xref: /openbmc/linux/fs/xfs/xfs_reflink.c (revision 4a075bd4)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_da_format.h"
15 #include "xfs_da_btree.h"
16 #include "xfs_inode.h"
17 #include "xfs_trans.h"
18 #include "xfs_inode_item.h"
19 #include "xfs_bmap.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_error.h"
22 #include "xfs_dir2.h"
23 #include "xfs_dir2_priv.h"
24 #include "xfs_ioctl.h"
25 #include "xfs_trace.h"
26 #include "xfs_log.h"
27 #include "xfs_icache.h"
28 #include "xfs_pnfs.h"
29 #include "xfs_btree.h"
30 #include "xfs_refcount_btree.h"
31 #include "xfs_refcount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_trans_space.h"
34 #include "xfs_bit.h"
35 #include "xfs_alloc.h"
36 #include "xfs_quota_defs.h"
37 #include "xfs_quota.h"
38 #include "xfs_reflink.h"
39 #include "xfs_iomap.h"
40 #include "xfs_rmap_btree.h"
41 #include "xfs_sb.h"
42 #include "xfs_ag_resv.h"
43 
44 /*
45  * Copy on Write of Shared Blocks
46  *
47  * XFS must preserve "the usual" file semantics even when two files share
48  * the same physical blocks.  This means that a write to one file must not
49  * alter the blocks in a different file; the way that we'll do that is
50  * through the use of a copy-on-write mechanism.  At a high level, that
51  * means that when we want to write to a shared block, we allocate a new
52  * block, write the data to the new block, and if that succeeds we map the
53  * new block into the file.
54  *
55  * XFS provides a "delayed allocation" mechanism that defers the allocation
56  * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
57  * possible.  This reduces fragmentation by enabling the filesystem to ask
58  * for bigger chunks less often, which is exactly what we want for CoW.
59  *
60  * The delalloc mechanism begins when the kernel wants to make a block
61  * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
62  * create a delalloc mapping, which is a regular in-core extent, but without
63  * a real startblock.  (For delalloc mappings, the startblock encodes both
64  * a flag that this is a delalloc mapping, and a worst-case estimate of how
65  * many blocks might be required to put the mapping into the BMBT.)  delalloc
66  * mappings are a reservation against the free space in the filesystem;
67  * adjacent mappings can also be combined into fewer larger mappings.
68  *
69  * As an optimization, the CoW extent size hint (cowextsz) creates
70  * outsized aligned delalloc reservations in the hope of landing out of
71  * order nearby CoW writes in a single extent on disk, thereby reducing
72  * fragmentation and improving future performance.
73  *
74  * D: --RRRRRRSSSRRRRRRRR--- (data fork)
75  * C: ------DDDDDDD--------- (CoW fork)
76  *
77  * When dirty pages are being written out (typically in writepage), the
78  * delalloc reservations are converted into unwritten mappings by
79  * allocating blocks and replacing the delalloc mapping with real ones.
80  * A delalloc mapping can be replaced by several unwritten ones if the
81  * free space is fragmented.
82  *
83  * D: --RRRRRRSSSRRRRRRRR---
84  * C: ------UUUUUUU---------
85  *
86  * We want to adapt the delalloc mechanism for copy-on-write, since the
87  * write paths are similar.  The first two steps (creating the reservation
88  * and allocating the blocks) are exactly the same as delalloc except that
89  * the mappings must be stored in a separate CoW fork because we do not want
90  * to disturb the mapping in the data fork until we're sure that the write
91  * succeeded.  IO completion in this case is the process of removing the old
92  * mapping from the data fork and moving the new mapping from the CoW fork to
93  * the data fork.  This will be discussed shortly.
94  *
95  * For now, unaligned directio writes will be bounced back to the page cache.
96  * Block-aligned directio writes will use the same mechanism as buffered
97  * writes.
98  *
99  * Just prior to submitting the actual disk write requests, we convert
100  * the extents representing the range of the file actually being written
101  * (as opposed to extra pieces created for the cowextsize hint) to real
102  * extents.  This will become important in the next step:
103  *
104  * D: --RRRRRRSSSRRRRRRRR---
105  * C: ------UUrrUUU---------
106  *
107  * CoW remapping must be done after the data block write completes,
108  * because we don't want to destroy the old data fork map until we're sure
109  * the new block has been written.  Since the new mappings are kept in a
110  * separate fork, we can simply iterate these mappings to find the ones
111  * that cover the file blocks that we just CoW'd.  For each extent, simply
112  * unmap the corresponding range in the data fork, map the new range into
113  * the data fork, and remove the extent from the CoW fork.  Because of
114  * the presence of the cowextsize hint, however, we must be careful
115  * only to remap the blocks that we've actually written out --  we must
116  * never remap delalloc reservations nor CoW staging blocks that have
117  * yet to be written.  This corresponds exactly to the real extents in
118  * the CoW fork:
119  *
120  * D: --RRRRRRrrSRRRRRRRR---
121  * C: ------UU--UUU---------
122  *
123  * Since the remapping operation can be applied to an arbitrary file
124  * range, we record the need for the remap step as a flag in the ioend
125  * instead of declaring a new IO type.  This is required for direct io
126  * because we only have ioend for the whole dio, and we have to be able to
127  * remember the presence of unwritten blocks and CoW blocks with a single
128  * ioend structure.  Better yet, the more ground we can cover with one
129  * ioend, the better.
130  */
131 
132 /*
133  * Given an AG extent, find the lowest-numbered run of shared blocks
134  * within that range and return the range in fbno/flen.  If
135  * find_end_of_shared is true, return the longest contiguous extent of
136  * shared blocks.  If there are no shared extents, fbno and flen will
137  * be set to NULLAGBLOCK and 0, respectively.
138  */
139 int
140 xfs_reflink_find_shared(
141 	struct xfs_mount	*mp,
142 	struct xfs_trans	*tp,
143 	xfs_agnumber_t		agno,
144 	xfs_agblock_t		agbno,
145 	xfs_extlen_t		aglen,
146 	xfs_agblock_t		*fbno,
147 	xfs_extlen_t		*flen,
148 	bool			find_end_of_shared)
149 {
150 	struct xfs_buf		*agbp;
151 	struct xfs_btree_cur	*cur;
152 	int			error;
153 
154 	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
155 	if (error)
156 		return error;
157 	if (!agbp)
158 		return -ENOMEM;
159 
160 	cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno);
161 
162 	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
163 			find_end_of_shared);
164 
165 	xfs_btree_del_cursor(cur, error);
166 
167 	xfs_trans_brelse(tp, agbp);
168 	return error;
169 }
170 
171 /*
172  * Trim the mapping to the next block where there's a change in the
173  * shared/unshared status.  More specifically, this means that we
174  * find the lowest-numbered extent of shared blocks that coincides with
175  * the given block mapping.  If the shared extent overlaps the start of
176  * the mapping, trim the mapping to the end of the shared extent.  If
177  * the shared region intersects the mapping, trim the mapping to the
178  * start of the shared extent.  If there are no shared regions that
179  * overlap, just return the original extent.
180  */
181 int
182 xfs_reflink_trim_around_shared(
183 	struct xfs_inode	*ip,
184 	struct xfs_bmbt_irec	*irec,
185 	bool			*shared)
186 {
187 	xfs_agnumber_t		agno;
188 	xfs_agblock_t		agbno;
189 	xfs_extlen_t		aglen;
190 	xfs_agblock_t		fbno;
191 	xfs_extlen_t		flen;
192 	int			error = 0;
193 
194 	/* Holes, unwritten, and delalloc extents cannot be shared */
195 	if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_real_extent(irec)) {
196 		*shared = false;
197 		return 0;
198 	}
199 
200 	trace_xfs_reflink_trim_around_shared(ip, irec);
201 
202 	agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
203 	agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
204 	aglen = irec->br_blockcount;
205 
206 	error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
207 			aglen, &fbno, &flen, true);
208 	if (error)
209 		return error;
210 
211 	*shared = false;
212 	if (fbno == NULLAGBLOCK) {
213 		/* No shared blocks at all. */
214 		return 0;
215 	} else if (fbno == agbno) {
216 		/*
217 		 * The start of this extent is shared.  Truncate the
218 		 * mapping at the end of the shared region so that a
219 		 * subsequent iteration starts at the start of the
220 		 * unshared region.
221 		 */
222 		irec->br_blockcount = flen;
223 		*shared = true;
224 		return 0;
225 	} else {
226 		/*
227 		 * There's a shared extent midway through this extent.
228 		 * Truncate the mapping at the start of the shared
229 		 * extent so that a subsequent iteration starts at the
230 		 * start of the shared region.
231 		 */
232 		irec->br_blockcount = fbno - agbno;
233 		return 0;
234 	}
235 }
236 
237 bool
238 xfs_inode_need_cow(
239 	struct xfs_inode	*ip,
240 	struct xfs_bmbt_irec	*imap,
241 	bool			*shared)
242 {
243 	/* We can't update any real extents in always COW mode. */
244 	if (xfs_is_always_cow_inode(ip) &&
245 	    !isnullstartblock(imap->br_startblock)) {
246 		*shared = true;
247 		return 0;
248 	}
249 
250 	/* Trim the mapping to the nearest shared extent boundary. */
251 	return xfs_reflink_trim_around_shared(ip, imap, shared);
252 }
253 
254 static int
255 xfs_reflink_convert_cow_locked(
256 	struct xfs_inode	*ip,
257 	xfs_fileoff_t		offset_fsb,
258 	xfs_filblks_t		count_fsb)
259 {
260 	struct xfs_iext_cursor	icur;
261 	struct xfs_bmbt_irec	got;
262 	struct xfs_btree_cur	*dummy_cur = NULL;
263 	int			dummy_logflags;
264 	int			error = 0;
265 
266 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
267 		return 0;
268 
269 	do {
270 		if (got.br_startoff >= offset_fsb + count_fsb)
271 			break;
272 		if (got.br_state == XFS_EXT_NORM)
273 			continue;
274 		if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
275 			return -EIO;
276 
277 		xfs_trim_extent(&got, offset_fsb, count_fsb);
278 		if (!got.br_blockcount)
279 			continue;
280 
281 		got.br_state = XFS_EXT_NORM;
282 		error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
283 				XFS_COW_FORK, &icur, &dummy_cur, &got,
284 				&dummy_logflags);
285 		if (error)
286 			return error;
287 	} while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
288 
289 	return error;
290 }
291 
292 /* Convert all of the unwritten CoW extents in a file's range to real ones. */
293 int
294 xfs_reflink_convert_cow(
295 	struct xfs_inode	*ip,
296 	xfs_off_t		offset,
297 	xfs_off_t		count)
298 {
299 	struct xfs_mount	*mp = ip->i_mount;
300 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
301 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
302 	xfs_filblks_t		count_fsb = end_fsb - offset_fsb;
303 	int			error;
304 
305 	ASSERT(count != 0);
306 
307 	xfs_ilock(ip, XFS_ILOCK_EXCL);
308 	error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
309 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
310 	return error;
311 }
312 
313 /*
314  * Find the extent that maps the given range in the COW fork. Even if the extent
315  * is not shared we might have a preallocation for it in the COW fork. If so we
316  * use it that rather than trigger a new allocation.
317  */
318 static int
319 xfs_find_trim_cow_extent(
320 	struct xfs_inode	*ip,
321 	struct xfs_bmbt_irec	*imap,
322 	bool			*shared,
323 	bool			*found)
324 {
325 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
326 	xfs_filblks_t		count_fsb = imap->br_blockcount;
327 	struct xfs_iext_cursor	icur;
328 	struct xfs_bmbt_irec	got;
329 
330 	*found = false;
331 
332 	/*
333 	 * If we don't find an overlapping extent, trim the range we need to
334 	 * allocate to fit the hole we found.
335 	 */
336 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
337 		got.br_startoff = offset_fsb + count_fsb;
338 	if (got.br_startoff > offset_fsb) {
339 		xfs_trim_extent(imap, imap->br_startoff,
340 				got.br_startoff - imap->br_startoff);
341 		return xfs_inode_need_cow(ip, imap, shared);
342 	}
343 
344 	*shared = true;
345 	if (isnullstartblock(got.br_startblock)) {
346 		xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
347 		return 0;
348 	}
349 
350 	/* real extent found - no need to allocate */
351 	xfs_trim_extent(&got, offset_fsb, count_fsb);
352 	*imap = got;
353 	*found = true;
354 	return 0;
355 }
356 
357 /* Allocate all CoW reservations covering a range of blocks in a file. */
358 int
359 xfs_reflink_allocate_cow(
360 	struct xfs_inode	*ip,
361 	struct xfs_bmbt_irec	*imap,
362 	bool			*shared,
363 	uint			*lockmode,
364 	bool			convert_now)
365 {
366 	struct xfs_mount	*mp = ip->i_mount;
367 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
368 	xfs_filblks_t		count_fsb = imap->br_blockcount;
369 	struct xfs_trans	*tp;
370 	int			nimaps, error = 0;
371 	bool			found;
372 	xfs_filblks_t		resaligned;
373 	xfs_extlen_t		resblks = 0;
374 
375 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
376 	if (!ip->i_cowfp) {
377 		ASSERT(!xfs_is_reflink_inode(ip));
378 		xfs_ifork_init_cow(ip);
379 	}
380 
381 	error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
382 	if (error || !*shared)
383 		return error;
384 	if (found)
385 		goto convert;
386 
387 	resaligned = xfs_aligned_fsb_count(imap->br_startoff,
388 		imap->br_blockcount, xfs_get_cowextsz_hint(ip));
389 	resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
390 
391 	xfs_iunlock(ip, *lockmode);
392 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
393 	*lockmode = XFS_ILOCK_EXCL;
394 	xfs_ilock(ip, *lockmode);
395 
396 	if (error)
397 		return error;
398 
399 	error = xfs_qm_dqattach_locked(ip, false);
400 	if (error)
401 		goto out_trans_cancel;
402 
403 	/*
404 	 * Check for an overlapping extent again now that we dropped the ilock.
405 	 */
406 	error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
407 	if (error || !*shared)
408 		goto out_trans_cancel;
409 	if (found) {
410 		xfs_trans_cancel(tp);
411 		goto convert;
412 	}
413 
414 	error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0,
415 			XFS_QMOPT_RES_REGBLKS);
416 	if (error)
417 		goto out_trans_cancel;
418 
419 	xfs_trans_ijoin(tp, ip, 0);
420 
421 	/* Allocate the entire reservation as unwritten blocks. */
422 	nimaps = 1;
423 	error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
424 			XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC,
425 			resblks, imap, &nimaps);
426 	if (error)
427 		goto out_unreserve;
428 
429 	xfs_inode_set_cowblocks_tag(ip);
430 	error = xfs_trans_commit(tp);
431 	if (error)
432 		return error;
433 
434 	/*
435 	 * Allocation succeeded but the requested range was not even partially
436 	 * satisfied?  Bail out!
437 	 */
438 	if (nimaps == 0)
439 		return -ENOSPC;
440 convert:
441 	xfs_trim_extent(imap, offset_fsb, count_fsb);
442 	/*
443 	 * COW fork extents are supposed to remain unwritten until we're ready
444 	 * to initiate a disk write.  For direct I/O we are going to write the
445 	 * data and need the conversion, but for buffered writes we're done.
446 	 */
447 	if (!convert_now || imap->br_state == XFS_EXT_NORM)
448 		return 0;
449 	trace_xfs_reflink_convert_cow(ip, imap);
450 	return xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
451 
452 out_unreserve:
453 	xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0,
454 			XFS_QMOPT_RES_REGBLKS);
455 out_trans_cancel:
456 	xfs_trans_cancel(tp);
457 	return error;
458 }
459 
460 /*
461  * Cancel CoW reservations for some block range of an inode.
462  *
463  * If cancel_real is true this function cancels all COW fork extents for the
464  * inode; if cancel_real is false, real extents are not cleared.
465  *
466  * Caller must have already joined the inode to the current transaction. The
467  * inode will be joined to the transaction returned to the caller.
468  */
469 int
470 xfs_reflink_cancel_cow_blocks(
471 	struct xfs_inode		*ip,
472 	struct xfs_trans		**tpp,
473 	xfs_fileoff_t			offset_fsb,
474 	xfs_fileoff_t			end_fsb,
475 	bool				cancel_real)
476 {
477 	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
478 	struct xfs_bmbt_irec		got, del;
479 	struct xfs_iext_cursor		icur;
480 	int				error = 0;
481 
482 	if (!xfs_inode_has_cow_data(ip))
483 		return 0;
484 	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
485 		return 0;
486 
487 	/* Walk backwards until we're out of the I/O range... */
488 	while (got.br_startoff + got.br_blockcount > offset_fsb) {
489 		del = got;
490 		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
491 
492 		/* Extent delete may have bumped ext forward */
493 		if (!del.br_blockcount) {
494 			xfs_iext_prev(ifp, &icur);
495 			goto next_extent;
496 		}
497 
498 		trace_xfs_reflink_cancel_cow(ip, &del);
499 
500 		if (isnullstartblock(del.br_startblock)) {
501 			error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
502 					&icur, &got, &del);
503 			if (error)
504 				break;
505 		} else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
506 			ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
507 
508 			/* Free the CoW orphan record. */
509 			error = xfs_refcount_free_cow_extent(*tpp,
510 					del.br_startblock, del.br_blockcount);
511 			if (error)
512 				break;
513 
514 			xfs_bmap_add_free(*tpp, del.br_startblock,
515 					  del.br_blockcount, NULL);
516 
517 			/* Roll the transaction */
518 			error = xfs_defer_finish(tpp);
519 			if (error)
520 				break;
521 
522 			/* Remove the mapping from the CoW fork. */
523 			xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
524 
525 			/* Remove the quota reservation */
526 			error = xfs_trans_reserve_quota_nblks(NULL, ip,
527 					-(long)del.br_blockcount, 0,
528 					XFS_QMOPT_RES_REGBLKS);
529 			if (error)
530 				break;
531 		} else {
532 			/* Didn't do anything, push cursor back. */
533 			xfs_iext_prev(ifp, &icur);
534 		}
535 next_extent:
536 		if (!xfs_iext_get_extent(ifp, &icur, &got))
537 			break;
538 	}
539 
540 	/* clear tag if cow fork is emptied */
541 	if (!ifp->if_bytes)
542 		xfs_inode_clear_cowblocks_tag(ip);
543 	return error;
544 }
545 
546 /*
547  * Cancel CoW reservations for some byte range of an inode.
548  *
549  * If cancel_real is true this function cancels all COW fork extents for the
550  * inode; if cancel_real is false, real extents are not cleared.
551  */
552 int
553 xfs_reflink_cancel_cow_range(
554 	struct xfs_inode	*ip,
555 	xfs_off_t		offset,
556 	xfs_off_t		count,
557 	bool			cancel_real)
558 {
559 	struct xfs_trans	*tp;
560 	xfs_fileoff_t		offset_fsb;
561 	xfs_fileoff_t		end_fsb;
562 	int			error;
563 
564 	trace_xfs_reflink_cancel_cow_range(ip, offset, count);
565 	ASSERT(ip->i_cowfp);
566 
567 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
568 	if (count == NULLFILEOFF)
569 		end_fsb = NULLFILEOFF;
570 	else
571 		end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
572 
573 	/* Start a rolling transaction to remove the mappings */
574 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
575 			0, 0, XFS_TRANS_NOFS, &tp);
576 	if (error)
577 		goto out;
578 
579 	xfs_ilock(ip, XFS_ILOCK_EXCL);
580 	xfs_trans_ijoin(tp, ip, 0);
581 
582 	/* Scrape out the old CoW reservations */
583 	error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
584 			cancel_real);
585 	if (error)
586 		goto out_cancel;
587 
588 	error = xfs_trans_commit(tp);
589 
590 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
591 	return error;
592 
593 out_cancel:
594 	xfs_trans_cancel(tp);
595 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
596 out:
597 	trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
598 	return error;
599 }
600 
601 /*
602  * Remap part of the CoW fork into the data fork.
603  *
604  * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
605  * into the data fork; this function will remap what it can (at the end of the
606  * range) and update @end_fsb appropriately.  Each remap gets its own
607  * transaction because we can end up merging and splitting bmbt blocks for
608  * every remap operation and we'd like to keep the block reservation
609  * requirements as low as possible.
610  */
611 STATIC int
612 xfs_reflink_end_cow_extent(
613 	struct xfs_inode	*ip,
614 	xfs_fileoff_t		offset_fsb,
615 	xfs_fileoff_t		*end_fsb)
616 {
617 	struct xfs_bmbt_irec	got, del;
618 	struct xfs_iext_cursor	icur;
619 	struct xfs_mount	*mp = ip->i_mount;
620 	struct xfs_trans	*tp;
621 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
622 	xfs_filblks_t		rlen;
623 	unsigned int		resblks;
624 	int			error;
625 
626 	/* No COW extents?  That's easy! */
627 	if (ifp->if_bytes == 0) {
628 		*end_fsb = offset_fsb;
629 		return 0;
630 	}
631 
632 	resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
633 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
634 			XFS_TRANS_RESERVE | XFS_TRANS_NOFS, &tp);
635 	if (error)
636 		return error;
637 
638 	/*
639 	 * Lock the inode.  We have to ijoin without automatic unlock because
640 	 * the lead transaction is the refcountbt record deletion; the data
641 	 * fork update follows as a deferred log item.
642 	 */
643 	xfs_ilock(ip, XFS_ILOCK_EXCL);
644 	xfs_trans_ijoin(tp, ip, 0);
645 
646 	/*
647 	 * In case of racing, overlapping AIO writes no COW extents might be
648 	 * left by the time I/O completes for the loser of the race.  In that
649 	 * case we are done.
650 	 */
651 	if (!xfs_iext_lookup_extent_before(ip, ifp, end_fsb, &icur, &got) ||
652 	    got.br_startoff + got.br_blockcount <= offset_fsb) {
653 		*end_fsb = offset_fsb;
654 		goto out_cancel;
655 	}
656 
657 	/*
658 	 * Structure copy @got into @del, then trim @del to the range that we
659 	 * were asked to remap.  We preserve @got for the eventual CoW fork
660 	 * deletion; from now on @del represents the mapping that we're
661 	 * actually remapping.
662 	 */
663 	del = got;
664 	xfs_trim_extent(&del, offset_fsb, *end_fsb - offset_fsb);
665 
666 	ASSERT(del.br_blockcount > 0);
667 
668 	/*
669 	 * Only remap real extents that contain data.  With AIO, speculative
670 	 * preallocations can leak into the range we are called upon, and we
671 	 * need to skip them.
672 	 */
673 	if (!xfs_bmap_is_real_extent(&got)) {
674 		*end_fsb = del.br_startoff;
675 		goto out_cancel;
676 	}
677 
678 	/* Unmap the old blocks in the data fork. */
679 	rlen = del.br_blockcount;
680 	error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
681 	if (error)
682 		goto out_cancel;
683 
684 	/* Trim the extent to whatever got unmapped. */
685 	xfs_trim_extent(&del, del.br_startoff + rlen, del.br_blockcount - rlen);
686 	trace_xfs_reflink_cow_remap(ip, &del);
687 
688 	/* Free the CoW orphan record. */
689 	error = xfs_refcount_free_cow_extent(tp, del.br_startblock,
690 			del.br_blockcount);
691 	if (error)
692 		goto out_cancel;
693 
694 	/* Map the new blocks into the data fork. */
695 	error = xfs_bmap_map_extent(tp, ip, &del);
696 	if (error)
697 		goto out_cancel;
698 
699 	/* Charge this new data fork mapping to the on-disk quota. */
700 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
701 			(long)del.br_blockcount);
702 
703 	/* Remove the mapping from the CoW fork. */
704 	xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
705 
706 	error = xfs_trans_commit(tp);
707 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
708 	if (error)
709 		return error;
710 
711 	/* Update the caller about how much progress we made. */
712 	*end_fsb = del.br_startoff;
713 	return 0;
714 
715 out_cancel:
716 	xfs_trans_cancel(tp);
717 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
718 	return error;
719 }
720 
721 /*
722  * Remap parts of a file's data fork after a successful CoW.
723  */
724 int
725 xfs_reflink_end_cow(
726 	struct xfs_inode		*ip,
727 	xfs_off_t			offset,
728 	xfs_off_t			count)
729 {
730 	xfs_fileoff_t			offset_fsb;
731 	xfs_fileoff_t			end_fsb;
732 	int				error = 0;
733 
734 	trace_xfs_reflink_end_cow(ip, offset, count);
735 
736 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
737 	end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
738 
739 	/*
740 	 * Walk backwards until we're out of the I/O range.  The loop function
741 	 * repeatedly cycles the ILOCK to allocate one transaction per remapped
742 	 * extent.
743 	 *
744 	 * If we're being called by writeback then the the pages will still
745 	 * have PageWriteback set, which prevents races with reflink remapping
746 	 * and truncate.  Reflink remapping prevents races with writeback by
747 	 * taking the iolock and mmaplock before flushing the pages and
748 	 * remapping, which means there won't be any further writeback or page
749 	 * cache dirtying until the reflink completes.
750 	 *
751 	 * We should never have two threads issuing writeback for the same file
752 	 * region.  There are also have post-eof checks in the writeback
753 	 * preparation code so that we don't bother writing out pages that are
754 	 * about to be truncated.
755 	 *
756 	 * If we're being called as part of directio write completion, the dio
757 	 * count is still elevated, which reflink and truncate will wait for.
758 	 * Reflink remapping takes the iolock and mmaplock and waits for
759 	 * pending dio to finish, which should prevent any directio until the
760 	 * remap completes.  Multiple concurrent directio writes to the same
761 	 * region are handled by end_cow processing only occurring for the
762 	 * threads which succeed; the outcome of multiple overlapping direct
763 	 * writes is not well defined anyway.
764 	 *
765 	 * It's possible that a buffered write and a direct write could collide
766 	 * here (the buffered write stumbles in after the dio flushes and
767 	 * invalidates the page cache and immediately queues writeback), but we
768 	 * have never supported this 100%.  If either disk write succeeds the
769 	 * blocks will be remapped.
770 	 */
771 	while (end_fsb > offset_fsb && !error)
772 		error = xfs_reflink_end_cow_extent(ip, offset_fsb, &end_fsb);
773 
774 	if (error)
775 		trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
776 	return error;
777 }
778 
779 /*
780  * Free leftover CoW reservations that didn't get cleaned out.
781  */
782 int
783 xfs_reflink_recover_cow(
784 	struct xfs_mount	*mp)
785 {
786 	xfs_agnumber_t		agno;
787 	int			error = 0;
788 
789 	if (!xfs_sb_version_hasreflink(&mp->m_sb))
790 		return 0;
791 
792 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
793 		error = xfs_refcount_recover_cow_leftovers(mp, agno);
794 		if (error)
795 			break;
796 	}
797 
798 	return error;
799 }
800 
801 /*
802  * Reflinking (Block) Ranges of Two Files Together
803  *
804  * First, ensure that the reflink flag is set on both inodes.  The flag is an
805  * optimization to avoid unnecessary refcount btree lookups in the write path.
806  *
807  * Now we can iteratively remap the range of extents (and holes) in src to the
808  * corresponding ranges in dest.  Let drange and srange denote the ranges of
809  * logical blocks in dest and src touched by the reflink operation.
810  *
811  * While the length of drange is greater than zero,
812  *    - Read src's bmbt at the start of srange ("imap")
813  *    - If imap doesn't exist, make imap appear to start at the end of srange
814  *      with zero length.
815  *    - If imap starts before srange, advance imap to start at srange.
816  *    - If imap goes beyond srange, truncate imap to end at the end of srange.
817  *    - Punch (imap start - srange start + imap len) blocks from dest at
818  *      offset (drange start).
819  *    - If imap points to a real range of pblks,
820  *         > Increase the refcount of the imap's pblks
821  *         > Map imap's pblks into dest at the offset
822  *           (drange start + imap start - srange start)
823  *    - Advance drange and srange by (imap start - srange start + imap len)
824  *
825  * Finally, if the reflink made dest longer, update both the in-core and
826  * on-disk file sizes.
827  *
828  * ASCII Art Demonstration:
829  *
830  * Let's say we want to reflink this source file:
831  *
832  * ----SSSSSSS-SSSSS----SSSSSS (src file)
833  *   <-------------------->
834  *
835  * into this destination file:
836  *
837  * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
838  *        <-------------------->
839  * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
840  * Observe that the range has different logical offsets in either file.
841  *
842  * Consider that the first extent in the source file doesn't line up with our
843  * reflink range.  Unmapping  and remapping are separate operations, so we can
844  * unmap more blocks from the destination file than we remap.
845  *
846  * ----SSSSSSS-SSSSS----SSSSSS
847  *   <------->
848  * --DDDDD---------DDDDD--DDD
849  *        <------->
850  *
851  * Now remap the source extent into the destination file:
852  *
853  * ----SSSSSSS-SSSSS----SSSSSS
854  *   <------->
855  * --DDDDD--SSSSSSSDDDDD--DDD
856  *        <------->
857  *
858  * Do likewise with the second hole and extent in our range.  Holes in the
859  * unmap range don't affect our operation.
860  *
861  * ----SSSSSSS-SSSSS----SSSSSS
862  *            <---->
863  * --DDDDD--SSSSSSS-SSSSS-DDD
864  *                 <---->
865  *
866  * Finally, unmap and remap part of the third extent.  This will increase the
867  * size of the destination file.
868  *
869  * ----SSSSSSS-SSSSS----SSSSSS
870  *                  <----->
871  * --DDDDD--SSSSSSS-SSSSS----SSS
872  *                       <----->
873  *
874  * Once we update the destination file's i_size, we're done.
875  */
876 
877 /*
878  * Ensure the reflink bit is set in both inodes.
879  */
880 STATIC int
881 xfs_reflink_set_inode_flag(
882 	struct xfs_inode	*src,
883 	struct xfs_inode	*dest)
884 {
885 	struct xfs_mount	*mp = src->i_mount;
886 	int			error;
887 	struct xfs_trans	*tp;
888 
889 	if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
890 		return 0;
891 
892 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
893 	if (error)
894 		goto out_error;
895 
896 	/* Lock both files against IO */
897 	if (src->i_ino == dest->i_ino)
898 		xfs_ilock(src, XFS_ILOCK_EXCL);
899 	else
900 		xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
901 
902 	if (!xfs_is_reflink_inode(src)) {
903 		trace_xfs_reflink_set_inode_flag(src);
904 		xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
905 		src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
906 		xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
907 		xfs_ifork_init_cow(src);
908 	} else
909 		xfs_iunlock(src, XFS_ILOCK_EXCL);
910 
911 	if (src->i_ino == dest->i_ino)
912 		goto commit_flags;
913 
914 	if (!xfs_is_reflink_inode(dest)) {
915 		trace_xfs_reflink_set_inode_flag(dest);
916 		xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
917 		dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
918 		xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
919 		xfs_ifork_init_cow(dest);
920 	} else
921 		xfs_iunlock(dest, XFS_ILOCK_EXCL);
922 
923 commit_flags:
924 	error = xfs_trans_commit(tp);
925 	if (error)
926 		goto out_error;
927 	return error;
928 
929 out_error:
930 	trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
931 	return error;
932 }
933 
934 /*
935  * Update destination inode size & cowextsize hint, if necessary.
936  */
937 int
938 xfs_reflink_update_dest(
939 	struct xfs_inode	*dest,
940 	xfs_off_t		newlen,
941 	xfs_extlen_t		cowextsize,
942 	unsigned int		remap_flags)
943 {
944 	struct xfs_mount	*mp = dest->i_mount;
945 	struct xfs_trans	*tp;
946 	int			error;
947 
948 	if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
949 		return 0;
950 
951 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
952 	if (error)
953 		goto out_error;
954 
955 	xfs_ilock(dest, XFS_ILOCK_EXCL);
956 	xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
957 
958 	if (newlen > i_size_read(VFS_I(dest))) {
959 		trace_xfs_reflink_update_inode_size(dest, newlen);
960 		i_size_write(VFS_I(dest), newlen);
961 		dest->i_d.di_size = newlen;
962 	}
963 
964 	if (cowextsize) {
965 		dest->i_d.di_cowextsize = cowextsize;
966 		dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
967 	}
968 
969 	xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
970 
971 	error = xfs_trans_commit(tp);
972 	if (error)
973 		goto out_error;
974 	return error;
975 
976 out_error:
977 	trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
978 	return error;
979 }
980 
981 /*
982  * Do we have enough reserve in this AG to handle a reflink?  The refcount
983  * btree already reserved all the space it needs, but the rmap btree can grow
984  * infinitely, so we won't allow more reflinks when the AG is down to the
985  * btree reserves.
986  */
987 static int
988 xfs_reflink_ag_has_free_space(
989 	struct xfs_mount	*mp,
990 	xfs_agnumber_t		agno)
991 {
992 	struct xfs_perag	*pag;
993 	int			error = 0;
994 
995 	if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
996 		return 0;
997 
998 	pag = xfs_perag_get(mp, agno);
999 	if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
1000 	    xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
1001 		error = -ENOSPC;
1002 	xfs_perag_put(pag);
1003 	return error;
1004 }
1005 
1006 /*
1007  * Unmap a range of blocks from a file, then map other blocks into the hole.
1008  * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
1009  * The extent irec is mapped into dest at irec->br_startoff.
1010  */
1011 STATIC int
1012 xfs_reflink_remap_extent(
1013 	struct xfs_inode	*ip,
1014 	struct xfs_bmbt_irec	*irec,
1015 	xfs_fileoff_t		destoff,
1016 	xfs_off_t		new_isize)
1017 {
1018 	struct xfs_mount	*mp = ip->i_mount;
1019 	bool			real_extent = xfs_bmap_is_real_extent(irec);
1020 	struct xfs_trans	*tp;
1021 	unsigned int		resblks;
1022 	struct xfs_bmbt_irec	uirec;
1023 	xfs_filblks_t		rlen;
1024 	xfs_filblks_t		unmap_len;
1025 	xfs_off_t		newlen;
1026 	int			error;
1027 
1028 	unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
1029 	trace_xfs_reflink_punch_range(ip, destoff, unmap_len);
1030 
1031 	/* No reflinking if we're low on space */
1032 	if (real_extent) {
1033 		error = xfs_reflink_ag_has_free_space(mp,
1034 				XFS_FSB_TO_AGNO(mp, irec->br_startblock));
1035 		if (error)
1036 			goto out;
1037 	}
1038 
1039 	/* Start a rolling transaction to switch the mappings */
1040 	resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
1041 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1042 	if (error)
1043 		goto out;
1044 
1045 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1046 	xfs_trans_ijoin(tp, ip, 0);
1047 
1048 	/* If we're not just clearing space, then do we have enough quota? */
1049 	if (real_extent) {
1050 		error = xfs_trans_reserve_quota_nblks(tp, ip,
1051 				irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS);
1052 		if (error)
1053 			goto out_cancel;
1054 	}
1055 
1056 	trace_xfs_reflink_remap(ip, irec->br_startoff,
1057 				irec->br_blockcount, irec->br_startblock);
1058 
1059 	/* Unmap the old blocks in the data fork. */
1060 	rlen = unmap_len;
1061 	while (rlen) {
1062 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1063 		error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1);
1064 		if (error)
1065 			goto out_cancel;
1066 
1067 		/*
1068 		 * Trim the extent to whatever got unmapped.
1069 		 * Remember, bunmapi works backwards.
1070 		 */
1071 		uirec.br_startblock = irec->br_startblock + rlen;
1072 		uirec.br_startoff = irec->br_startoff + rlen;
1073 		uirec.br_blockcount = unmap_len - rlen;
1074 		unmap_len = rlen;
1075 
1076 		/* If this isn't a real mapping, we're done. */
1077 		if (!real_extent || uirec.br_blockcount == 0)
1078 			goto next_extent;
1079 
1080 		trace_xfs_reflink_remap(ip, uirec.br_startoff,
1081 				uirec.br_blockcount, uirec.br_startblock);
1082 
1083 		/* Update the refcount tree */
1084 		error = xfs_refcount_increase_extent(tp, &uirec);
1085 		if (error)
1086 			goto out_cancel;
1087 
1088 		/* Map the new blocks into the data fork. */
1089 		error = xfs_bmap_map_extent(tp, ip, &uirec);
1090 		if (error)
1091 			goto out_cancel;
1092 
1093 		/* Update quota accounting. */
1094 		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
1095 				uirec.br_blockcount);
1096 
1097 		/* Update dest isize if needed. */
1098 		newlen = XFS_FSB_TO_B(mp,
1099 				uirec.br_startoff + uirec.br_blockcount);
1100 		newlen = min_t(xfs_off_t, newlen, new_isize);
1101 		if (newlen > i_size_read(VFS_I(ip))) {
1102 			trace_xfs_reflink_update_inode_size(ip, newlen);
1103 			i_size_write(VFS_I(ip), newlen);
1104 			ip->i_d.di_size = newlen;
1105 			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1106 		}
1107 
1108 next_extent:
1109 		/* Process all the deferred stuff. */
1110 		error = xfs_defer_finish(&tp);
1111 		if (error)
1112 			goto out_cancel;
1113 	}
1114 
1115 	error = xfs_trans_commit(tp);
1116 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1117 	if (error)
1118 		goto out;
1119 	return 0;
1120 
1121 out_cancel:
1122 	xfs_trans_cancel(tp);
1123 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1124 out:
1125 	trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1126 	return error;
1127 }
1128 
1129 /*
1130  * Iteratively remap one file's extents (and holes) to another's.
1131  */
1132 int
1133 xfs_reflink_remap_blocks(
1134 	struct xfs_inode	*src,
1135 	loff_t			pos_in,
1136 	struct xfs_inode	*dest,
1137 	loff_t			pos_out,
1138 	loff_t			remap_len,
1139 	loff_t			*remapped)
1140 {
1141 	struct xfs_bmbt_irec	imap;
1142 	xfs_fileoff_t		srcoff;
1143 	xfs_fileoff_t		destoff;
1144 	xfs_filblks_t		len;
1145 	xfs_filblks_t		range_len;
1146 	xfs_filblks_t		remapped_len = 0;
1147 	xfs_off_t		new_isize = pos_out + remap_len;
1148 	int			nimaps;
1149 	int			error = 0;
1150 
1151 	destoff = XFS_B_TO_FSBT(src->i_mount, pos_out);
1152 	srcoff = XFS_B_TO_FSBT(src->i_mount, pos_in);
1153 	len = XFS_B_TO_FSB(src->i_mount, remap_len);
1154 
1155 	/* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
1156 	while (len) {
1157 		uint		lock_mode;
1158 
1159 		trace_xfs_reflink_remap_blocks_loop(src, srcoff, len,
1160 				dest, destoff);
1161 
1162 		/* Read extent from the source file */
1163 		nimaps = 1;
1164 		lock_mode = xfs_ilock_data_map_shared(src);
1165 		error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1166 		xfs_iunlock(src, lock_mode);
1167 		if (error)
1168 			break;
1169 		ASSERT(nimaps == 1);
1170 
1171 		trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_DATA_FORK,
1172 				&imap);
1173 
1174 		/* Translate imap into the destination file. */
1175 		range_len = imap.br_startoff + imap.br_blockcount - srcoff;
1176 		imap.br_startoff += destoff - srcoff;
1177 
1178 		/* Clear dest from destoff to the end of imap and map it in. */
1179 		error = xfs_reflink_remap_extent(dest, &imap, destoff,
1180 				new_isize);
1181 		if (error)
1182 			break;
1183 
1184 		if (fatal_signal_pending(current)) {
1185 			error = -EINTR;
1186 			break;
1187 		}
1188 
1189 		/* Advance drange/srange */
1190 		srcoff += range_len;
1191 		destoff += range_len;
1192 		len -= range_len;
1193 		remapped_len += range_len;
1194 	}
1195 
1196 	if (error)
1197 		trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1198 	*remapped = min_t(loff_t, remap_len,
1199 			  XFS_FSB_TO_B(src->i_mount, remapped_len));
1200 	return error;
1201 }
1202 
1203 /*
1204  * Grab the exclusive iolock for a data copy from src to dest, making
1205  * sure to abide vfs locking order (lowest pointer value goes first) and
1206  * breaking the pnfs layout leases on dest before proceeding.  The loop
1207  * is needed because we cannot call the blocking break_layout() with the
1208  * src iolock held, and therefore have to back out both locks.
1209  */
1210 static int
1211 xfs_iolock_two_inodes_and_break_layout(
1212 	struct inode		*src,
1213 	struct inode		*dest)
1214 {
1215 	int			error;
1216 
1217 retry:
1218 	if (src < dest) {
1219 		inode_lock_shared(src);
1220 		inode_lock_nested(dest, I_MUTEX_NONDIR2);
1221 	} else {
1222 		/* src >= dest */
1223 		inode_lock(dest);
1224 	}
1225 
1226 	error = break_layout(dest, false);
1227 	if (error == -EWOULDBLOCK) {
1228 		inode_unlock(dest);
1229 		if (src < dest)
1230 			inode_unlock_shared(src);
1231 		error = break_layout(dest, true);
1232 		if (error)
1233 			return error;
1234 		goto retry;
1235 	}
1236 	if (error) {
1237 		inode_unlock(dest);
1238 		if (src < dest)
1239 			inode_unlock_shared(src);
1240 		return error;
1241 	}
1242 	if (src > dest)
1243 		inode_lock_shared_nested(src, I_MUTEX_NONDIR2);
1244 	return 0;
1245 }
1246 
1247 /* Unlock both inodes after they've been prepped for a range clone. */
1248 void
1249 xfs_reflink_remap_unlock(
1250 	struct file		*file_in,
1251 	struct file		*file_out)
1252 {
1253 	struct inode		*inode_in = file_inode(file_in);
1254 	struct xfs_inode	*src = XFS_I(inode_in);
1255 	struct inode		*inode_out = file_inode(file_out);
1256 	struct xfs_inode	*dest = XFS_I(inode_out);
1257 	bool			same_inode = (inode_in == inode_out);
1258 
1259 	xfs_iunlock(dest, XFS_MMAPLOCK_EXCL);
1260 	if (!same_inode)
1261 		xfs_iunlock(src, XFS_MMAPLOCK_SHARED);
1262 	inode_unlock(inode_out);
1263 	if (!same_inode)
1264 		inode_unlock_shared(inode_in);
1265 }
1266 
1267 /*
1268  * If we're reflinking to a point past the destination file's EOF, we must
1269  * zero any speculative post-EOF preallocations that sit between the old EOF
1270  * and the destination file offset.
1271  */
1272 static int
1273 xfs_reflink_zero_posteof(
1274 	struct xfs_inode	*ip,
1275 	loff_t			pos)
1276 {
1277 	loff_t			isize = i_size_read(VFS_I(ip));
1278 
1279 	if (pos <= isize)
1280 		return 0;
1281 
1282 	trace_xfs_zero_eof(ip, isize, pos - isize);
1283 	return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL,
1284 			&xfs_iomap_ops);
1285 }
1286 
1287 /*
1288  * Prepare two files for range cloning.  Upon a successful return both inodes
1289  * will have the iolock and mmaplock held, the page cache of the out file will
1290  * be truncated, and any leases on the out file will have been broken.  This
1291  * function borrows heavily from xfs_file_aio_write_checks.
1292  *
1293  * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1294  * checked that the bytes beyond EOF physically match. Hence we cannot use the
1295  * EOF block in the source dedupe range because it's not a complete block match,
1296  * hence can introduce a corruption into the file that has it's block replaced.
1297  *
1298  * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1299  * "block aligned" for the purposes of cloning entire files.  However, if the
1300  * source file range includes the EOF block and it lands within the existing EOF
1301  * of the destination file, then we can expose stale data from beyond the source
1302  * file EOF in the destination file.
1303  *
1304  * XFS doesn't support partial block sharing, so in both cases we have check
1305  * these cases ourselves. For dedupe, we can simply round the length to dedupe
1306  * down to the previous whole block and ignore the partial EOF block. While this
1307  * means we can't dedupe the last block of a file, this is an acceptible
1308  * tradeoff for simplicity on implementation.
1309  *
1310  * For cloning, we want to share the partial EOF block if it is also the new EOF
1311  * block of the destination file. If the partial EOF block lies inside the
1312  * existing destination EOF, then we have to abort the clone to avoid exposing
1313  * stale data in the destination file. Hence we reject these clone attempts with
1314  * -EINVAL in this case.
1315  */
1316 int
1317 xfs_reflink_remap_prep(
1318 	struct file		*file_in,
1319 	loff_t			pos_in,
1320 	struct file		*file_out,
1321 	loff_t			pos_out,
1322 	loff_t			*len,
1323 	unsigned int		remap_flags)
1324 {
1325 	struct inode		*inode_in = file_inode(file_in);
1326 	struct xfs_inode	*src = XFS_I(inode_in);
1327 	struct inode		*inode_out = file_inode(file_out);
1328 	struct xfs_inode	*dest = XFS_I(inode_out);
1329 	bool			same_inode = (inode_in == inode_out);
1330 	ssize_t			ret;
1331 
1332 	/* Lock both files against IO */
1333 	ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out);
1334 	if (ret)
1335 		return ret;
1336 	if (same_inode)
1337 		xfs_ilock(src, XFS_MMAPLOCK_EXCL);
1338 	else
1339 		xfs_lock_two_inodes(src, XFS_MMAPLOCK_SHARED, dest,
1340 				XFS_MMAPLOCK_EXCL);
1341 
1342 	/* Check file eligibility and prepare for block sharing. */
1343 	ret = -EINVAL;
1344 	/* Don't reflink realtime inodes */
1345 	if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1346 		goto out_unlock;
1347 
1348 	/* Don't share DAX file data for now. */
1349 	if (IS_DAX(inode_in) || IS_DAX(inode_out))
1350 		goto out_unlock;
1351 
1352 	ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
1353 			len, remap_flags);
1354 	if (ret < 0 || *len == 0)
1355 		goto out_unlock;
1356 
1357 	/* Attach dquots to dest inode before changing block map */
1358 	ret = xfs_qm_dqattach(dest);
1359 	if (ret)
1360 		goto out_unlock;
1361 
1362 	/*
1363 	 * Zero existing post-eof speculative preallocations in the destination
1364 	 * file.
1365 	 */
1366 	ret = xfs_reflink_zero_posteof(dest, pos_out);
1367 	if (ret)
1368 		goto out_unlock;
1369 
1370 	/* Set flags and remap blocks. */
1371 	ret = xfs_reflink_set_inode_flag(src, dest);
1372 	if (ret)
1373 		goto out_unlock;
1374 
1375 	/*
1376 	 * If pos_out > EOF, we may have dirtied blocks between EOF and
1377 	 * pos_out. In that case, we need to extend the flush and unmap to cover
1378 	 * from EOF to the end of the copy length.
1379 	 */
1380 	if (pos_out > XFS_ISIZE(dest)) {
1381 		loff_t	flen = *len + (pos_out - XFS_ISIZE(dest));
1382 		ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1383 	} else {
1384 		ret = xfs_flush_unmap_range(dest, pos_out, *len);
1385 	}
1386 	if (ret)
1387 		goto out_unlock;
1388 
1389 	return 1;
1390 out_unlock:
1391 	xfs_reflink_remap_unlock(file_in, file_out);
1392 	return ret;
1393 }
1394 
1395 /*
1396  * The user wants to preemptively CoW all shared blocks in this file,
1397  * which enables us to turn off the reflink flag.  Iterate all
1398  * extents which are not prealloc/delalloc to see which ranges are
1399  * mentioned in the refcount tree, then read those blocks into the
1400  * pagecache, dirty them, fsync them back out, and then we can update
1401  * the inode flag.  What happens if we run out of memory? :)
1402  */
1403 STATIC int
1404 xfs_reflink_dirty_extents(
1405 	struct xfs_inode	*ip,
1406 	xfs_fileoff_t		fbno,
1407 	xfs_filblks_t		end,
1408 	xfs_off_t		isize)
1409 {
1410 	struct xfs_mount	*mp = ip->i_mount;
1411 	xfs_agnumber_t		agno;
1412 	xfs_agblock_t		agbno;
1413 	xfs_extlen_t		aglen;
1414 	xfs_agblock_t		rbno;
1415 	xfs_extlen_t		rlen;
1416 	xfs_off_t		fpos;
1417 	xfs_off_t		flen;
1418 	struct xfs_bmbt_irec	map[2];
1419 	int			nmaps;
1420 	int			error = 0;
1421 
1422 	while (end - fbno > 0) {
1423 		nmaps = 1;
1424 		/*
1425 		 * Look for extents in the file.  Skip holes, delalloc, or
1426 		 * unwritten extents; they can't be reflinked.
1427 		 */
1428 		error = xfs_bmapi_read(ip, fbno, end - fbno, map, &nmaps, 0);
1429 		if (error)
1430 			goto out;
1431 		if (nmaps == 0)
1432 			break;
1433 		if (!xfs_bmap_is_real_extent(&map[0]))
1434 			goto next;
1435 
1436 		map[1] = map[0];
1437 		while (map[1].br_blockcount) {
1438 			agno = XFS_FSB_TO_AGNO(mp, map[1].br_startblock);
1439 			agbno = XFS_FSB_TO_AGBNO(mp, map[1].br_startblock);
1440 			aglen = map[1].br_blockcount;
1441 
1442 			error = xfs_reflink_find_shared(mp, NULL, agno, agbno,
1443 					aglen, &rbno, &rlen, true);
1444 			if (error)
1445 				goto out;
1446 			if (rbno == NULLAGBLOCK)
1447 				break;
1448 
1449 			/* Dirty the pages */
1450 			xfs_iunlock(ip, XFS_ILOCK_EXCL);
1451 			fpos = XFS_FSB_TO_B(mp, map[1].br_startoff +
1452 					(rbno - agbno));
1453 			flen = XFS_FSB_TO_B(mp, rlen);
1454 			if (fpos + flen > isize)
1455 				flen = isize - fpos;
1456 			error = iomap_file_dirty(VFS_I(ip), fpos, flen,
1457 					&xfs_iomap_ops);
1458 			xfs_ilock(ip, XFS_ILOCK_EXCL);
1459 			if (error)
1460 				goto out;
1461 
1462 			map[1].br_blockcount -= (rbno - agbno + rlen);
1463 			map[1].br_startoff += (rbno - agbno + rlen);
1464 			map[1].br_startblock += (rbno - agbno + rlen);
1465 		}
1466 
1467 next:
1468 		fbno = map[0].br_startoff + map[0].br_blockcount;
1469 	}
1470 out:
1471 	return error;
1472 }
1473 
1474 /* Does this inode need the reflink flag? */
1475 int
1476 xfs_reflink_inode_has_shared_extents(
1477 	struct xfs_trans		*tp,
1478 	struct xfs_inode		*ip,
1479 	bool				*has_shared)
1480 {
1481 	struct xfs_bmbt_irec		got;
1482 	struct xfs_mount		*mp = ip->i_mount;
1483 	struct xfs_ifork		*ifp;
1484 	xfs_agnumber_t			agno;
1485 	xfs_agblock_t			agbno;
1486 	xfs_extlen_t			aglen;
1487 	xfs_agblock_t			rbno;
1488 	xfs_extlen_t			rlen;
1489 	struct xfs_iext_cursor		icur;
1490 	bool				found;
1491 	int				error;
1492 
1493 	ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1494 	if (!(ifp->if_flags & XFS_IFEXTENTS)) {
1495 		error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1496 		if (error)
1497 			return error;
1498 	}
1499 
1500 	*has_shared = false;
1501 	found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1502 	while (found) {
1503 		if (isnullstartblock(got.br_startblock) ||
1504 		    got.br_state != XFS_EXT_NORM)
1505 			goto next;
1506 		agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1507 		agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1508 		aglen = got.br_blockcount;
1509 
1510 		error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1511 				&rbno, &rlen, false);
1512 		if (error)
1513 			return error;
1514 		/* Is there still a shared block here? */
1515 		if (rbno != NULLAGBLOCK) {
1516 			*has_shared = true;
1517 			return 0;
1518 		}
1519 next:
1520 		found = xfs_iext_next_extent(ifp, &icur, &got);
1521 	}
1522 
1523 	return 0;
1524 }
1525 
1526 /*
1527  * Clear the inode reflink flag if there are no shared extents.
1528  *
1529  * The caller is responsible for joining the inode to the transaction passed in.
1530  * The inode will be joined to the transaction that is returned to the caller.
1531  */
1532 int
1533 xfs_reflink_clear_inode_flag(
1534 	struct xfs_inode	*ip,
1535 	struct xfs_trans	**tpp)
1536 {
1537 	bool			needs_flag;
1538 	int			error = 0;
1539 
1540 	ASSERT(xfs_is_reflink_inode(ip));
1541 
1542 	error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1543 	if (error || needs_flag)
1544 		return error;
1545 
1546 	/*
1547 	 * We didn't find any shared blocks so turn off the reflink flag.
1548 	 * First, get rid of any leftover CoW mappings.
1549 	 */
1550 	error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF, true);
1551 	if (error)
1552 		return error;
1553 
1554 	/* Clear the inode flag. */
1555 	trace_xfs_reflink_unset_inode_flag(ip);
1556 	ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1557 	xfs_inode_clear_cowblocks_tag(ip);
1558 	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1559 
1560 	return error;
1561 }
1562 
1563 /*
1564  * Clear the inode reflink flag if there are no shared extents and the size
1565  * hasn't changed.
1566  */
1567 STATIC int
1568 xfs_reflink_try_clear_inode_flag(
1569 	struct xfs_inode	*ip)
1570 {
1571 	struct xfs_mount	*mp = ip->i_mount;
1572 	struct xfs_trans	*tp;
1573 	int			error = 0;
1574 
1575 	/* Start a rolling transaction to remove the mappings */
1576 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1577 	if (error)
1578 		return error;
1579 
1580 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1581 	xfs_trans_ijoin(tp, ip, 0);
1582 
1583 	error = xfs_reflink_clear_inode_flag(ip, &tp);
1584 	if (error)
1585 		goto cancel;
1586 
1587 	error = xfs_trans_commit(tp);
1588 	if (error)
1589 		goto out;
1590 
1591 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1592 	return 0;
1593 cancel:
1594 	xfs_trans_cancel(tp);
1595 out:
1596 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1597 	return error;
1598 }
1599 
1600 /*
1601  * Pre-COW all shared blocks within a given byte range of a file and turn off
1602  * the reflink flag if we unshare all of the file's blocks.
1603  */
1604 int
1605 xfs_reflink_unshare(
1606 	struct xfs_inode	*ip,
1607 	xfs_off_t		offset,
1608 	xfs_off_t		len)
1609 {
1610 	struct xfs_mount	*mp = ip->i_mount;
1611 	xfs_fileoff_t		fbno;
1612 	xfs_filblks_t		end;
1613 	xfs_off_t		isize;
1614 	int			error;
1615 
1616 	if (!xfs_is_reflink_inode(ip))
1617 		return 0;
1618 
1619 	trace_xfs_reflink_unshare(ip, offset, len);
1620 
1621 	inode_dio_wait(VFS_I(ip));
1622 
1623 	/* Try to CoW the selected ranges */
1624 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1625 	fbno = XFS_B_TO_FSBT(mp, offset);
1626 	isize = i_size_read(VFS_I(ip));
1627 	end = XFS_B_TO_FSB(mp, offset + len);
1628 	error = xfs_reflink_dirty_extents(ip, fbno, end, isize);
1629 	if (error)
1630 		goto out_unlock;
1631 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1632 
1633 	/* Wait for the IO to finish */
1634 	error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1635 	if (error)
1636 		goto out;
1637 
1638 	/* Turn off the reflink flag if possible. */
1639 	error = xfs_reflink_try_clear_inode_flag(ip);
1640 	if (error)
1641 		goto out;
1642 
1643 	return 0;
1644 
1645 out_unlock:
1646 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1647 out:
1648 	trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1649 	return error;
1650 }
1651