xref: /openbmc/linux/fs/xfs/xfs_reflink.c (revision 65844828)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_btree.h"
21 #include "xfs_refcount_btree.h"
22 #include "xfs_refcount.h"
23 #include "xfs_bmap_btree.h"
24 #include "xfs_trans_space.h"
25 #include "xfs_bit.h"
26 #include "xfs_alloc.h"
27 #include "xfs_quota.h"
28 #include "xfs_reflink.h"
29 #include "xfs_iomap.h"
30 #include "xfs_ag.h"
31 #include "xfs_ag_resv.h"
32 
33 /*
34  * Copy on Write of Shared Blocks
35  *
36  * XFS must preserve "the usual" file semantics even when two files share
37  * the same physical blocks.  This means that a write to one file must not
38  * alter the blocks in a different file; the way that we'll do that is
39  * through the use of a copy-on-write mechanism.  At a high level, that
40  * means that when we want to write to a shared block, we allocate a new
41  * block, write the data to the new block, and if that succeeds we map the
42  * new block into the file.
43  *
44  * XFS provides a "delayed allocation" mechanism that defers the allocation
45  * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
46  * possible.  This reduces fragmentation by enabling the filesystem to ask
47  * for bigger chunks less often, which is exactly what we want for CoW.
48  *
49  * The delalloc mechanism begins when the kernel wants to make a block
50  * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
51  * create a delalloc mapping, which is a regular in-core extent, but without
52  * a real startblock.  (For delalloc mappings, the startblock encodes both
53  * a flag that this is a delalloc mapping, and a worst-case estimate of how
54  * many blocks might be required to put the mapping into the BMBT.)  delalloc
55  * mappings are a reservation against the free space in the filesystem;
56  * adjacent mappings can also be combined into fewer larger mappings.
57  *
58  * As an optimization, the CoW extent size hint (cowextsz) creates
59  * outsized aligned delalloc reservations in the hope of landing out of
60  * order nearby CoW writes in a single extent on disk, thereby reducing
61  * fragmentation and improving future performance.
62  *
63  * D: --RRRRRRSSSRRRRRRRR--- (data fork)
64  * C: ------DDDDDDD--------- (CoW fork)
65  *
66  * When dirty pages are being written out (typically in writepage), the
67  * delalloc reservations are converted into unwritten mappings by
68  * allocating blocks and replacing the delalloc mapping with real ones.
69  * A delalloc mapping can be replaced by several unwritten ones if the
70  * free space is fragmented.
71  *
72  * D: --RRRRRRSSSRRRRRRRR---
73  * C: ------UUUUUUU---------
74  *
75  * We want to adapt the delalloc mechanism for copy-on-write, since the
76  * write paths are similar.  The first two steps (creating the reservation
77  * and allocating the blocks) are exactly the same as delalloc except that
78  * the mappings must be stored in a separate CoW fork because we do not want
79  * to disturb the mapping in the data fork until we're sure that the write
80  * succeeded.  IO completion in this case is the process of removing the old
81  * mapping from the data fork and moving the new mapping from the CoW fork to
82  * the data fork.  This will be discussed shortly.
83  *
84  * For now, unaligned directio writes will be bounced back to the page cache.
85  * Block-aligned directio writes will use the same mechanism as buffered
86  * writes.
87  *
88  * Just prior to submitting the actual disk write requests, we convert
89  * the extents representing the range of the file actually being written
90  * (as opposed to extra pieces created for the cowextsize hint) to real
91  * extents.  This will become important in the next step:
92  *
93  * D: --RRRRRRSSSRRRRRRRR---
94  * C: ------UUrrUUU---------
95  *
96  * CoW remapping must be done after the data block write completes,
97  * because we don't want to destroy the old data fork map until we're sure
98  * the new block has been written.  Since the new mappings are kept in a
99  * separate fork, we can simply iterate these mappings to find the ones
100  * that cover the file blocks that we just CoW'd.  For each extent, simply
101  * unmap the corresponding range in the data fork, map the new range into
102  * the data fork, and remove the extent from the CoW fork.  Because of
103  * the presence of the cowextsize hint, however, we must be careful
104  * only to remap the blocks that we've actually written out --  we must
105  * never remap delalloc reservations nor CoW staging blocks that have
106  * yet to be written.  This corresponds exactly to the real extents in
107  * the CoW fork:
108  *
109  * D: --RRRRRRrrSRRRRRRRR---
110  * C: ------UU--UUU---------
111  *
112  * Since the remapping operation can be applied to an arbitrary file
113  * range, we record the need for the remap step as a flag in the ioend
114  * instead of declaring a new IO type.  This is required for direct io
115  * because we only have ioend for the whole dio, and we have to be able to
116  * remember the presence of unwritten blocks and CoW blocks with a single
117  * ioend structure.  Better yet, the more ground we can cover with one
118  * ioend, the better.
119  */
120 
121 /*
122  * Given an AG extent, find the lowest-numbered run of shared blocks
123  * within that range and return the range in fbno/flen.  If
124  * find_end_of_shared is true, return the longest contiguous extent of
125  * shared blocks.  If there are no shared extents, fbno and flen will
126  * be set to NULLAGBLOCK and 0, respectively.
127  */
128 static int
129 xfs_reflink_find_shared(
130 	struct xfs_perag	*pag,
131 	struct xfs_trans	*tp,
132 	xfs_agblock_t		agbno,
133 	xfs_extlen_t		aglen,
134 	xfs_agblock_t		*fbno,
135 	xfs_extlen_t		*flen,
136 	bool			find_end_of_shared)
137 {
138 	struct xfs_buf		*agbp;
139 	struct xfs_btree_cur	*cur;
140 	int			error;
141 
142 	error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
143 	if (error)
144 		return error;
145 
146 	cur = xfs_refcountbt_init_cursor(pag->pag_mount, tp, agbp, pag);
147 
148 	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
149 			find_end_of_shared);
150 
151 	xfs_btree_del_cursor(cur, error);
152 
153 	xfs_trans_brelse(tp, agbp);
154 	return error;
155 }
156 
157 /*
158  * Trim the mapping to the next block where there's a change in the
159  * shared/unshared status.  More specifically, this means that we
160  * find the lowest-numbered extent of shared blocks that coincides with
161  * the given block mapping.  If the shared extent overlaps the start of
162  * the mapping, trim the mapping to the end of the shared extent.  If
163  * the shared region intersects the mapping, trim the mapping to the
164  * start of the shared extent.  If there are no shared regions that
165  * overlap, just return the original extent.
166  */
167 int
168 xfs_reflink_trim_around_shared(
169 	struct xfs_inode	*ip,
170 	struct xfs_bmbt_irec	*irec,
171 	bool			*shared)
172 {
173 	struct xfs_mount	*mp = ip->i_mount;
174 	struct xfs_perag	*pag;
175 	xfs_agblock_t		agbno;
176 	xfs_extlen_t		aglen;
177 	xfs_agblock_t		fbno;
178 	xfs_extlen_t		flen;
179 	int			error = 0;
180 
181 	/* Holes, unwritten, and delalloc extents cannot be shared */
182 	if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) {
183 		*shared = false;
184 		return 0;
185 	}
186 
187 	trace_xfs_reflink_trim_around_shared(ip, irec);
188 
189 	pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, irec->br_startblock));
190 	agbno = XFS_FSB_TO_AGBNO(mp, irec->br_startblock);
191 	aglen = irec->br_blockcount;
192 
193 	error = xfs_reflink_find_shared(pag, NULL, agbno, aglen, &fbno, &flen,
194 			true);
195 	xfs_perag_put(pag);
196 	if (error)
197 		return error;
198 
199 	*shared = false;
200 	if (fbno == NULLAGBLOCK) {
201 		/* No shared blocks at all. */
202 		return 0;
203 	}
204 
205 	if (fbno == agbno) {
206 		/*
207 		 * The start of this extent is shared.  Truncate the
208 		 * mapping at the end of the shared region so that a
209 		 * subsequent iteration starts at the start of the
210 		 * unshared region.
211 		 */
212 		irec->br_blockcount = flen;
213 		*shared = true;
214 		return 0;
215 	}
216 
217 	/*
218 	 * There's a shared extent midway through this extent.
219 	 * Truncate the mapping at the start of the shared
220 	 * extent so that a subsequent iteration starts at the
221 	 * start of the shared region.
222 	 */
223 	irec->br_blockcount = fbno - agbno;
224 	return 0;
225 }
226 
227 int
228 xfs_bmap_trim_cow(
229 	struct xfs_inode	*ip,
230 	struct xfs_bmbt_irec	*imap,
231 	bool			*shared)
232 {
233 	/* We can't update any real extents in always COW mode. */
234 	if (xfs_is_always_cow_inode(ip) &&
235 	    !isnullstartblock(imap->br_startblock)) {
236 		*shared = true;
237 		return 0;
238 	}
239 
240 	/* Trim the mapping to the nearest shared extent boundary. */
241 	return xfs_reflink_trim_around_shared(ip, imap, shared);
242 }
243 
244 static int
245 xfs_reflink_convert_cow_locked(
246 	struct xfs_inode	*ip,
247 	xfs_fileoff_t		offset_fsb,
248 	xfs_filblks_t		count_fsb)
249 {
250 	struct xfs_iext_cursor	icur;
251 	struct xfs_bmbt_irec	got;
252 	struct xfs_btree_cur	*dummy_cur = NULL;
253 	int			dummy_logflags;
254 	int			error = 0;
255 
256 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
257 		return 0;
258 
259 	do {
260 		if (got.br_startoff >= offset_fsb + count_fsb)
261 			break;
262 		if (got.br_state == XFS_EXT_NORM)
263 			continue;
264 		if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
265 			return -EIO;
266 
267 		xfs_trim_extent(&got, offset_fsb, count_fsb);
268 		if (!got.br_blockcount)
269 			continue;
270 
271 		got.br_state = XFS_EXT_NORM;
272 		error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
273 				XFS_COW_FORK, &icur, &dummy_cur, &got,
274 				&dummy_logflags);
275 		if (error)
276 			return error;
277 	} while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
278 
279 	return error;
280 }
281 
282 /* Convert all of the unwritten CoW extents in a file's range to real ones. */
283 int
284 xfs_reflink_convert_cow(
285 	struct xfs_inode	*ip,
286 	xfs_off_t		offset,
287 	xfs_off_t		count)
288 {
289 	struct xfs_mount	*mp = ip->i_mount;
290 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
291 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
292 	xfs_filblks_t		count_fsb = end_fsb - offset_fsb;
293 	int			error;
294 
295 	ASSERT(count != 0);
296 
297 	xfs_ilock(ip, XFS_ILOCK_EXCL);
298 	error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
299 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
300 	return error;
301 }
302 
303 /*
304  * Find the extent that maps the given range in the COW fork. Even if the extent
305  * is not shared we might have a preallocation for it in the COW fork. If so we
306  * use it that rather than trigger a new allocation.
307  */
308 static int
309 xfs_find_trim_cow_extent(
310 	struct xfs_inode	*ip,
311 	struct xfs_bmbt_irec	*imap,
312 	struct xfs_bmbt_irec	*cmap,
313 	bool			*shared,
314 	bool			*found)
315 {
316 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
317 	xfs_filblks_t		count_fsb = imap->br_blockcount;
318 	struct xfs_iext_cursor	icur;
319 
320 	*found = false;
321 
322 	/*
323 	 * If we don't find an overlapping extent, trim the range we need to
324 	 * allocate to fit the hole we found.
325 	 */
326 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap))
327 		cmap->br_startoff = offset_fsb + count_fsb;
328 	if (cmap->br_startoff > offset_fsb) {
329 		xfs_trim_extent(imap, imap->br_startoff,
330 				cmap->br_startoff - imap->br_startoff);
331 		return xfs_bmap_trim_cow(ip, imap, shared);
332 	}
333 
334 	*shared = true;
335 	if (isnullstartblock(cmap->br_startblock)) {
336 		xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount);
337 		return 0;
338 	}
339 
340 	/* real extent found - no need to allocate */
341 	xfs_trim_extent(cmap, offset_fsb, count_fsb);
342 	*found = true;
343 	return 0;
344 }
345 
346 static int
347 xfs_reflink_convert_unwritten(
348 	struct xfs_inode	*ip,
349 	struct xfs_bmbt_irec	*imap,
350 	struct xfs_bmbt_irec	*cmap,
351 	bool			convert_now)
352 {
353 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
354 	xfs_filblks_t		count_fsb = imap->br_blockcount;
355 	int			error;
356 
357 	/*
358 	 * cmap might larger than imap due to cowextsize hint.
359 	 */
360 	xfs_trim_extent(cmap, offset_fsb, count_fsb);
361 
362 	/*
363 	 * COW fork extents are supposed to remain unwritten until we're ready
364 	 * to initiate a disk write.  For direct I/O we are going to write the
365 	 * data and need the conversion, but for buffered writes we're done.
366 	 */
367 	if (!convert_now || cmap->br_state == XFS_EXT_NORM)
368 		return 0;
369 
370 	trace_xfs_reflink_convert_cow(ip, cmap);
371 
372 	error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
373 	if (!error)
374 		cmap->br_state = XFS_EXT_NORM;
375 
376 	return error;
377 }
378 
379 static int
380 xfs_reflink_fill_cow_hole(
381 	struct xfs_inode	*ip,
382 	struct xfs_bmbt_irec	*imap,
383 	struct xfs_bmbt_irec	*cmap,
384 	bool			*shared,
385 	uint			*lockmode,
386 	bool			convert_now)
387 {
388 	struct xfs_mount	*mp = ip->i_mount;
389 	struct xfs_trans	*tp;
390 	xfs_filblks_t		resaligned;
391 	xfs_extlen_t		resblks;
392 	int			nimaps;
393 	int			error;
394 	bool			found;
395 
396 	resaligned = xfs_aligned_fsb_count(imap->br_startoff,
397 		imap->br_blockcount, xfs_get_cowextsz_hint(ip));
398 	resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
399 
400 	xfs_iunlock(ip, *lockmode);
401 	*lockmode = 0;
402 
403 	error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0,
404 			false, &tp);
405 	if (error)
406 		return error;
407 
408 	*lockmode = XFS_ILOCK_EXCL;
409 
410 	error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
411 	if (error || !*shared)
412 		goto out_trans_cancel;
413 
414 	if (found) {
415 		xfs_trans_cancel(tp);
416 		goto convert;
417 	}
418 
419 	ASSERT(cmap->br_startoff > imap->br_startoff);
420 
421 	/* Allocate the entire reservation as unwritten blocks. */
422 	nimaps = 1;
423 	error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
424 			XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap,
425 			&nimaps);
426 	if (error)
427 		goto out_trans_cancel;
428 
429 	xfs_inode_set_cowblocks_tag(ip);
430 	error = xfs_trans_commit(tp);
431 	if (error)
432 		return error;
433 
434 	/*
435 	 * Allocation succeeded but the requested range was not even partially
436 	 * satisfied?  Bail out!
437 	 */
438 	if (nimaps == 0)
439 		return -ENOSPC;
440 
441 convert:
442 	return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now);
443 
444 out_trans_cancel:
445 	xfs_trans_cancel(tp);
446 	return error;
447 }
448 
449 static int
450 xfs_reflink_fill_delalloc(
451 	struct xfs_inode	*ip,
452 	struct xfs_bmbt_irec	*imap,
453 	struct xfs_bmbt_irec	*cmap,
454 	bool			*shared,
455 	uint			*lockmode,
456 	bool			convert_now)
457 {
458 	struct xfs_mount	*mp = ip->i_mount;
459 	struct xfs_trans	*tp;
460 	int			nimaps;
461 	int			error;
462 	bool			found;
463 
464 	do {
465 		xfs_iunlock(ip, *lockmode);
466 		*lockmode = 0;
467 
468 		error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 0, 0,
469 				false, &tp);
470 		if (error)
471 			return error;
472 
473 		*lockmode = XFS_ILOCK_EXCL;
474 
475 		error = xfs_find_trim_cow_extent(ip, imap, cmap, shared,
476 				&found);
477 		if (error || !*shared)
478 			goto out_trans_cancel;
479 
480 		if (found) {
481 			xfs_trans_cancel(tp);
482 			break;
483 		}
484 
485 		ASSERT(isnullstartblock(cmap->br_startblock) ||
486 		       cmap->br_startblock == DELAYSTARTBLOCK);
487 
488 		/*
489 		 * Replace delalloc reservation with an unwritten extent.
490 		 */
491 		nimaps = 1;
492 		error = xfs_bmapi_write(tp, ip, cmap->br_startoff,
493 				cmap->br_blockcount,
494 				XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0,
495 				cmap, &nimaps);
496 		if (error)
497 			goto out_trans_cancel;
498 
499 		xfs_inode_set_cowblocks_tag(ip);
500 		error = xfs_trans_commit(tp);
501 		if (error)
502 			return error;
503 
504 		/*
505 		 * Allocation succeeded but the requested range was not even
506 		 * partially satisfied?  Bail out!
507 		 */
508 		if (nimaps == 0)
509 			return -ENOSPC;
510 	} while (cmap->br_startoff + cmap->br_blockcount <= imap->br_startoff);
511 
512 	return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now);
513 
514 out_trans_cancel:
515 	xfs_trans_cancel(tp);
516 	return error;
517 }
518 
519 /* Allocate all CoW reservations covering a range of blocks in a file. */
520 int
521 xfs_reflink_allocate_cow(
522 	struct xfs_inode	*ip,
523 	struct xfs_bmbt_irec	*imap,
524 	struct xfs_bmbt_irec	*cmap,
525 	bool			*shared,
526 	uint			*lockmode,
527 	bool			convert_now)
528 {
529 	int			error;
530 	bool			found;
531 
532 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
533 	if (!ip->i_cowfp) {
534 		ASSERT(!xfs_is_reflink_inode(ip));
535 		xfs_ifork_init_cow(ip);
536 	}
537 
538 	error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
539 	if (error || !*shared)
540 		return error;
541 
542 	/* CoW fork has a real extent */
543 	if (found)
544 		return xfs_reflink_convert_unwritten(ip, imap, cmap,
545 				convert_now);
546 
547 	/*
548 	 * CoW fork does not have an extent and data extent is shared.
549 	 * Allocate a real extent in the CoW fork.
550 	 */
551 	if (cmap->br_startoff > imap->br_startoff)
552 		return xfs_reflink_fill_cow_hole(ip, imap, cmap, shared,
553 				lockmode, convert_now);
554 
555 	/*
556 	 * CoW fork has a delalloc reservation. Replace it with a real extent.
557 	 * There may or may not be a data fork mapping.
558 	 */
559 	if (isnullstartblock(cmap->br_startblock) ||
560 	    cmap->br_startblock == DELAYSTARTBLOCK)
561 		return xfs_reflink_fill_delalloc(ip, imap, cmap, shared,
562 				lockmode, convert_now);
563 
564 	/* Shouldn't get here. */
565 	ASSERT(0);
566 	return -EFSCORRUPTED;
567 }
568 
569 /*
570  * Cancel CoW reservations for some block range of an inode.
571  *
572  * If cancel_real is true this function cancels all COW fork extents for the
573  * inode; if cancel_real is false, real extents are not cleared.
574  *
575  * Caller must have already joined the inode to the current transaction. The
576  * inode will be joined to the transaction returned to the caller.
577  */
578 int
579 xfs_reflink_cancel_cow_blocks(
580 	struct xfs_inode		*ip,
581 	struct xfs_trans		**tpp,
582 	xfs_fileoff_t			offset_fsb,
583 	xfs_fileoff_t			end_fsb,
584 	bool				cancel_real)
585 {
586 	struct xfs_ifork		*ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
587 	struct xfs_bmbt_irec		got, del;
588 	struct xfs_iext_cursor		icur;
589 	int				error = 0;
590 
591 	if (!xfs_inode_has_cow_data(ip))
592 		return 0;
593 	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
594 		return 0;
595 
596 	/* Walk backwards until we're out of the I/O range... */
597 	while (got.br_startoff + got.br_blockcount > offset_fsb) {
598 		del = got;
599 		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
600 
601 		/* Extent delete may have bumped ext forward */
602 		if (!del.br_blockcount) {
603 			xfs_iext_prev(ifp, &icur);
604 			goto next_extent;
605 		}
606 
607 		trace_xfs_reflink_cancel_cow(ip, &del);
608 
609 		if (isnullstartblock(del.br_startblock)) {
610 			error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
611 					&icur, &got, &del);
612 			if (error)
613 				break;
614 		} else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
615 			ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
616 
617 			/* Free the CoW orphan record. */
618 			xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
619 					del.br_blockcount);
620 
621 			xfs_free_extent_later(*tpp, del.br_startblock,
622 					  del.br_blockcount, NULL);
623 
624 			/* Roll the transaction */
625 			error = xfs_defer_finish(tpp);
626 			if (error)
627 				break;
628 
629 			/* Remove the mapping from the CoW fork. */
630 			xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
631 
632 			/* Remove the quota reservation */
633 			error = xfs_quota_unreserve_blkres(ip,
634 					del.br_blockcount);
635 			if (error)
636 				break;
637 		} else {
638 			/* Didn't do anything, push cursor back. */
639 			xfs_iext_prev(ifp, &icur);
640 		}
641 next_extent:
642 		if (!xfs_iext_get_extent(ifp, &icur, &got))
643 			break;
644 	}
645 
646 	/* clear tag if cow fork is emptied */
647 	if (!ifp->if_bytes)
648 		xfs_inode_clear_cowblocks_tag(ip);
649 	return error;
650 }
651 
652 /*
653  * Cancel CoW reservations for some byte range of an inode.
654  *
655  * If cancel_real is true this function cancels all COW fork extents for the
656  * inode; if cancel_real is false, real extents are not cleared.
657  */
658 int
659 xfs_reflink_cancel_cow_range(
660 	struct xfs_inode	*ip,
661 	xfs_off_t		offset,
662 	xfs_off_t		count,
663 	bool			cancel_real)
664 {
665 	struct xfs_trans	*tp;
666 	xfs_fileoff_t		offset_fsb;
667 	xfs_fileoff_t		end_fsb;
668 	int			error;
669 
670 	trace_xfs_reflink_cancel_cow_range(ip, offset, count);
671 	ASSERT(ip->i_cowfp);
672 
673 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
674 	if (count == NULLFILEOFF)
675 		end_fsb = NULLFILEOFF;
676 	else
677 		end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
678 
679 	/* Start a rolling transaction to remove the mappings */
680 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
681 			0, 0, 0, &tp);
682 	if (error)
683 		goto out;
684 
685 	xfs_ilock(ip, XFS_ILOCK_EXCL);
686 	xfs_trans_ijoin(tp, ip, 0);
687 
688 	/* Scrape out the old CoW reservations */
689 	error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
690 			cancel_real);
691 	if (error)
692 		goto out_cancel;
693 
694 	error = xfs_trans_commit(tp);
695 
696 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
697 	return error;
698 
699 out_cancel:
700 	xfs_trans_cancel(tp);
701 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
702 out:
703 	trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
704 	return error;
705 }
706 
707 /*
708  * Remap part of the CoW fork into the data fork.
709  *
710  * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
711  * into the data fork; this function will remap what it can (at the end of the
712  * range) and update @end_fsb appropriately.  Each remap gets its own
713  * transaction because we can end up merging and splitting bmbt blocks for
714  * every remap operation and we'd like to keep the block reservation
715  * requirements as low as possible.
716  */
717 STATIC int
718 xfs_reflink_end_cow_extent(
719 	struct xfs_inode	*ip,
720 	xfs_fileoff_t		*offset_fsb,
721 	xfs_fileoff_t		end_fsb)
722 {
723 	struct xfs_iext_cursor	icur;
724 	struct xfs_bmbt_irec	got, del, data;
725 	struct xfs_mount	*mp = ip->i_mount;
726 	struct xfs_trans	*tp;
727 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
728 	unsigned int		resblks;
729 	int			nmaps;
730 	int			error;
731 
732 	/* No COW extents?  That's easy! */
733 	if (ifp->if_bytes == 0) {
734 		*offset_fsb = end_fsb;
735 		return 0;
736 	}
737 
738 	resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
739 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
740 			XFS_TRANS_RESERVE, &tp);
741 	if (error)
742 		return error;
743 
744 	/*
745 	 * Lock the inode.  We have to ijoin without automatic unlock because
746 	 * the lead transaction is the refcountbt record deletion; the data
747 	 * fork update follows as a deferred log item.
748 	 */
749 	xfs_ilock(ip, XFS_ILOCK_EXCL);
750 	xfs_trans_ijoin(tp, ip, 0);
751 
752 	error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
753 			XFS_IEXT_REFLINK_END_COW_CNT);
754 	if (error == -EFBIG)
755 		error = xfs_iext_count_upgrade(tp, ip,
756 				XFS_IEXT_REFLINK_END_COW_CNT);
757 	if (error)
758 		goto out_cancel;
759 
760 	/*
761 	 * In case of racing, overlapping AIO writes no COW extents might be
762 	 * left by the time I/O completes for the loser of the race.  In that
763 	 * case we are done.
764 	 */
765 	if (!xfs_iext_lookup_extent(ip, ifp, *offset_fsb, &icur, &got) ||
766 	    got.br_startoff >= end_fsb) {
767 		*offset_fsb = end_fsb;
768 		goto out_cancel;
769 	}
770 
771 	/*
772 	 * Only remap real extents that contain data.  With AIO, speculative
773 	 * preallocations can leak into the range we are called upon, and we
774 	 * need to skip them.  Preserve @got for the eventual CoW fork
775 	 * deletion; from now on @del represents the mapping that we're
776 	 * actually remapping.
777 	 */
778 	while (!xfs_bmap_is_written_extent(&got)) {
779 		if (!xfs_iext_next_extent(ifp, &icur, &got) ||
780 		    got.br_startoff >= end_fsb) {
781 			*offset_fsb = end_fsb;
782 			goto out_cancel;
783 		}
784 	}
785 	del = got;
786 
787 	/* Grab the corresponding mapping in the data fork. */
788 	nmaps = 1;
789 	error = xfs_bmapi_read(ip, del.br_startoff, del.br_blockcount, &data,
790 			&nmaps, 0);
791 	if (error)
792 		goto out_cancel;
793 
794 	/* We can only remap the smaller of the two extent sizes. */
795 	data.br_blockcount = min(data.br_blockcount, del.br_blockcount);
796 	del.br_blockcount = data.br_blockcount;
797 
798 	trace_xfs_reflink_cow_remap_from(ip, &del);
799 	trace_xfs_reflink_cow_remap_to(ip, &data);
800 
801 	if (xfs_bmap_is_real_extent(&data)) {
802 		/*
803 		 * If the extent we're remapping is backed by storage (written
804 		 * or not), unmap the extent and drop its refcount.
805 		 */
806 		xfs_bmap_unmap_extent(tp, ip, &data);
807 		xfs_refcount_decrease_extent(tp, &data);
808 		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
809 				-data.br_blockcount);
810 	} else if (data.br_startblock == DELAYSTARTBLOCK) {
811 		int		done;
812 
813 		/*
814 		 * If the extent we're remapping is a delalloc reservation,
815 		 * we can use the regular bunmapi function to release the
816 		 * incore state.  Dropping the delalloc reservation takes care
817 		 * of the quota reservation for us.
818 		 */
819 		error = xfs_bunmapi(NULL, ip, data.br_startoff,
820 				data.br_blockcount, 0, 1, &done);
821 		if (error)
822 			goto out_cancel;
823 		ASSERT(done);
824 	}
825 
826 	/* Free the CoW orphan record. */
827 	xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
828 
829 	/* Map the new blocks into the data fork. */
830 	xfs_bmap_map_extent(tp, ip, &del);
831 
832 	/* Charge this new data fork mapping to the on-disk quota. */
833 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
834 			(long)del.br_blockcount);
835 
836 	/* Remove the mapping from the CoW fork. */
837 	xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
838 
839 	error = xfs_trans_commit(tp);
840 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
841 	if (error)
842 		return error;
843 
844 	/* Update the caller about how much progress we made. */
845 	*offset_fsb = del.br_startoff + del.br_blockcount;
846 	return 0;
847 
848 out_cancel:
849 	xfs_trans_cancel(tp);
850 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
851 	return error;
852 }
853 
854 /*
855  * Remap parts of a file's data fork after a successful CoW.
856  */
857 int
858 xfs_reflink_end_cow(
859 	struct xfs_inode		*ip,
860 	xfs_off_t			offset,
861 	xfs_off_t			count)
862 {
863 	xfs_fileoff_t			offset_fsb;
864 	xfs_fileoff_t			end_fsb;
865 	int				error = 0;
866 
867 	trace_xfs_reflink_end_cow(ip, offset, count);
868 
869 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
870 	end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
871 
872 	/*
873 	 * Walk forwards until we've remapped the I/O range.  The loop function
874 	 * repeatedly cycles the ILOCK to allocate one transaction per remapped
875 	 * extent.
876 	 *
877 	 * If we're being called by writeback then the pages will still
878 	 * have PageWriteback set, which prevents races with reflink remapping
879 	 * and truncate.  Reflink remapping prevents races with writeback by
880 	 * taking the iolock and mmaplock before flushing the pages and
881 	 * remapping, which means there won't be any further writeback or page
882 	 * cache dirtying until the reflink completes.
883 	 *
884 	 * We should never have two threads issuing writeback for the same file
885 	 * region.  There are also have post-eof checks in the writeback
886 	 * preparation code so that we don't bother writing out pages that are
887 	 * about to be truncated.
888 	 *
889 	 * If we're being called as part of directio write completion, the dio
890 	 * count is still elevated, which reflink and truncate will wait for.
891 	 * Reflink remapping takes the iolock and mmaplock and waits for
892 	 * pending dio to finish, which should prevent any directio until the
893 	 * remap completes.  Multiple concurrent directio writes to the same
894 	 * region are handled by end_cow processing only occurring for the
895 	 * threads which succeed; the outcome of multiple overlapping direct
896 	 * writes is not well defined anyway.
897 	 *
898 	 * It's possible that a buffered write and a direct write could collide
899 	 * here (the buffered write stumbles in after the dio flushes and
900 	 * invalidates the page cache and immediately queues writeback), but we
901 	 * have never supported this 100%.  If either disk write succeeds the
902 	 * blocks will be remapped.
903 	 */
904 	while (end_fsb > offset_fsb && !error)
905 		error = xfs_reflink_end_cow_extent(ip, &offset_fsb, end_fsb);
906 
907 	if (error)
908 		trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
909 	return error;
910 }
911 
912 /*
913  * Free all CoW staging blocks that are still referenced by the ondisk refcount
914  * metadata.  The ondisk metadata does not track which inode created the
915  * staging extent, so callers must ensure that there are no cached inodes with
916  * live CoW staging extents.
917  */
918 int
919 xfs_reflink_recover_cow(
920 	struct xfs_mount	*mp)
921 {
922 	struct xfs_perag	*pag;
923 	xfs_agnumber_t		agno;
924 	int			error = 0;
925 
926 	if (!xfs_has_reflink(mp))
927 		return 0;
928 
929 	for_each_perag(mp, agno, pag) {
930 		error = xfs_refcount_recover_cow_leftovers(mp, pag);
931 		if (error) {
932 			xfs_perag_put(pag);
933 			break;
934 		}
935 	}
936 
937 	return error;
938 }
939 
940 /*
941  * Reflinking (Block) Ranges of Two Files Together
942  *
943  * First, ensure that the reflink flag is set on both inodes.  The flag is an
944  * optimization to avoid unnecessary refcount btree lookups in the write path.
945  *
946  * Now we can iteratively remap the range of extents (and holes) in src to the
947  * corresponding ranges in dest.  Let drange and srange denote the ranges of
948  * logical blocks in dest and src touched by the reflink operation.
949  *
950  * While the length of drange is greater than zero,
951  *    - Read src's bmbt at the start of srange ("imap")
952  *    - If imap doesn't exist, make imap appear to start at the end of srange
953  *      with zero length.
954  *    - If imap starts before srange, advance imap to start at srange.
955  *    - If imap goes beyond srange, truncate imap to end at the end of srange.
956  *    - Punch (imap start - srange start + imap len) blocks from dest at
957  *      offset (drange start).
958  *    - If imap points to a real range of pblks,
959  *         > Increase the refcount of the imap's pblks
960  *         > Map imap's pblks into dest at the offset
961  *           (drange start + imap start - srange start)
962  *    - Advance drange and srange by (imap start - srange start + imap len)
963  *
964  * Finally, if the reflink made dest longer, update both the in-core and
965  * on-disk file sizes.
966  *
967  * ASCII Art Demonstration:
968  *
969  * Let's say we want to reflink this source file:
970  *
971  * ----SSSSSSS-SSSSS----SSSSSS (src file)
972  *   <-------------------->
973  *
974  * into this destination file:
975  *
976  * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
977  *        <-------------------->
978  * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
979  * Observe that the range has different logical offsets in either file.
980  *
981  * Consider that the first extent in the source file doesn't line up with our
982  * reflink range.  Unmapping  and remapping are separate operations, so we can
983  * unmap more blocks from the destination file than we remap.
984  *
985  * ----SSSSSSS-SSSSS----SSSSSS
986  *   <------->
987  * --DDDDD---------DDDDD--DDD
988  *        <------->
989  *
990  * Now remap the source extent into the destination file:
991  *
992  * ----SSSSSSS-SSSSS----SSSSSS
993  *   <------->
994  * --DDDDD--SSSSSSSDDDDD--DDD
995  *        <------->
996  *
997  * Do likewise with the second hole and extent in our range.  Holes in the
998  * unmap range don't affect our operation.
999  *
1000  * ----SSSSSSS-SSSSS----SSSSSS
1001  *            <---->
1002  * --DDDDD--SSSSSSS-SSSSS-DDD
1003  *                 <---->
1004  *
1005  * Finally, unmap and remap part of the third extent.  This will increase the
1006  * size of the destination file.
1007  *
1008  * ----SSSSSSS-SSSSS----SSSSSS
1009  *                  <----->
1010  * --DDDDD--SSSSSSS-SSSSS----SSS
1011  *                       <----->
1012  *
1013  * Once we update the destination file's i_size, we're done.
1014  */
1015 
1016 /*
1017  * Ensure the reflink bit is set in both inodes.
1018  */
1019 STATIC int
1020 xfs_reflink_set_inode_flag(
1021 	struct xfs_inode	*src,
1022 	struct xfs_inode	*dest)
1023 {
1024 	struct xfs_mount	*mp = src->i_mount;
1025 	int			error;
1026 	struct xfs_trans	*tp;
1027 
1028 	if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
1029 		return 0;
1030 
1031 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1032 	if (error)
1033 		goto out_error;
1034 
1035 	/* Lock both files against IO */
1036 	if (src->i_ino == dest->i_ino)
1037 		xfs_ilock(src, XFS_ILOCK_EXCL);
1038 	else
1039 		xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
1040 
1041 	if (!xfs_is_reflink_inode(src)) {
1042 		trace_xfs_reflink_set_inode_flag(src);
1043 		xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
1044 		src->i_diflags2 |= XFS_DIFLAG2_REFLINK;
1045 		xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
1046 		xfs_ifork_init_cow(src);
1047 	} else
1048 		xfs_iunlock(src, XFS_ILOCK_EXCL);
1049 
1050 	if (src->i_ino == dest->i_ino)
1051 		goto commit_flags;
1052 
1053 	if (!xfs_is_reflink_inode(dest)) {
1054 		trace_xfs_reflink_set_inode_flag(dest);
1055 		xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
1056 		dest->i_diflags2 |= XFS_DIFLAG2_REFLINK;
1057 		xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
1058 		xfs_ifork_init_cow(dest);
1059 	} else
1060 		xfs_iunlock(dest, XFS_ILOCK_EXCL);
1061 
1062 commit_flags:
1063 	error = xfs_trans_commit(tp);
1064 	if (error)
1065 		goto out_error;
1066 	return error;
1067 
1068 out_error:
1069 	trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
1070 	return error;
1071 }
1072 
1073 /*
1074  * Update destination inode size & cowextsize hint, if necessary.
1075  */
1076 int
1077 xfs_reflink_update_dest(
1078 	struct xfs_inode	*dest,
1079 	xfs_off_t		newlen,
1080 	xfs_extlen_t		cowextsize,
1081 	unsigned int		remap_flags)
1082 {
1083 	struct xfs_mount	*mp = dest->i_mount;
1084 	struct xfs_trans	*tp;
1085 	int			error;
1086 
1087 	if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
1088 		return 0;
1089 
1090 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1091 	if (error)
1092 		goto out_error;
1093 
1094 	xfs_ilock(dest, XFS_ILOCK_EXCL);
1095 	xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
1096 
1097 	if (newlen > i_size_read(VFS_I(dest))) {
1098 		trace_xfs_reflink_update_inode_size(dest, newlen);
1099 		i_size_write(VFS_I(dest), newlen);
1100 		dest->i_disk_size = newlen;
1101 	}
1102 
1103 	if (cowextsize) {
1104 		dest->i_cowextsize = cowextsize;
1105 		dest->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
1106 	}
1107 
1108 	xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
1109 
1110 	error = xfs_trans_commit(tp);
1111 	if (error)
1112 		goto out_error;
1113 	return error;
1114 
1115 out_error:
1116 	trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
1117 	return error;
1118 }
1119 
1120 /*
1121  * Do we have enough reserve in this AG to handle a reflink?  The refcount
1122  * btree already reserved all the space it needs, but the rmap btree can grow
1123  * infinitely, so we won't allow more reflinks when the AG is down to the
1124  * btree reserves.
1125  */
1126 static int
1127 xfs_reflink_ag_has_free_space(
1128 	struct xfs_mount	*mp,
1129 	xfs_agnumber_t		agno)
1130 {
1131 	struct xfs_perag	*pag;
1132 	int			error = 0;
1133 
1134 	if (!xfs_has_rmapbt(mp))
1135 		return 0;
1136 
1137 	pag = xfs_perag_get(mp, agno);
1138 	if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
1139 	    xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
1140 		error = -ENOSPC;
1141 	xfs_perag_put(pag);
1142 	return error;
1143 }
1144 
1145 /*
1146  * Remap the given extent into the file.  The dmap blockcount will be set to
1147  * the number of blocks that were actually remapped.
1148  */
1149 STATIC int
1150 xfs_reflink_remap_extent(
1151 	struct xfs_inode	*ip,
1152 	struct xfs_bmbt_irec	*dmap,
1153 	xfs_off_t		new_isize)
1154 {
1155 	struct xfs_bmbt_irec	smap;
1156 	struct xfs_mount	*mp = ip->i_mount;
1157 	struct xfs_trans	*tp;
1158 	xfs_off_t		newlen;
1159 	int64_t			qdelta = 0;
1160 	unsigned int		resblks;
1161 	bool			quota_reserved = true;
1162 	bool			smap_real;
1163 	bool			dmap_written = xfs_bmap_is_written_extent(dmap);
1164 	int			iext_delta = 0;
1165 	int			nimaps;
1166 	int			error;
1167 
1168 	/*
1169 	 * Start a rolling transaction to switch the mappings.
1170 	 *
1171 	 * Adding a written extent to the extent map can cause a bmbt split,
1172 	 * and removing a mapped extent from the extent can cause a bmbt split.
1173 	 * The two operations cannot both cause a split since they operate on
1174 	 * the same index in the bmap btree, so we only need a reservation for
1175 	 * one bmbt split if either thing is happening.  However, we haven't
1176 	 * locked the inode yet, so we reserve assuming this is the case.
1177 	 *
1178 	 * The first allocation call tries to reserve enough space to handle
1179 	 * mapping dmap into a sparse part of the file plus the bmbt split.  We
1180 	 * haven't locked the inode or read the existing mapping yet, so we do
1181 	 * not know for sure that we need the space.  This should succeed most
1182 	 * of the time.
1183 	 *
1184 	 * If the first attempt fails, try again but reserving only enough
1185 	 * space to handle a bmbt split.  This is the hard minimum requirement,
1186 	 * and we revisit quota reservations later when we know more about what
1187 	 * we're remapping.
1188 	 */
1189 	resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
1190 	error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1191 			resblks + dmap->br_blockcount, 0, false, &tp);
1192 	if (error == -EDQUOT || error == -ENOSPC) {
1193 		quota_reserved = false;
1194 		error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1195 				resblks, 0, false, &tp);
1196 	}
1197 	if (error)
1198 		goto out;
1199 
1200 	/*
1201 	 * Read what's currently mapped in the destination file into smap.
1202 	 * If smap isn't a hole, we will have to remove it before we can add
1203 	 * dmap to the destination file.
1204 	 */
1205 	nimaps = 1;
1206 	error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount,
1207 			&smap, &nimaps, 0);
1208 	if (error)
1209 		goto out_cancel;
1210 	ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff);
1211 	smap_real = xfs_bmap_is_real_extent(&smap);
1212 
1213 	/*
1214 	 * We can only remap as many blocks as the smaller of the two extent
1215 	 * maps, because we can only remap one extent at a time.
1216 	 */
1217 	dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount);
1218 	ASSERT(dmap->br_blockcount == smap.br_blockcount);
1219 
1220 	trace_xfs_reflink_remap_extent_dest(ip, &smap);
1221 
1222 	/*
1223 	 * Two extents mapped to the same physical block must not have
1224 	 * different states; that's filesystem corruption.  Move on to the next
1225 	 * extent if they're both holes or both the same physical extent.
1226 	 */
1227 	if (dmap->br_startblock == smap.br_startblock) {
1228 		if (dmap->br_state != smap.br_state)
1229 			error = -EFSCORRUPTED;
1230 		goto out_cancel;
1231 	}
1232 
1233 	/* If both extents are unwritten, leave them alone. */
1234 	if (dmap->br_state == XFS_EXT_UNWRITTEN &&
1235 	    smap.br_state == XFS_EXT_UNWRITTEN)
1236 		goto out_cancel;
1237 
1238 	/* No reflinking if the AG of the dest mapping is low on space. */
1239 	if (dmap_written) {
1240 		error = xfs_reflink_ag_has_free_space(mp,
1241 				XFS_FSB_TO_AGNO(mp, dmap->br_startblock));
1242 		if (error)
1243 			goto out_cancel;
1244 	}
1245 
1246 	/*
1247 	 * Increase quota reservation if we think the quota block counter for
1248 	 * this file could increase.
1249 	 *
1250 	 * If we are mapping a written extent into the file, we need to have
1251 	 * enough quota block count reservation to handle the blocks in that
1252 	 * extent.  We log only the delta to the quota block counts, so if the
1253 	 * extent we're unmapping also has blocks allocated to it, we don't
1254 	 * need a quota reservation for the extent itself.
1255 	 *
1256 	 * Note that if we're replacing a delalloc reservation with a written
1257 	 * extent, we have to take the full quota reservation because removing
1258 	 * the delalloc reservation gives the block count back to the quota
1259 	 * count.  This is suboptimal, but the VFS flushed the dest range
1260 	 * before we started.  That should have removed all the delalloc
1261 	 * reservations, but we code defensively.
1262 	 *
1263 	 * xfs_trans_alloc_inode above already tried to grab an even larger
1264 	 * quota reservation, and kicked off a blockgc scan if it couldn't.
1265 	 * If we can't get a potentially smaller quota reservation now, we're
1266 	 * done.
1267 	 */
1268 	if (!quota_reserved && !smap_real && dmap_written) {
1269 		error = xfs_trans_reserve_quota_nblks(tp, ip,
1270 				dmap->br_blockcount, 0, false);
1271 		if (error)
1272 			goto out_cancel;
1273 	}
1274 
1275 	if (smap_real)
1276 		++iext_delta;
1277 
1278 	if (dmap_written)
1279 		++iext_delta;
1280 
1281 	error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, iext_delta);
1282 	if (error == -EFBIG)
1283 		error = xfs_iext_count_upgrade(tp, ip, iext_delta);
1284 	if (error)
1285 		goto out_cancel;
1286 
1287 	if (smap_real) {
1288 		/*
1289 		 * If the extent we're unmapping is backed by storage (written
1290 		 * or not), unmap the extent and drop its refcount.
1291 		 */
1292 		xfs_bmap_unmap_extent(tp, ip, &smap);
1293 		xfs_refcount_decrease_extent(tp, &smap);
1294 		qdelta -= smap.br_blockcount;
1295 	} else if (smap.br_startblock == DELAYSTARTBLOCK) {
1296 		int		done;
1297 
1298 		/*
1299 		 * If the extent we're unmapping is a delalloc reservation,
1300 		 * we can use the regular bunmapi function to release the
1301 		 * incore state.  Dropping the delalloc reservation takes care
1302 		 * of the quota reservation for us.
1303 		 */
1304 		error = xfs_bunmapi(NULL, ip, smap.br_startoff,
1305 				smap.br_blockcount, 0, 1, &done);
1306 		if (error)
1307 			goto out_cancel;
1308 		ASSERT(done);
1309 	}
1310 
1311 	/*
1312 	 * If the extent we're sharing is backed by written storage, increase
1313 	 * its refcount and map it into the file.
1314 	 */
1315 	if (dmap_written) {
1316 		xfs_refcount_increase_extent(tp, dmap);
1317 		xfs_bmap_map_extent(tp, ip, dmap);
1318 		qdelta += dmap->br_blockcount;
1319 	}
1320 
1321 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta);
1322 
1323 	/* Update dest isize if needed. */
1324 	newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount);
1325 	newlen = min_t(xfs_off_t, newlen, new_isize);
1326 	if (newlen > i_size_read(VFS_I(ip))) {
1327 		trace_xfs_reflink_update_inode_size(ip, newlen);
1328 		i_size_write(VFS_I(ip), newlen);
1329 		ip->i_disk_size = newlen;
1330 		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1331 	}
1332 
1333 	/* Commit everything and unlock. */
1334 	error = xfs_trans_commit(tp);
1335 	goto out_unlock;
1336 
1337 out_cancel:
1338 	xfs_trans_cancel(tp);
1339 out_unlock:
1340 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1341 out:
1342 	if (error)
1343 		trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1344 	return error;
1345 }
1346 
1347 /* Remap a range of one file to the other. */
1348 int
1349 xfs_reflink_remap_blocks(
1350 	struct xfs_inode	*src,
1351 	loff_t			pos_in,
1352 	struct xfs_inode	*dest,
1353 	loff_t			pos_out,
1354 	loff_t			remap_len,
1355 	loff_t			*remapped)
1356 {
1357 	struct xfs_bmbt_irec	imap;
1358 	struct xfs_mount	*mp = src->i_mount;
1359 	xfs_fileoff_t		srcoff = XFS_B_TO_FSBT(mp, pos_in);
1360 	xfs_fileoff_t		destoff = XFS_B_TO_FSBT(mp, pos_out);
1361 	xfs_filblks_t		len;
1362 	xfs_filblks_t		remapped_len = 0;
1363 	xfs_off_t		new_isize = pos_out + remap_len;
1364 	int			nimaps;
1365 	int			error = 0;
1366 
1367 	len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len),
1368 			XFS_MAX_FILEOFF);
1369 
1370 	trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff);
1371 
1372 	while (len > 0) {
1373 		unsigned int	lock_mode;
1374 
1375 		/* Read extent from the source file */
1376 		nimaps = 1;
1377 		lock_mode = xfs_ilock_data_map_shared(src);
1378 		error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1379 		xfs_iunlock(src, lock_mode);
1380 		if (error)
1381 			break;
1382 		/*
1383 		 * The caller supposedly flushed all dirty pages in the source
1384 		 * file range, which means that writeback should have allocated
1385 		 * or deleted all delalloc reservations in that range.  If we
1386 		 * find one, that's a good sign that something is seriously
1387 		 * wrong here.
1388 		 */
1389 		ASSERT(nimaps == 1 && imap.br_startoff == srcoff);
1390 		if (imap.br_startblock == DELAYSTARTBLOCK) {
1391 			ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1392 			error = -EFSCORRUPTED;
1393 			break;
1394 		}
1395 
1396 		trace_xfs_reflink_remap_extent_src(src, &imap);
1397 
1398 		/* Remap into the destination file at the given offset. */
1399 		imap.br_startoff = destoff;
1400 		error = xfs_reflink_remap_extent(dest, &imap, new_isize);
1401 		if (error)
1402 			break;
1403 
1404 		if (fatal_signal_pending(current)) {
1405 			error = -EINTR;
1406 			break;
1407 		}
1408 
1409 		/* Advance drange/srange */
1410 		srcoff += imap.br_blockcount;
1411 		destoff += imap.br_blockcount;
1412 		len -= imap.br_blockcount;
1413 		remapped_len += imap.br_blockcount;
1414 	}
1415 
1416 	if (error)
1417 		trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1418 	*remapped = min_t(loff_t, remap_len,
1419 			  XFS_FSB_TO_B(src->i_mount, remapped_len));
1420 	return error;
1421 }
1422 
1423 /*
1424  * If we're reflinking to a point past the destination file's EOF, we must
1425  * zero any speculative post-EOF preallocations that sit between the old EOF
1426  * and the destination file offset.
1427  */
1428 static int
1429 xfs_reflink_zero_posteof(
1430 	struct xfs_inode	*ip,
1431 	loff_t			pos)
1432 {
1433 	loff_t			isize = i_size_read(VFS_I(ip));
1434 
1435 	if (pos <= isize)
1436 		return 0;
1437 
1438 	trace_xfs_zero_eof(ip, isize, pos - isize);
1439 	return xfs_zero_range(ip, isize, pos - isize, NULL);
1440 }
1441 
1442 /*
1443  * Prepare two files for range cloning.  Upon a successful return both inodes
1444  * will have the iolock and mmaplock held, the page cache of the out file will
1445  * be truncated, and any leases on the out file will have been broken.  This
1446  * function borrows heavily from xfs_file_aio_write_checks.
1447  *
1448  * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1449  * checked that the bytes beyond EOF physically match. Hence we cannot use the
1450  * EOF block in the source dedupe range because it's not a complete block match,
1451  * hence can introduce a corruption into the file that has it's block replaced.
1452  *
1453  * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1454  * "block aligned" for the purposes of cloning entire files.  However, if the
1455  * source file range includes the EOF block and it lands within the existing EOF
1456  * of the destination file, then we can expose stale data from beyond the source
1457  * file EOF in the destination file.
1458  *
1459  * XFS doesn't support partial block sharing, so in both cases we have check
1460  * these cases ourselves. For dedupe, we can simply round the length to dedupe
1461  * down to the previous whole block and ignore the partial EOF block. While this
1462  * means we can't dedupe the last block of a file, this is an acceptible
1463  * tradeoff for simplicity on implementation.
1464  *
1465  * For cloning, we want to share the partial EOF block if it is also the new EOF
1466  * block of the destination file. If the partial EOF block lies inside the
1467  * existing destination EOF, then we have to abort the clone to avoid exposing
1468  * stale data in the destination file. Hence we reject these clone attempts with
1469  * -EINVAL in this case.
1470  */
1471 int
1472 xfs_reflink_remap_prep(
1473 	struct file		*file_in,
1474 	loff_t			pos_in,
1475 	struct file		*file_out,
1476 	loff_t			pos_out,
1477 	loff_t			*len,
1478 	unsigned int		remap_flags)
1479 {
1480 	struct inode		*inode_in = file_inode(file_in);
1481 	struct xfs_inode	*src = XFS_I(inode_in);
1482 	struct inode		*inode_out = file_inode(file_out);
1483 	struct xfs_inode	*dest = XFS_I(inode_out);
1484 	int			ret;
1485 
1486 	/* Lock both files against IO */
1487 	ret = xfs_ilock2_io_mmap(src, dest);
1488 	if (ret)
1489 		return ret;
1490 
1491 	/* Check file eligibility and prepare for block sharing. */
1492 	ret = -EINVAL;
1493 	/* Don't reflink realtime inodes */
1494 	if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1495 		goto out_unlock;
1496 
1497 	/* Don't share DAX file data with non-DAX file. */
1498 	if (IS_DAX(inode_in) != IS_DAX(inode_out))
1499 		goto out_unlock;
1500 
1501 	if (!IS_DAX(inode_in))
1502 		ret = generic_remap_file_range_prep(file_in, pos_in, file_out,
1503 				pos_out, len, remap_flags);
1504 	else
1505 		ret = dax_remap_file_range_prep(file_in, pos_in, file_out,
1506 				pos_out, len, remap_flags, &xfs_read_iomap_ops);
1507 	if (ret || *len == 0)
1508 		goto out_unlock;
1509 
1510 	/* Attach dquots to dest inode before changing block map */
1511 	ret = xfs_qm_dqattach(dest);
1512 	if (ret)
1513 		goto out_unlock;
1514 
1515 	/*
1516 	 * Zero existing post-eof speculative preallocations in the destination
1517 	 * file.
1518 	 */
1519 	ret = xfs_reflink_zero_posteof(dest, pos_out);
1520 	if (ret)
1521 		goto out_unlock;
1522 
1523 	/* Set flags and remap blocks. */
1524 	ret = xfs_reflink_set_inode_flag(src, dest);
1525 	if (ret)
1526 		goto out_unlock;
1527 
1528 	/*
1529 	 * If pos_out > EOF, we may have dirtied blocks between EOF and
1530 	 * pos_out. In that case, we need to extend the flush and unmap to cover
1531 	 * from EOF to the end of the copy length.
1532 	 */
1533 	if (pos_out > XFS_ISIZE(dest)) {
1534 		loff_t	flen = *len + (pos_out - XFS_ISIZE(dest));
1535 		ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1536 	} else {
1537 		ret = xfs_flush_unmap_range(dest, pos_out, *len);
1538 	}
1539 	if (ret)
1540 		goto out_unlock;
1541 
1542 	return 0;
1543 out_unlock:
1544 	xfs_iunlock2_io_mmap(src, dest);
1545 	return ret;
1546 }
1547 
1548 /* Does this inode need the reflink flag? */
1549 int
1550 xfs_reflink_inode_has_shared_extents(
1551 	struct xfs_trans		*tp,
1552 	struct xfs_inode		*ip,
1553 	bool				*has_shared)
1554 {
1555 	struct xfs_bmbt_irec		got;
1556 	struct xfs_mount		*mp = ip->i_mount;
1557 	struct xfs_ifork		*ifp;
1558 	struct xfs_iext_cursor		icur;
1559 	bool				found;
1560 	int				error;
1561 
1562 	ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1563 	error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1564 	if (error)
1565 		return error;
1566 
1567 	*has_shared = false;
1568 	found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1569 	while (found) {
1570 		struct xfs_perag	*pag;
1571 		xfs_agblock_t		agbno;
1572 		xfs_extlen_t		aglen;
1573 		xfs_agblock_t		rbno;
1574 		xfs_extlen_t		rlen;
1575 
1576 		if (isnullstartblock(got.br_startblock) ||
1577 		    got.br_state != XFS_EXT_NORM)
1578 			goto next;
1579 
1580 		pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, got.br_startblock));
1581 		agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1582 		aglen = got.br_blockcount;
1583 		error = xfs_reflink_find_shared(pag, tp, agbno, aglen,
1584 				&rbno, &rlen, false);
1585 		xfs_perag_put(pag);
1586 		if (error)
1587 			return error;
1588 
1589 		/* Is there still a shared block here? */
1590 		if (rbno != NULLAGBLOCK) {
1591 			*has_shared = true;
1592 			return 0;
1593 		}
1594 next:
1595 		found = xfs_iext_next_extent(ifp, &icur, &got);
1596 	}
1597 
1598 	return 0;
1599 }
1600 
1601 /*
1602  * Clear the inode reflink flag if there are no shared extents.
1603  *
1604  * The caller is responsible for joining the inode to the transaction passed in.
1605  * The inode will be joined to the transaction that is returned to the caller.
1606  */
1607 int
1608 xfs_reflink_clear_inode_flag(
1609 	struct xfs_inode	*ip,
1610 	struct xfs_trans	**tpp)
1611 {
1612 	bool			needs_flag;
1613 	int			error = 0;
1614 
1615 	ASSERT(xfs_is_reflink_inode(ip));
1616 
1617 	error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1618 	if (error || needs_flag)
1619 		return error;
1620 
1621 	/*
1622 	 * We didn't find any shared blocks so turn off the reflink flag.
1623 	 * First, get rid of any leftover CoW mappings.
1624 	 */
1625 	error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF,
1626 			true);
1627 	if (error)
1628 		return error;
1629 
1630 	/* Clear the inode flag. */
1631 	trace_xfs_reflink_unset_inode_flag(ip);
1632 	ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1633 	xfs_inode_clear_cowblocks_tag(ip);
1634 	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1635 
1636 	return error;
1637 }
1638 
1639 /*
1640  * Clear the inode reflink flag if there are no shared extents and the size
1641  * hasn't changed.
1642  */
1643 STATIC int
1644 xfs_reflink_try_clear_inode_flag(
1645 	struct xfs_inode	*ip)
1646 {
1647 	struct xfs_mount	*mp = ip->i_mount;
1648 	struct xfs_trans	*tp;
1649 	int			error = 0;
1650 
1651 	/* Start a rolling transaction to remove the mappings */
1652 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1653 	if (error)
1654 		return error;
1655 
1656 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1657 	xfs_trans_ijoin(tp, ip, 0);
1658 
1659 	error = xfs_reflink_clear_inode_flag(ip, &tp);
1660 	if (error)
1661 		goto cancel;
1662 
1663 	error = xfs_trans_commit(tp);
1664 	if (error)
1665 		goto out;
1666 
1667 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1668 	return 0;
1669 cancel:
1670 	xfs_trans_cancel(tp);
1671 out:
1672 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1673 	return error;
1674 }
1675 
1676 /*
1677  * Pre-COW all shared blocks within a given byte range of a file and turn off
1678  * the reflink flag if we unshare all of the file's blocks.
1679  */
1680 int
1681 xfs_reflink_unshare(
1682 	struct xfs_inode	*ip,
1683 	xfs_off_t		offset,
1684 	xfs_off_t		len)
1685 {
1686 	struct inode		*inode = VFS_I(ip);
1687 	int			error;
1688 
1689 	if (!xfs_is_reflink_inode(ip))
1690 		return 0;
1691 
1692 	trace_xfs_reflink_unshare(ip, offset, len);
1693 
1694 	inode_dio_wait(inode);
1695 
1696 	if (IS_DAX(inode))
1697 		error = dax_file_unshare(inode, offset, len,
1698 				&xfs_dax_write_iomap_ops);
1699 	else
1700 		error = iomap_file_unshare(inode, offset, len,
1701 				&xfs_buffered_write_iomap_ops);
1702 	if (error)
1703 		goto out;
1704 
1705 	error = filemap_write_and_wait_range(inode->i_mapping, offset,
1706 			offset + len - 1);
1707 	if (error)
1708 		goto out;
1709 
1710 	/* Turn off the reflink flag if possible. */
1711 	error = xfs_reflink_try_clear_inode_flag(ip);
1712 	if (error)
1713 		goto out;
1714 	return 0;
1715 
1716 out:
1717 	trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1718 	return error;
1719 }
1720