip); 491 error = xfs_trans_commit(tp); 492 if (error) 493 return error; 494 } while (cmap->br_startoff + cmap->br_blockcount <= imap->br_startoff); 495 496 return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now); 497 498 out_trans_cancel: 499 xfs_trans_cancel(tp); 500 return error; 501 } 502 503 /* Allocate all CoW reservations covering a range of blocks in a file. */ 504 int 505 xfs_reflink_allocate_cow( 506 struct xfs_inode *ip, 507 struct xfs_bmbt_irec *imap, 508 struct xfs_bmbt_irec *cmap, 509 bool *shared, 510 uint *lockmode, 511 bool convert_now) 512 { 513 int error; 514 bool found; 515 516 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 517 if (!ip->i_cowfp) { 518 ASSERT(!xfs_is_reflink_inode(ip)); 519 xfs_ifork_init_cow(ip); 520 } 521 522 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found); 523 if (error || !*shared) 524 return error; 525 526 /* CoW fork has a real extent */ 527 if (found) 528 return xfs_reflink_convert_unwritten(ip, imap, cmap, 529 convert_now); 530 531 /* 532 * CoW fork does not have an extent and data extent is shared. 533 * Allocate a real extent in the CoW fork. 534 */ 535 if (cmap->br_startoff > imap->br_startoff) 536 return xfs_reflink_fill_cow_hole(ip, imap, cmap, shared, 537 lockmode, convert_now); 538 539 /* 540 * CoW fork has a delalloc reservation. Replace it with a real extent. 541 * There may or may not be a data fork mapping. 542 */ 543 if (isnullstartblock(cmap->br_startblock) || 544 cmap->br_startblock == DELAYSTARTBLOCK) 545 return xfs_reflink_fill_delalloc(ip, imap, cmap, shared, 546 lockmode, convert_now); 547 548 /* Shouldn't get here. */ 549 ASSERT(0); 550 return -EFSCORRUPTED; 551 } 552 553 /* 554 * Cancel CoW reservations for some block range of an inode. 555 * 556 * If cancel_real is true this function cancels all COW fork extents for the 557 * inode; if cancel_real is false, real extents are not cleared. 558 * 559 * Caller must have already joined the inode to the current transaction. The 560 * inode will be joined to the transaction returned to the caller. 561 */ 562 int 563 xfs_reflink_cancel_cow_blocks( 564 struct xfs_inode *ip, 565 struct xfs_trans **tpp, 566 xfs_fileoff_t offset_fsb, 567 xfs_fileoff_t end_fsb, 568 bool cancel_real) 569 { 570 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); 571 struct xfs_bmbt_irec got, del; 572 struct xfs_iext_cursor icur; 573 int error = 0; 574 575 if (!xfs_inode_has_cow_data(ip)) 576 return 0; 577 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got)) 578 return 0; 579 580 /* Walk backwards until we're out of the I/O range... */ 581 while (got.br_startoff + got.br_blockcount > offset_fsb) { 582 del = got; 583 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb); 584 585 /* Extent delete may have bumped ext forward */ 586 if (!del.br_blockcount) { 587 xfs_iext_prev(ifp, &icur); 588 goto next_extent; 589 } 590 591 trace_xfs_reflink_cancel_cow(ip, &del); 592 593 if (isnullstartblock(del.br_startblock)) { 594 error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK, 595 &icur, &got, &del); 596 if (error) 597 break; 598 } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) { 599 ASSERT((*tpp)->t_highest_agno == NULLAGNUMBER); 600 601 /* Free the CoW orphan record. */ 602 xfs_refcount_free_cow_extent(*tpp, del.br_startblock, 603 del.br_blockcount); 604 605 error = xfs_free_extent_later(*tpp, del.br_startblock, 606 del.br_blockcount, NULL, 607 XFS_AG_RESV_NONE); 608 if (error) 609 break; 610 611 /* Roll the transaction */ 612 error = xfs_defer_finish(tpp); 613 if (error) 614 break; 615 616 /* Remove the mapping from the CoW fork. */ 617 xfs_bmap_del_extent_cow(ip, &icur, &got, &del); 618 619 /* Remove the quota reservation */ 620 error = xfs_quota_unreserve_blkres(ip, 621 del.br_blockcount); 622 if (error) 623 break; 624 } else { 625 /* Didn't do anything, push cursor back. */ 626 xfs_iext_prev(ifp, &icur); 627 } 628 next_extent: 629 if (!xfs_iext_get_extent(ifp, &icur, &got)) 630 break; 631 } 632 633 /* clear tag if cow fork is emptied */ 634 if (!ifp->if_bytes) 635 xfs_inode_clear_cowblocks_tag(ip); 636 return error; 637 } 638 639 /* 640 * Cancel CoW reservations for some byte range of an inode. 641 * 642 * If cancel_real is true this function cancels all COW fork extents for the 643 * inode; if cancel_real is false, real extents are not cleared. 644 */ 645 int 646 xfs_reflink_cancel_cow_range( 647 struct xfs_inode *ip, 648 xfs_off_t offset, 649 xfs_off_t count, 650 bool cancel_real) 651 { 652 struct xfs_trans *tp; 653 xfs_fileoff_t offset_fsb; 654 xfs_fileoff_t end_fsb; 655 int error; 656 657 trace_xfs_reflink_cancel_cow_range(ip, offset, count); 658 ASSERT(ip->i_cowfp); 659 660 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 661 if (count == NULLFILEOFF) 662 end_fsb = NULLFILEOFF; 663 else 664 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count); 665 666 /* Start a rolling transaction to remove the mappings */ 667 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write, 668 0, 0, 0, &tp); 669 if (error) 670 goto out; 671 672 xfs_ilock(ip, XFS_ILOCK_EXCL); 673 xfs_trans_ijoin(tp, ip, 0); 674 675 /* Scrape out the old CoW reservations */ 676 error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb, 677 cancel_real); 678 if (error) 679 goto out_cancel; 680 681 error = xfs_trans_commit(tp); 682 683 xfs_iunlock(ip, XFS_ILOCK_EXCL); 684 return error; 685 686 out_cancel: 687 xfs_trans_cancel(tp); 688 xfs_iunlock(ip, XFS_ILOCK_EXCL); 689 out: 690 trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_); 691 return error; 692 } 693 694 /* 695 * Remap part of the CoW fork into the data fork. 696 * 697 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb 698 * into the data fork; this function will remap what it can (at the end of the 699 * range) and update @end_fsb appropriately. Each remap gets its own 700 * transaction because we can end up merging and splitting bmbt blocks for 701 * every remap operation and we'd like to keep the block reservation 702 * requirements as low as possible. 703 */ 704 STATIC int 705 xfs_reflink_end_cow_extent( 706 struct xfs_inode *ip, 707 xfs_fileoff_t *offset_fsb, 708 xfs_fileoff_t end_fsb) 709 { 710 struct xfs_iext_cursor icur; 711 struct xfs_bmbt_irec got, del, data; 712 struct xfs_mount *mp = ip->i_mount; 713 struct xfs_trans *tp; 714 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); 715 unsigned int resblks; 716 int nmaps; 717 int error; 718 719 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK); 720 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 721 XFS_TRANS_RESERVE, &tp); 722 if (error) 723 return error; 724 725 /* 726 * Lock the inode. We have to ijoin without automatic unlock because 727 * the lead transaction is the refcountbt record deletion; the data 728 * fork update follows as a deferred log item. 729 */ 730 xfs_ilock(ip, XFS_ILOCK_EXCL); 731 xfs_trans_ijoin(tp, ip, 0); 732 733 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, 734 XFS_IEXT_REFLINK_END_COW_CNT); 735 if (error == -EFBIG) 736 error = xfs_iext_count_upgrade(tp, ip, 737 XFS_IEXT_REFLINK_END_COW_CNT); 738 if (error) 739 goto out_cancel; 740 741 /* 742 * In case of racing, overlapping AIO writes no COW extents might be 743 * left by the time I/O completes for the loser of the race. In that 744 * case we are done. 745 */ 746 if (!xfs_iext_lookup_extent(ip, ifp, *offset_fsb, &icur, &got) || 747 got.br_startoff >= end_fsb) { 748 *offset_fsb = end_fsb; 749 goto out_cancel; 750 } 751 752 /* 753 * Only remap real extents that contain data. With AIO, speculative 754 * preallocations can leak into the range we are called upon, and we 755 * need to skip them. Preserve @got for the eventual CoW fork 756 * deletion; from now on @del represents the mapping that we're 757 * actually remapping. 758 */ 759 while (!xfs_bmap_is_written_extent(&got)) { 760 if (!xfs_iext_next_extent(ifp, &icur, &got) || 761 got.br_startoff >= end_fsb) { 762 *offset_fsb = end_fsb; 763 goto out_cancel; 764 } 765 } 766 del = got; 767 xfs_trim_extent(&del, *offset_fsb, end_fsb - *offset_fsb); 768 769 /* Grab the corresponding mapping in the data fork. */ 770 nmaps = 1; 771 error = xfs_bmapi_read(ip, del.br_startoff, del.br_blockcount, &data, 772 &nmaps, 0); 773 if (error) 774 goto out_cancel; 775 776 /* We can only remap the smaller of the two extent sizes. */ 777 data.br_blockcount = min(data.br_blockcount, del.br_blockcount); 778 del.br_blockcount = data.br_blockcount; 779 780 trace_xfs_reflink_cow_remap_from(ip, &del); 781 trace_xfs_reflink_cow_remap_to(ip, &data); 782 783 if (xfs_bmap_is_real_extent(&data)) { 784 /* 785 * If the extent we're remapping is backed by storage (written 786 * or not), unmap the extent and drop its refcount. 787 */ 788 xfs_bmap_unmap_extent(tp, ip, &data); 789 xfs_refcount_decrease_extent(tp, &data); 790 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, 791 -data.br_blockcount); 792 } else if (data.br_startblock == DELAYSTARTBLOCK) { 793 int done; 794 795 /* 796 * If the extent we're remapping is a delalloc reservation, 797 * we can use the regular bunmapi function to release the 798 * incore state. Dropping the delalloc reservation takes care 799 * of the quota reservation for us. 800 */ 801 error = xfs_bunmapi(NULL, ip, data.br_startoff, 802 data.br_blockcount, 0, 1, &done); 803 if (error) 804 goto out_cancel; 805 ASSERT(done); 806 } 807 808 /* Free the CoW orphan record. */ 809 xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount); 810 811 /* Map the new blocks into the data fork. */ 812 xfs_bmap_map_extent(tp, ip, &del); 813 814 /* Charge this new data fork mapping to the on-disk quota. */ 815 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT, 816 (long)del.br_blockcount); 817 818 /* Remove the mapping from the CoW fork. */ 819 xfs_bmap_del_extent_cow(ip, &icur, &got, &del); 820 821 error = xfs_trans_commit(tp); 822 xfs_iunlock(ip, XFS_ILOCK_EXCL); 823 if (error) 824 return error; 825 826 /* Update the caller about how much progress we made. */ 827 *offset_fsb = del.br_startoff + del.br_blockcount; 828 return 0; 829 830 out_cancel: 831 xfs_trans_cancel(tp); 832 xfs_iunlock(ip, XFS_ILOCK_EXCL); 833 return error; 834 } 835 836 /* 837 * Remap parts of a file's data fork after a successful CoW. 838 */ 839 int 840 xfs_reflink_end_cow( 841 struct xfs_inode *ip, 842 xfs_off_t offset, 843 xfs_off_t count) 844 { 845 xfs_fileoff_t offset_fsb; 846 xfs_fileoff_t end_fsb; 847 int error = 0; 848 849 trace_xfs_reflink_end_cow(ip, offset, count); 850 851 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 852 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count); 853 854 /* 855 * Walk forwards until we've remapped the I/O range. The loop function 856 * repeatedly cycles the ILOCK to allocate one transaction per remapped 857 * extent. 858 * 859 * If we're being called by writeback then the pages will still 860 * have PageWriteback set, which prevents races with reflink remapping 861 * and truncate. Reflink remapping prevents races with writeback by 862 * taking the iolock and mmaplock before flushing the pages and 863 * remapping, which means there won't be any further writeback or page 864 * cache dirtying until the reflink completes. 865 * 866 * We should never have two threads issuing writeback for the same file 867 * region. There are also have post-eof checks in the writeback 868 * preparation code so that we don't bother writing out pages that are 869 * about to be truncated. 870 * 871 * If we're being called as part of directio write completion, the dio 872 * count is still elevated, which reflink and truncate will wait for. 873 * Reflink remapping takes the iolock and mmaplock and waits for 874 * pending dio to finish, which should prevent any directio until the 875 * remap completes. Multiple concurrent directio writes to the same 876 * region are handled by end_cow processing only occurring for the 877 * threads which succeed; the outcome of multiple overlapping direct 878 * writes is not well defined anyway. 879 * 880 * It's possible that a buffered write and a direct write could collide 881 * here (the buffered write stumbles in after the dio flushes and 882 * invalidates the page cache and immediately queues writeback), but we 883 * have never supported this 100%. If either disk write succeeds the 884 * blocks will be remapped. 885 */ 886 while (end_fsb > offset_fsb && !error) 887 error = xfs_reflink_end_cow_extent(ip, &offset_fsb, end_fsb); 888 889 if (error) 890 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_); 891 return error; 892 } 893 894 /* 895 * Free all CoW staging blocks that are still referenced by the ondisk refcount 896 * metadata. The ondisk metadata does not track which inode created the 897 * staging extent, so callers must ensure that there are no cached inodes with 898 * live CoW staging extents. 899 */ 900 int 901 xfs_reflink_recover_cow( 902 struct xfs_mount *mp) 903 { 904 struct xfs_perag *pag; 905 xfs_agnumber_t agno; 906 int error = 0; 907 908 if (!xfs_has_reflink(mp)) 909 return 0; 910 911 for_each_perag(mp, agno, pag) { 912 error = xfs_refcount_recover_cow_leftovers(mp, pag); 913 if (error) { 914 xfs_perag_rele(pag); 915 break; 916 } 917 } 918 919 return error; 920 } 921 922 /* 923 * Reflinking (Block) Ranges of Two Files Together 924 * 925 * First, ensure that the reflink flag is set on both inodes. The flag is an 926 * optimization to avoid unnecessary refcount btree lookups in the write path. 927 * 928 * Now we can iteratively remap the range of extents (and holes) in src to the 929 * corresponding ranges in dest. Let drange and srange denote the ranges of 930 * logical blocks in dest and src touched by the reflink operation. 931 * 932 * While the length of drange is greater than zero, 933 * - Read src's bmbt at the start of srange ("imap") 934 * - If imap doesn't exist, make imap appear to start at the end of srange 935 * with zero length. 936 * - If imap starts before srange, advance imap to start at srange. 937 * - If imap goes beyond srange, truncate imap to end at the end of srange. 938 * - Punch (imap start - srange start + imap len) blocks from dest at 939 * offset (drange start). 940 * - If imap points to a real range of pblks, 941 * > Increase the refcount of the imap's pblks 942 * > Map imap's pblks into dest at the offset 943 * (drange start + imap start - srange start) 944 * - Advance drange and srange by (imap start - srange start + imap len) 945 * 946 * Finally, if the reflink made dest longer, update both the in-core and 947 * on-disk file sizes. 948 * 949 * ASCII Art Demonstration: 950 * 951 * Let's say we want to reflink this source file: 952 * 953 * ----SSSSSSS-SSSSS----SSSSSS (src file) 954 * <--------------------> 955 * 956 * into this destination file: 957 * 958 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file) 959 * <--------------------> 960 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest. 961 * Observe that the range has different logical offsets in either file. 962 * 963 * Consider that the first extent in the source file doesn't line up with our 964 * reflink range. Unmapping and remapping are separate operations, so we can 965 * unmap more blocks from the destination file than we remap. 966 * 967 * ----SSSSSSS-SSSSS----SSSSSS 968 * <-------> 969 * --DDDDD---------DDDDD--DDD 970 * <-------> 971 * 972 * Now remap the source extent into the destination file: 973 * 974 * ----SSSSSSS-SSSSS----SSSSSS 975 * <-------> 976 * --DDDDD--SSSSSSSDDDDD--DDD 977 * <-------> 978 * 979 * Do likewise with the second hole and extent in our range. Holes in the 980 * unmap range don't affect our operation. 981 * 982 * ----SSSSSSS-SSSSS----SSSSSS 983 * <----> 984 * --DDDDD--SSSSSSS-SSSSS-DDD 985 * <----> 986 * 987 * Finally, unmap and remap part of the third extent. This will increase the 988 * size of the destination file. 989 * 990 * ----SSSSSSS-SSSSS----SSSSSS 991 * <-----> 992 * --DDDDD--SSSSSSS-SSSSS----SSS 993 * <-----> 994 * 995 * Once we update the destination file's i_size, we're done. 996 */ 997 998 /* 999 * Ensure the reflink bit is set in both inodes. 1000 */ 1001 STATIC int 1002 xfs_reflink_set_inode_flag( 1003 struct xfs_inode *src, 1004 struct xfs_inode *dest) 1005 { 1006 struct xfs_mount *mp = src->i_mount; 1007 int error; 1008 struct xfs_trans *tp; 1009 1010 if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest)) 1011 return 0; 1012 1013 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); 1014 if (error) 1015 goto out_error; 1016 1017 /* Lock both files against IO */ 1018 if (src->i_ino == dest->i_ino) 1019 xfs_ilock(src, XFS_ILOCK_EXCL); 1020 else 1021 xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL); 1022 1023 if (!xfs_is_reflink_inode(src)) { 1024 trace_xfs_reflink_set_inode_flag(src); 1025 xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL); 1026 src->i_diflags2 |= XFS_DIFLAG2_REFLINK; 1027 xfs_trans_log_inode(tp, src, XFS_ILOG_CORE); 1028 xfs_ifork_init_cow(src); 1029 } else 1030 xfs_iunlock(src, XFS_ILOCK_EXCL); 1031 1032 if (src->i_ino == dest->i_ino) 1033 goto commit_flags; 1034 1035 if (!xfs_is_reflink_inode(dest)) { 1036 trace_xfs_reflink_set_inode_flag(dest); 1037 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL); 1038 dest->i_diflags2 |= XFS_DIFLAG2_REFLINK; 1039 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE); 1040 xfs_ifork_init_cow(dest); 1041 } else 1042 xfs_iunlock(dest, XFS_ILOCK_EXCL); 1043 1044 commit_flags: 1045 error = xfs_trans_commit(tp); 1046 if (error) 1047 goto out_error; 1048 return error; 1049 1050 out_error: 1051 trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_); 1052 return error; 1053 } 1054 1055 /* 1056 * Update destination inode size & cowextsize hint, if necessary. 1057 */ 1058 int 1059 xfs_reflink_update_dest( 1060 struct xfs_inode *dest, 1061 xfs_off_t newlen, 1062 xfs_extlen_t cowextsize, 1063 unsigned int remap_flags) 1064 { 1065 struct xfs_mount *mp = dest->i_mount; 1066 struct xfs_trans *tp; 1067 int error; 1068 1069 if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0) 1070 return 0; 1071 1072 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); 1073 if (error) 1074 goto out_error; 1075 1076 xfs_ilock(dest, XFS_ILOCK_EXCL); 1077 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL); 1078 1079 if (newlen > i_size_read(VFS_I(dest))) { 1080 trace_xfs_reflink_update_inode_size(dest, newlen); 1081 i_size_write(VFS_I(dest), newlen); 1082 dest->i_disk_size = newlen; 1083 } 1084 1085 if (cowextsize) { 1086 dest->i_cowextsize = cowextsize; 1087 dest->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE; 1088 } 1089 1090 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE); 1091 1092 error = xfs_trans_commit(tp); 1093 if (error) 1094 goto out_error; 1095 return error; 1096 1097 out_error: 1098 trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_); 1099 return error; 1100 } 1101 1102 /* 1103 * Do we have enough reserve in this AG to handle a reflink? The refcount 1104 * btree already reserved all the space it needs, but the rmap btree can grow 1105 * infinitely, so we won't allow more reflinks when the AG is down to the 1106 * btree reserves. 1107 */ 1108 static int 1109 xfs_reflink_ag_has_free_space( 1110 struct xfs_mount *mp, 1111 xfs_agnumber_t agno) 1112 { 1113 struct xfs_perag *pag; 1114 int error = 0; 1115 1116 if (!xfs_has_rmapbt(mp)) 1117 return 0; 1118 1119 pag = xfs_perag_get(mp, agno); 1120 if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) || 1121 xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA)) 1122 error = -ENOSPC; 1123 xfs_perag_put(pag); 1124 return error; 1125 } 1126 1127 /* 1128 * Remap the given extent into the file. The dmap blockcount will be set to 1129 * the number of blocks that were actually remapped. 1130 */ 1131 STATIC int 1132 xfs_reflink_remap_extent( 1133 struct xfs_inode *ip, 1134 struct xfs_bmbt_irec *dmap, 1135 xfs_off_t new_isize) 1136 { 1137 struct xfs_bmbt_irec smap; 1138 struct xfs_mount *mp = ip->i_mount; 1139 struct xfs_trans *tp; 1140 xfs_off_t newlen; 1141 int64_t qdelta = 0; 1142 unsigned int resblks; 1143 bool quota_reserved = true; 1144 bool smap_real; 1145 bool dmap_written = xfs_bmap_is_written_extent(dmap); 1146 int iext_delta = 0; 1147 int nimaps; 1148 int error; 1149 1150 /* 1151 * Start a rolling transaction to switch the mappings. 1152 * 1153 * Adding a written extent to the extent map can cause a bmbt split, 1154 * and removing a mapped extent from the extent can cause a bmbt split. 1155 * The two operations cannot both cause a split since they operate on 1156 * the same index in the bmap btree, so we only need a reservation for 1157 * one bmbt split if either thing is happening. However, we haven't 1158 * locked the inode yet, so we reserve assuming this is the case. 1159 * 1160 * The first allocation call tries to reserve enough space to handle 1161 * mapping dmap into a sparse part of the file plus the bmbt split. We 1162 * haven't locked the inode or read the existing mapping yet, so we do 1163 * not know for sure that we need the space. This should succeed most 1164 * of the time. 1165 * 1166 * If the first attempt fails, try again but reserving only enough 1167 * space to handle a bmbt split. This is the hard minimum requirement, 1168 * and we revisit quota reservations later when we know more about what 1169 * we're remapping. 1170 */ 1171 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK); 1172 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 1173 resblks + dmap->br_blockcount, 0, false, &tp); 1174 if (error == -EDQUOT || error == -ENOSPC) { 1175 quota_reserved = false; 1176 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 1177 resblks, 0, false, &tp); 1178 } 1179 if (error) 1180 goto out; 1181 1182 /* 1183 * Read what's currently mapped in the destination file into smap. 1184 * If smap isn't a hole, we will have to remove it before we can add 1185 * dmap to the destination file. 1186 */ 1187 nimaps = 1; 1188 error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount, 1189 &smap, &nimaps, 0); 1190 if (error) 1191 goto out_cancel; 1192 ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff); 1193 smap_real = xfs_bmap_is_real_extent(&smap); 1194 1195 /* 1196 * We can only remap as many blocks as the smaller of the two extent 1197 * maps, because we can only remap one extent at a time. 1198 */ 1199 dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount); 1200 ASSERT(dmap->br_blockcount == smap.br_blockcount); 1201 1202 trace_xfs_reflink_remap_extent_dest(ip, &smap); 1203 1204 /* 1205 * Two extents mapped to the same physical block must not have 1206 * different states; that's filesystem corruption. Move on to the next 1207 * extent if they're both holes or both the same physical extent. 1208 */ 1209 if (dmap->br_startblock == smap.br_startblock) { 1210 if (dmap->br_state != smap.br_state) 1211 error = -EFSCORRUPTED; 1212 goto out_cancel; 1213 } 1214 1215 /* If both extents are unwritten, leave them alone. */ 1216 if (dmap->br_state == XFS_EXT_UNWRITTEN && 1217 smap.br_state == XFS_EXT_UNWRITTEN) 1218 goto out_cancel; 1219 1220 /* No reflinking if the AG of the dest mapping is low on space. */ 1221 if (dmap_written) { 1222 error = xfs_reflink_ag_has_free_space(mp, 1223 XFS_FSB_TO_AGNO(mp, dmap->br_startblock)); 1224 if (error) 1225 goto out_cancel; 1226 } 1227 1228 /* 1229 * Increase quota reservation if we think the quota block counter for 1230 * this file could increase. 1231 * 1232 * If we are mapping a written extent into the file, we need to have 1233 * enough quota block count reservation to handle the blocks in that 1234 * extent. We log only the delta to the quota block counts, so if the 1235 * extent we're unmapping also has blocks allocated to it, we don't 1236 * need a quota reservation for the extent itself. 1237 * 1238 * Note that if we're replacing a delalloc reservation with a written 1239 * extent, we have to take the full quota reservation because removing 1240 * the delalloc reservation gives the block count back to the quota 1241 * count. This is suboptimal, but the VFS flushed the dest range 1242 * before we started. That should have removed all the delalloc 1243 * reservations, but we code defensively. 1244 * 1245 * xfs_trans_alloc_inode above already tried to grab an even larger 1246 * quota reservation, and kicked off a blockgc scan if it couldn't. 1247 * If we can't get a potentially smaller quota reservation now, we're 1248 * done. 1249 */ 1250 if (!quota_reserved && !smap_real && dmap_written) { 1251 error = xfs_trans_reserve_quota_nblks(tp, ip, 1252 dmap->br_blockcount, 0, false); 1253 if (error) 1254 goto out_cancel; 1255 } 1256 1257 if (smap_real) 1258 ++iext_delta; 1259 1260 if (dmap_written) 1261 ++iext_delta; 1262 1263 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, iext_delta); 1264 if (error == -EFBIG) 1265 error = xfs_iext_count_upgrade(tp, ip, iext_delta); 1266 if (error) 1267 goto out_cancel; 1268 1269 if (smap_real) { 1270 /* 1271 * If the extent we're unmapping is backed by storage (written 1272 * or not), unmap the extent and drop its refcount. 1273 */ 1274 xfs_bmap_unmap_extent(tp, ip, &smap); 1275 xfs_refcount_decrease_extent(tp, &smap); 1276 qdelta -= smap.br_blockcount; 1277 } else if (smap.br_startblock == DELAYSTARTBLOCK) { 1278 int done; 1279 1280 /* 1281 * If the extent we're unmapping is a delalloc reservation, 1282 * we can use the regular bunmapi function to release the 1283 * incore state. Dropping the delalloc reservation takes care 1284 * of the quota reservation for us. 1285 */ 1286 error = xfs_bunmapi(NULL, ip, smap.br_startoff, 1287 smap.br_blockcount, 0, 1, &done); 1288 if (error) 1289 goto out_cancel; 1290 ASSERT(done); 1291 } 1292 1293 /* 1294 * If the extent we're sharing is backed by written storage, increase 1295 * its refcount and map it into the file. 1296 */ 1297 if (dmap_written) { 1298 xfs_refcount_increase_extent(tp, dmap); 1299 xfs_bmap_map_extent(tp, ip, dmap); 1300 qdelta += dmap->br_blockcount; 1301 } 1302 1303 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta); 1304 1305 /* Update dest isize if needed. */ 1306 newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount); 1307 newlen = min_t(xfs_off_t, newlen, new_isize); 1308 if (newlen > i_size_read(VFS_I(ip))) { 1309 trace_xfs_reflink_update_inode_size(ip, newlen); 1310 i_size_write(VFS_I(ip), newlen); 1311 ip->i_disk_size = newlen; 1312 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1313 } 1314 1315 /* Commit everything and unlock. */ 1316 error = xfs_trans_commit(tp); 1317 goto out_unlock; 1318 1319 out_cancel: 1320 xfs_trans_cancel(tp); 1321 out_unlock: 1322 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1323 out: 1324 if (error) 1325 trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_); 1326 return error; 1327 } 1328 1329 /* Remap a range of one file to the other. */ 1330 int 1331 xfs_reflink_remap_blocks( 1332 struct xfs_inode *src, 1333 loff_t pos_in, 1334 struct xfs_inode *dest, 1335 loff_t pos_out, 1336 loff_t remap_len, 1337 loff_t *remapped) 1338 { 1339 struct xfs_bmbt_irec imap; 1340 struct xfs_mount *mp = src->i_mount; 1341 xfs_fileoff_t srcoff = XFS_B_TO_FSBT(mp, pos_in); 1342 xfs_fileoff_t destoff = XFS_B_TO_FSBT(mp, pos_out); 1343 xfs_filblks_t len; 1344 xfs_filblks_t remapped_len = 0; 1345 xfs_off_t new_isize = pos_out + remap_len; 1346 int nimaps; 1347 int error = 0; 1348 1349 len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len), 1350 XFS_MAX_FILEOFF); 1351 1352 trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff); 1353 1354 while (len > 0) { 1355 unsigned int lock_mode; 1356 1357 /* Read extent from the source file */ 1358 nimaps = 1; 1359 lock_mode = xfs_ilock_data_map_shared(src); 1360 error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0); 1361 xfs_iunlock(src, lock_mode); 1362 if (error) 1363 break; 1364 /* 1365 * The caller supposedly flushed all dirty pages in the source 1366 * file range, which means that writeback should have allocated 1367 * or deleted all delalloc reservations in that range. If we 1368 * find one, that's a good sign that something is seriously 1369 * wrong here. 1370 */ 1371 ASSERT(nimaps == 1 && imap.br_startoff == srcoff); 1372 if (imap.br_startblock == DELAYSTARTBLOCK) { 1373 ASSERT(imap.br_startblock != DELAYSTARTBLOCK); 1374 error = -EFSCORRUPTED; 1375 break; 1376 } 1377 1378 trace_xfs_reflink_remap_extent_src(src, &imap); 1379 1380 /* Remap into the destination file at the given offset. */ 1381 imap.br_startoff = destoff; 1382 error = xfs_reflink_remap_extent(dest, &imap, new_isize); 1383 if (error) 1384 break; 1385 1386 if (fatal_signal_pending(current)) { 1387 error = -EINTR; 1388 break; 1389 } 1390 1391 /* Advance drange/srange */ 1392 srcoff += imap.br_blockcount; 1393 destoff += imap.br_blockcount; 1394 len -= imap.br_blockcount; 1395 remapped_len += imap.br_blockcount; 1396 } 1397 1398 if (error) 1399 trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_); 1400 *remapped = min_t(loff_t, remap_len, 1401 XFS_FSB_TO_B(src->i_mount, remapped_len)); 1402 return error; 1403 } 1404 1405 /* 1406 * If we're reflinking to a point past the destination file's EOF, we must 1407 * zero any speculative post-EOF preallocations that sit between the old EOF 1408 * and the destination file offset. 1409 */ 1410 static int 1411 xfs_reflink_zero_posteof( 1412 struct xfs_inode *ip, 1413 loff_t pos) 1414 { 1415 loff_t isize = i_size_read(VFS_I(ip)); 1416 1417 if (pos <= isize) 1418 return 0; 1419 1420 trace_xfs_zero_eof(ip, isize, pos - isize); 1421 return xfs_zero_range(ip, isize, pos - isize, NULL); 1422 } 1423 1424 /* 1425 * Prepare two files for range cloning. Upon a successful return both inodes 1426 * will have the iolock and mmaplock held, the page cache of the out file will 1427 * be truncated, and any leases on the out file will have been broken. This 1428 * function borrows heavily from xfs_file_aio_write_checks. 1429 * 1430 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't 1431 * checked that the bytes beyond EOF physically match. Hence we cannot use the 1432 * EOF block in the source dedupe range because it's not a complete block match, 1433 * hence can introduce a corruption into the file that has it's block replaced. 1434 * 1435 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be 1436 * "block aligned" for the purposes of cloning entire files. However, if the 1437 * source file range includes the EOF block and it lands within the existing EOF 1438 * of the destination file, then we can expose stale data from beyond the source 1439 * file EOF in the destination file. 1440 * 1441 * XFS doesn't support partial block sharing, so in both cases we have check 1442 * these cases ourselves. For dedupe, we can simply round the length to dedupe 1443 * down to the previous whole block and ignore the partial EOF block. While this 1444 * means we can't dedupe the last block of a file, this is an acceptible 1445 * tradeoff for simplicity on implementation. 1446 * 1447 * For cloning, we want to share the partial EOF block if it is also the new EOF 1448 * block of the destination file. If the partial EOF block lies inside the 1449 * existing destination EOF, then we have to abort the clone to avoid exposing 1450 * stale data in the destination file. Hence we reject these clone attempts with 1451 * -EINVAL in this case. 1452 */ 1453 int 1454 xfs_reflink_remap_prep( 1455 struct file *file_in, 1456 loff_t pos_in, 1457 struct file *file_out, 1458 loff_t pos_out, 1459 loff_t *len, 1460 unsigned int remap_flags) 1461 { 1462 struct inode *inode_in = file_inode(file_in); 1463 struct xfs_inode *src = XFS_I(inode_in); 1464 struct inode *inode_out = file_inode(file_out); 1465 struct xfs_inode *dest = XFS_I(inode_out); 1466 int ret; 1467 1468 /* Lock both files against IO */ 1469 ret = xfs_ilock2_io_mmap(src, dest); 1470 if (ret) 1471 return ret; 1472 1473 /* Check file eligibility and prepare for block sharing. */ 1474 ret = -EINVAL; 1475 /* Don't reflink realtime inodes */ 1476 if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest)) 1477 goto out_unlock; 1478 1479 /* Don't share DAX file data with non-DAX file. */ 1480 if (IS_DAX(inode_in) != IS_DAX(inode_out)) 1481 goto out_unlock; 1482 1483 if (!IS_DAX(inode_in)) 1484 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, 1485 pos_out, len, remap_flags); 1486 else 1487 ret = dax_remap_file_range_prep(file_in, pos_in, file_out, 1488 pos_out, len, remap_flags, &xfs_read_iomap_ops); 1489 if (ret || *len == 0) 1490 goto out_unlock; 1491 1492 /* Attach dquots to dest inode before changing block map */ 1493 ret = xfs_qm_dqattach(dest); 1494 if (ret) 1495 goto out_unlock; 1496 1497 /* 1498 * Zero existing post-eof speculative preallocations in the destination 1499 * file. 1500 */ 1501 ret = xfs_reflink_zero_posteof(dest, pos_out); 1502 if (ret) 1503 goto out_unlock; 1504 1505 /* Set flags and remap blocks. */ 1506 ret = xfs_reflink_set_inode_flag(src, dest); 1507 if (ret) 1508 goto out_unlock; 1509 1510 /* 1511 * If pos_out > EOF, we may have dirtied blocks between EOF and 1512 * pos_out. In that case, we need to extend the flush and unmap to cover 1513 * from EOF to the end of the copy length. 1514 */ 1515 if (pos_out > XFS_ISIZE(dest)) { 1516 loff_t flen = *len + (pos_out - XFS_ISIZE(dest)); 1517 ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen); 1518 } else { 1519 ret = xfs_flush_unmap_range(dest, pos_out, *len); 1520 } 1521 if (ret) 1522 goto out_unlock; 1523 1524 xfs_iflags_set(src, XFS_IREMAPPING); 1525 if (inode_in != inode_out) 1526 xfs_ilock_demote(src, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL); 1527 1528 return 0; 1529 out_unlock: 1530 xfs_iunlock2_io_mmap(src, dest); 1531 return ret; 1532 } 1533 1534 /* Does this inode need the reflink flag? */ 1535 int 1536 xfs_reflink_inode_has_shared_extents( 1537 struct xfs_trans *tp, 1538 struct xfs_inode *ip, 1539 bool *has_shared) 1540 { 1541 struct xfs_bmbt_irec got; 1542 struct xfs_mount *mp = ip->i_mount; 1543 struct xfs_ifork *ifp; 1544 struct xfs_iext_cursor icur; 1545 bool found; 1546 int error; 1547 1548 ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); 1549 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK); 1550 if (error) 1551 return error; 1552 1553 *has_shared = false; 1554 found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got); 1555 while (found) { 1556 struct xfs_perag *pag; 1557 xfs_agblock_t agbno; 1558 xfs_extlen_t aglen; 1559 xfs_agblock_t rbno; 1560 xfs_extlen_t rlen; 1561 1562 if (isnullstartblock(got.br_startblock) || 1563 got.br_state != XFS_EXT_NORM) 1564 goto next; 1565 1566 pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, got.br_startblock)); 1567 agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock); 1568 aglen = got.br_blockcount; 1569 error = xfs_reflink_find_shared(pag, tp, agbno, aglen, 1570 &rbno, &rlen, false); 1571 xfs_perag_put(pag); 1572 if (error) 1573 return error; 1574 1575 /* Is there still a shared block here? */ 1576 if (rbno != NULLAGBLOCK) { 1577 *has_shared = true; 1578 return 0; 1579 } 1580 next: 1581 found = xfs_iext_next_extent(ifp, &icur, &got); 1582 } 1583 1584 return 0; 1585 } 1586 1587 /* 1588 * Clear the inode reflink flag if there are no shared extents. 1589 * 1590 * The caller is responsible for joining the inode to the transaction passed in. 1591 * The inode will be joined to the transaction that is returned to the caller. 1592 */ 1593 int 1594 xfs_reflink_clear_inode_flag( 1595 struct xfs_inode *ip, 1596 struct xfs_trans **tpp) 1597 { 1598 bool needs_flag; 1599 int error = 0; 1600 1601 ASSERT(xfs_is_reflink_inode(ip)); 1602 1603 error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag); 1604 if (error || needs_flag) 1605 return error; 1606 1607 /* 1608 * We didn't find any shared blocks so turn off the reflink flag. 1609 * First, get rid of any leftover CoW mappings. 1610 */ 1611 error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF, 1612 true); 1613 if (error) 1614 return error; 1615 1616 /* Clear the inode flag. */ 1617 trace_xfs_reflink_unset_inode_flag(ip); 1618 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; 1619 xfs_inode_clear_cowblocks_tag(ip); 1620 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE); 1621 1622 return error; 1623 } 1624 1625 /* 1626 * Clear the inode reflink flag if there are no shared extents and the size 1627 * hasn't changed. 1628 */ 1629 STATIC int 1630 xfs_reflink_try_clear_inode_flag( 1631 struct xfs_inode *ip) 1632 { 1633 struct xfs_mount *mp = ip->i_mount; 1634 struct xfs_trans *tp; 1635 int error = 0; 1636 1637 /* Start a rolling transaction to remove the mappings */ 1638 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp); 1639 if (error) 1640 return error; 1641 1642 xfs_ilock(ip, XFS_ILOCK_EXCL); 1643 xfs_trans_ijoin(tp, ip, 0); 1644 1645 error = xfs_reflink_clear_inode_flag(ip, &tp); 1646 if (error) 1647 goto cancel; 1648 1649 error = xfs_trans_commit(tp); 1650 if (error) 1651 goto out; 1652 1653 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1654 return 0; 1655 cancel: 1656 xfs_trans_cancel(tp); 1657 out: 1658 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1659 return error; 1660 } 1661 1662 /* 1663 * Pre-COW all shared blocks within a given byte range of a file and turn off 1664 * the reflink flag if we unshare all of the file's blocks. 1665 */ 1666 int 1667 xfs_reflink_unshare( 1668 struct xfs_inode *ip, 1669 xfs_off_t offset, 1670 xfs_off_t len) 1671 { 1672 struct inode *inode = VFS_I(ip); 1673 int error; 1674 1675 if (!xfs_is_reflink_inode(ip)) 1676 return 0; 1677 1678 trace_xfs_reflink_unshare(ip, offset, len); 1679 1680 inode_dio_wait(inode); 1681 1682 if (IS_DAX(inode)) 1683 error = dax_file_unshare(inode, offset, len, 1684 &xfs_dax_write_iomap_ops); 1685 else 1686 error = iomap_file_unshare(inode, offset, len, 1687 &xfs_buffered_write_iomap_ops); 1688 if (error) 1689 goto out; 1690 1691 error = filemap_write_and_wait_range(inode->i_mapping, offset, 1692 offset + len - 1); 1693 if (error) 1694 goto out; 1695 1696 /* Turn off the reflink flag if possible. */ 1697 error = xfs_reflink_try_clear_inode_flag(ip); 1698 if (error) 1699 goto out; 1700 return 0; 1701 1702 out: 1703 trace_xfs_reflink_unshare_error(ip, error, _RET_IP_); 1704 return error; 1705 } 1706