xref: /openbmc/linux/fs/xfs/xfs_reflink.c (revision 458a445deb9c9fb13cec46fe9b179a84d2ff514f)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_da_format.h"
15 #include "xfs_da_btree.h"
16 #include "xfs_inode.h"
17 #include "xfs_trans.h"
18 #include "xfs_inode_item.h"
19 #include "xfs_bmap.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_error.h"
22 #include "xfs_dir2.h"
23 #include "xfs_dir2_priv.h"
24 #include "xfs_ioctl.h"
25 #include "xfs_trace.h"
26 #include "xfs_log.h"
27 #include "xfs_icache.h"
28 #include "xfs_pnfs.h"
29 #include "xfs_btree.h"
30 #include "xfs_refcount_btree.h"
31 #include "xfs_refcount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_trans_space.h"
34 #include "xfs_bit.h"
35 #include "xfs_alloc.h"
36 #include "xfs_quota_defs.h"
37 #include "xfs_quota.h"
38 #include "xfs_reflink.h"
39 #include "xfs_iomap.h"
40 #include "xfs_rmap_btree.h"
41 #include "xfs_sb.h"
42 #include "xfs_ag_resv.h"
43 
44 /*
45  * Copy on Write of Shared Blocks
46  *
47  * XFS must preserve "the usual" file semantics even when two files share
48  * the same physical blocks.  This means that a write to one file must not
49  * alter the blocks in a different file; the way that we'll do that is
50  * through the use of a copy-on-write mechanism.  At a high level, that
51  * means that when we want to write to a shared block, we allocate a new
52  * block, write the data to the new block, and if that succeeds we map the
53  * new block into the file.
54  *
55  * XFS provides a "delayed allocation" mechanism that defers the allocation
56  * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
57  * possible.  This reduces fragmentation by enabling the filesystem to ask
58  * for bigger chunks less often, which is exactly what we want for CoW.
59  *
60  * The delalloc mechanism begins when the kernel wants to make a block
61  * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
62  * create a delalloc mapping, which is a regular in-core extent, but without
63  * a real startblock.  (For delalloc mappings, the startblock encodes both
64  * a flag that this is a delalloc mapping, and a worst-case estimate of how
65  * many blocks might be required to put the mapping into the BMBT.)  delalloc
66  * mappings are a reservation against the free space in the filesystem;
67  * adjacent mappings can also be combined into fewer larger mappings.
68  *
69  * As an optimization, the CoW extent size hint (cowextsz) creates
70  * outsized aligned delalloc reservations in the hope of landing out of
71  * order nearby CoW writes in a single extent on disk, thereby reducing
72  * fragmentation and improving future performance.
73  *
74  * D: --RRRRRRSSSRRRRRRRR--- (data fork)
75  * C: ------DDDDDDD--------- (CoW fork)
76  *
77  * When dirty pages are being written out (typically in writepage), the
78  * delalloc reservations are converted into unwritten mappings by
79  * allocating blocks and replacing the delalloc mapping with real ones.
80  * A delalloc mapping can be replaced by several unwritten ones if the
81  * free space is fragmented.
82  *
83  * D: --RRRRRRSSSRRRRRRRR---
84  * C: ------UUUUUUU---------
85  *
86  * We want to adapt the delalloc mechanism for copy-on-write, since the
87  * write paths are similar.  The first two steps (creating the reservation
88  * and allocating the blocks) are exactly the same as delalloc except that
89  * the mappings must be stored in a separate CoW fork because we do not want
90  * to disturb the mapping in the data fork until we're sure that the write
91  * succeeded.  IO completion in this case is the process of removing the old
92  * mapping from the data fork and moving the new mapping from the CoW fork to
93  * the data fork.  This will be discussed shortly.
94  *
95  * For now, unaligned directio writes will be bounced back to the page cache.
96  * Block-aligned directio writes will use the same mechanism as buffered
97  * writes.
98  *
99  * Just prior to submitting the actual disk write requests, we convert
100  * the extents representing the range of the file actually being written
101  * (as opposed to extra pieces created for the cowextsize hint) to real
102  * extents.  This will become important in the next step:
103  *
104  * D: --RRRRRRSSSRRRRRRRR---
105  * C: ------UUrrUUU---------
106  *
107  * CoW remapping must be done after the data block write completes,
108  * because we don't want to destroy the old data fork map until we're sure
109  * the new block has been written.  Since the new mappings are kept in a
110  * separate fork, we can simply iterate these mappings to find the ones
111  * that cover the file blocks that we just CoW'd.  For each extent, simply
112  * unmap the corresponding range in the data fork, map the new range into
113  * the data fork, and remove the extent from the CoW fork.  Because of
114  * the presence of the cowextsize hint, however, we must be careful
115  * only to remap the blocks that we've actually written out --  we must
116  * never remap delalloc reservations nor CoW staging blocks that have
117  * yet to be written.  This corresponds exactly to the real extents in
118  * the CoW fork:
119  *
120  * D: --RRRRRRrrSRRRRRRRR---
121  * C: ------UU--UUU---------
122  *
123  * Since the remapping operation can be applied to an arbitrary file
124  * range, we record the need for the remap step as a flag in the ioend
125  * instead of declaring a new IO type.  This is required for direct io
126  * because we only have ioend for the whole dio, and we have to be able to
127  * remember the presence of unwritten blocks and CoW blocks with a single
128  * ioend structure.  Better yet, the more ground we can cover with one
129  * ioend, the better.
130  */
131 
132 /*
133  * Given an AG extent, find the lowest-numbered run of shared blocks
134  * within that range and return the range in fbno/flen.  If
135  * find_end_of_shared is true, return the longest contiguous extent of
136  * shared blocks.  If there are no shared extents, fbno and flen will
137  * be set to NULLAGBLOCK and 0, respectively.
138  */
139 int
140 xfs_reflink_find_shared(
141 	struct xfs_mount	*mp,
142 	struct xfs_trans	*tp,
143 	xfs_agnumber_t		agno,
144 	xfs_agblock_t		agbno,
145 	xfs_extlen_t		aglen,
146 	xfs_agblock_t		*fbno,
147 	xfs_extlen_t		*flen,
148 	bool			find_end_of_shared)
149 {
150 	struct xfs_buf		*agbp;
151 	struct xfs_btree_cur	*cur;
152 	int			error;
153 
154 	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
155 	if (error)
156 		return error;
157 	if (!agbp)
158 		return -ENOMEM;
159 
160 	cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno);
161 
162 	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
163 			find_end_of_shared);
164 
165 	xfs_btree_del_cursor(cur, error);
166 
167 	xfs_trans_brelse(tp, agbp);
168 	return error;
169 }
170 
171 /*
172  * Trim the mapping to the next block where there's a change in the
173  * shared/unshared status.  More specifically, this means that we
174  * find the lowest-numbered extent of shared blocks that coincides with
175  * the given block mapping.  If the shared extent overlaps the start of
176  * the mapping, trim the mapping to the end of the shared extent.  If
177  * the shared region intersects the mapping, trim the mapping to the
178  * start of the shared extent.  If there are no shared regions that
179  * overlap, just return the original extent.
180  */
181 int
182 xfs_reflink_trim_around_shared(
183 	struct xfs_inode	*ip,
184 	struct xfs_bmbt_irec	*irec,
185 	bool			*shared)
186 {
187 	xfs_agnumber_t		agno;
188 	xfs_agblock_t		agbno;
189 	xfs_extlen_t		aglen;
190 	xfs_agblock_t		fbno;
191 	xfs_extlen_t		flen;
192 	int			error = 0;
193 
194 	/* Holes, unwritten, and delalloc extents cannot be shared */
195 	if (!xfs_is_reflink_inode(ip) || !xfs_bmap_is_real_extent(irec)) {
196 		*shared = false;
197 		return 0;
198 	}
199 
200 	trace_xfs_reflink_trim_around_shared(ip, irec);
201 
202 	agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
203 	agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
204 	aglen = irec->br_blockcount;
205 
206 	error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
207 			aglen, &fbno, &flen, true);
208 	if (error)
209 		return error;
210 
211 	*shared = false;
212 	if (fbno == NULLAGBLOCK) {
213 		/* No shared blocks at all. */
214 		return 0;
215 	} else if (fbno == agbno) {
216 		/*
217 		 * The start of this extent is shared.  Truncate the
218 		 * mapping at the end of the shared region so that a
219 		 * subsequent iteration starts at the start of the
220 		 * unshared region.
221 		 */
222 		irec->br_blockcount = flen;
223 		*shared = true;
224 		return 0;
225 	} else {
226 		/*
227 		 * There's a shared extent midway through this extent.
228 		 * Truncate the mapping at the start of the shared
229 		 * extent so that a subsequent iteration starts at the
230 		 * start of the shared region.
231 		 */
232 		irec->br_blockcount = fbno - agbno;
233 		return 0;
234 	}
235 }
236 
237 /*
238  * Trim the passed in imap to the next shared/unshared extent boundary, and
239  * if imap->br_startoff points to a shared extent reserve space for it in the
240  * COW fork.
241  *
242  * Note that imap will always contain the block numbers for the existing blocks
243  * in the data fork, as the upper layers need them for read-modify-write
244  * operations.
245  */
246 int
247 xfs_reflink_reserve_cow(
248 	struct xfs_inode	*ip,
249 	struct xfs_bmbt_irec	*imap)
250 {
251 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
252 	struct xfs_bmbt_irec	got;
253 	int			error = 0;
254 	bool			eof = false;
255 	struct xfs_iext_cursor	icur;
256 	bool			shared;
257 
258 	/*
259 	 * Search the COW fork extent list first.  This serves two purposes:
260 	 * first this implement the speculative preallocation using cowextisze,
261 	 * so that we also unshared block adjacent to shared blocks instead
262 	 * of just the shared blocks themselves.  Second the lookup in the
263 	 * extent list is generally faster than going out to the shared extent
264 	 * tree.
265 	 */
266 
267 	if (!xfs_iext_lookup_extent(ip, ifp, imap->br_startoff, &icur, &got))
268 		eof = true;
269 	if (!eof && got.br_startoff <= imap->br_startoff) {
270 		trace_xfs_reflink_cow_found(ip, imap);
271 		xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
272 		return 0;
273 	}
274 
275 	/* Trim the mapping to the nearest shared extent boundary. */
276 	error = xfs_reflink_trim_around_shared(ip, imap, &shared);
277 	if (error)
278 		return error;
279 
280 	/* Not shared?  Just report the (potentially capped) extent. */
281 	if (!shared)
282 		return 0;
283 
284 	/*
285 	 * Fork all the shared blocks from our write offset until the end of
286 	 * the extent.
287 	 */
288 	error = xfs_qm_dqattach_locked(ip, false);
289 	if (error)
290 		return error;
291 
292 	error = xfs_bmapi_reserve_delalloc(ip, XFS_COW_FORK, imap->br_startoff,
293 			imap->br_blockcount, 0, &got, &icur, eof);
294 	if (error == -ENOSPC || error == -EDQUOT)
295 		trace_xfs_reflink_cow_enospc(ip, imap);
296 	if (error)
297 		return error;
298 
299 	xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
300 	trace_xfs_reflink_cow_alloc(ip, &got);
301 	return 0;
302 }
303 
304 /* Convert part of an unwritten CoW extent to a real one. */
305 STATIC int
306 xfs_reflink_convert_cow_extent(
307 	struct xfs_inode		*ip,
308 	struct xfs_bmbt_irec		*imap,
309 	xfs_fileoff_t			offset_fsb,
310 	xfs_filblks_t			count_fsb)
311 {
312 	int				nimaps = 1;
313 
314 	if (imap->br_state == XFS_EXT_NORM)
315 		return 0;
316 
317 	xfs_trim_extent(imap, offset_fsb, count_fsb);
318 	trace_xfs_reflink_convert_cow(ip, imap);
319 	if (imap->br_blockcount == 0)
320 		return 0;
321 	return xfs_bmapi_write(NULL, ip, imap->br_startoff, imap->br_blockcount,
322 			XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT, 0, imap,
323 			&nimaps);
324 }
325 
326 /* Convert all of the unwritten CoW extents in a file's range to real ones. */
327 int
328 xfs_reflink_convert_cow(
329 	struct xfs_inode	*ip,
330 	xfs_off_t		offset,
331 	xfs_off_t		count)
332 {
333 	struct xfs_mount	*mp = ip->i_mount;
334 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
335 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
336 	xfs_filblks_t		count_fsb = end_fsb - offset_fsb;
337 	struct xfs_bmbt_irec	imap;
338 	int			nimaps = 1, error = 0;
339 
340 	ASSERT(count != 0);
341 
342 	xfs_ilock(ip, XFS_ILOCK_EXCL);
343 	error = xfs_bmapi_write(NULL, ip, offset_fsb, count_fsb,
344 			XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT |
345 			XFS_BMAPI_CONVERT_ONLY, 0, &imap, &nimaps);
346 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
347 	return error;
348 }
349 
350 /*
351  * Find the extent that maps the given range in the COW fork. Even if the extent
352  * is not shared we might have a preallocation for it in the COW fork. If so we
353  * use it that rather than trigger a new allocation.
354  */
355 static int
356 xfs_find_trim_cow_extent(
357 	struct xfs_inode	*ip,
358 	struct xfs_bmbt_irec	*imap,
359 	bool			*shared,
360 	bool			*found)
361 {
362 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
363 	xfs_filblks_t		count_fsb = imap->br_blockcount;
364 	struct xfs_iext_cursor	icur;
365 	struct xfs_bmbt_irec	got;
366 
367 	*found = false;
368 
369 	/*
370 	 * If we don't find an overlapping extent, trim the range we need to
371 	 * allocate to fit the hole we found.
372 	 */
373 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
374 		got.br_startoff = offset_fsb + count_fsb;
375 	if (got.br_startoff > offset_fsb) {
376 		xfs_trim_extent(imap, imap->br_startoff,
377 				got.br_startoff - imap->br_startoff);
378 		return xfs_reflink_trim_around_shared(ip, imap, shared);
379 	}
380 
381 	*shared = true;
382 	if (isnullstartblock(got.br_startblock)) {
383 		xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
384 		return 0;
385 	}
386 
387 	/* real extent found - no need to allocate */
388 	xfs_trim_extent(&got, offset_fsb, count_fsb);
389 	*imap = got;
390 	*found = true;
391 	return 0;
392 }
393 
394 /* Allocate all CoW reservations covering a range of blocks in a file. */
395 int
396 xfs_reflink_allocate_cow(
397 	struct xfs_inode	*ip,
398 	struct xfs_bmbt_irec	*imap,
399 	bool			*shared,
400 	uint			*lockmode)
401 {
402 	struct xfs_mount	*mp = ip->i_mount;
403 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
404 	xfs_filblks_t		count_fsb = imap->br_blockcount;
405 	struct xfs_trans	*tp;
406 	int			nimaps, error = 0;
407 	bool			found;
408 	xfs_filblks_t		resaligned;
409 	xfs_extlen_t		resblks = 0;
410 
411 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
412 	ASSERT(xfs_is_reflink_inode(ip));
413 
414 	error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
415 	if (error || !*shared)
416 		return error;
417 	if (found)
418 		goto convert;
419 
420 	resaligned = xfs_aligned_fsb_count(imap->br_startoff,
421 		imap->br_blockcount, xfs_get_cowextsz_hint(ip));
422 	resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
423 
424 	xfs_iunlock(ip, *lockmode);
425 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
426 	*lockmode = XFS_ILOCK_EXCL;
427 	xfs_ilock(ip, *lockmode);
428 
429 	if (error)
430 		return error;
431 
432 	error = xfs_qm_dqattach_locked(ip, false);
433 	if (error)
434 		goto out_trans_cancel;
435 
436 	/*
437 	 * Check for an overlapping extent again now that we dropped the ilock.
438 	 */
439 	error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
440 	if (error || !*shared)
441 		goto out_trans_cancel;
442 	if (found) {
443 		xfs_trans_cancel(tp);
444 		goto convert;
445 	}
446 
447 	error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0,
448 			XFS_QMOPT_RES_REGBLKS);
449 	if (error)
450 		goto out_trans_cancel;
451 
452 	xfs_trans_ijoin(tp, ip, 0);
453 
454 	/* Allocate the entire reservation as unwritten blocks. */
455 	nimaps = 1;
456 	error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
457 			XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC,
458 			resblks, imap, &nimaps);
459 	if (error)
460 		goto out_unreserve;
461 
462 	xfs_inode_set_cowblocks_tag(ip);
463 	error = xfs_trans_commit(tp);
464 	if (error)
465 		return error;
466 
467 	/*
468 	 * Allocation succeeded but the requested range was not even partially
469 	 * satisfied?  Bail out!
470 	 */
471 	if (nimaps == 0)
472 		return -ENOSPC;
473 convert:
474 	return xfs_reflink_convert_cow_extent(ip, imap, offset_fsb, count_fsb);
475 
476 out_unreserve:
477 	xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0,
478 			XFS_QMOPT_RES_REGBLKS);
479 out_trans_cancel:
480 	xfs_trans_cancel(tp);
481 	return error;
482 }
483 
484 /*
485  * Cancel CoW reservations for some block range of an inode.
486  *
487  * If cancel_real is true this function cancels all COW fork extents for the
488  * inode; if cancel_real is false, real extents are not cleared.
489  *
490  * Caller must have already joined the inode to the current transaction. The
491  * inode will be joined to the transaction returned to the caller.
492  */
493 int
494 xfs_reflink_cancel_cow_blocks(
495 	struct xfs_inode		*ip,
496 	struct xfs_trans		**tpp,
497 	xfs_fileoff_t			offset_fsb,
498 	xfs_fileoff_t			end_fsb,
499 	bool				cancel_real)
500 {
501 	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
502 	struct xfs_bmbt_irec		got, del;
503 	struct xfs_iext_cursor		icur;
504 	int				error = 0;
505 
506 	if (!xfs_inode_has_cow_data(ip))
507 		return 0;
508 	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
509 		return 0;
510 
511 	/* Walk backwards until we're out of the I/O range... */
512 	while (got.br_startoff + got.br_blockcount > offset_fsb) {
513 		del = got;
514 		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
515 
516 		/* Extent delete may have bumped ext forward */
517 		if (!del.br_blockcount) {
518 			xfs_iext_prev(ifp, &icur);
519 			goto next_extent;
520 		}
521 
522 		trace_xfs_reflink_cancel_cow(ip, &del);
523 
524 		if (isnullstartblock(del.br_startblock)) {
525 			error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
526 					&icur, &got, &del);
527 			if (error)
528 				break;
529 		} else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
530 			ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
531 
532 			/* Free the CoW orphan record. */
533 			error = xfs_refcount_free_cow_extent(*tpp,
534 					del.br_startblock, del.br_blockcount);
535 			if (error)
536 				break;
537 
538 			xfs_bmap_add_free(*tpp, del.br_startblock,
539 					  del.br_blockcount, NULL);
540 
541 			/* Roll the transaction */
542 			error = xfs_defer_finish(tpp);
543 			if (error)
544 				break;
545 
546 			/* Remove the mapping from the CoW fork. */
547 			xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
548 
549 			/* Remove the quota reservation */
550 			error = xfs_trans_reserve_quota_nblks(NULL, ip,
551 					-(long)del.br_blockcount, 0,
552 					XFS_QMOPT_RES_REGBLKS);
553 			if (error)
554 				break;
555 		} else {
556 			/* Didn't do anything, push cursor back. */
557 			xfs_iext_prev(ifp, &icur);
558 		}
559 next_extent:
560 		if (!xfs_iext_get_extent(ifp, &icur, &got))
561 			break;
562 	}
563 
564 	/* clear tag if cow fork is emptied */
565 	if (!ifp->if_bytes)
566 		xfs_inode_clear_cowblocks_tag(ip);
567 	return error;
568 }
569 
570 /*
571  * Cancel CoW reservations for some byte range of an inode.
572  *
573  * If cancel_real is true this function cancels all COW fork extents for the
574  * inode; if cancel_real is false, real extents are not cleared.
575  */
576 int
577 xfs_reflink_cancel_cow_range(
578 	struct xfs_inode	*ip,
579 	xfs_off_t		offset,
580 	xfs_off_t		count,
581 	bool			cancel_real)
582 {
583 	struct xfs_trans	*tp;
584 	xfs_fileoff_t		offset_fsb;
585 	xfs_fileoff_t		end_fsb;
586 	int			error;
587 
588 	trace_xfs_reflink_cancel_cow_range(ip, offset, count);
589 	ASSERT(xfs_is_reflink_inode(ip));
590 
591 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
592 	if (count == NULLFILEOFF)
593 		end_fsb = NULLFILEOFF;
594 	else
595 		end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
596 
597 	/* Start a rolling transaction to remove the mappings */
598 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
599 			0, 0, XFS_TRANS_NOFS, &tp);
600 	if (error)
601 		goto out;
602 
603 	xfs_ilock(ip, XFS_ILOCK_EXCL);
604 	xfs_trans_ijoin(tp, ip, 0);
605 
606 	/* Scrape out the old CoW reservations */
607 	error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
608 			cancel_real);
609 	if (error)
610 		goto out_cancel;
611 
612 	error = xfs_trans_commit(tp);
613 
614 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
615 	return error;
616 
617 out_cancel:
618 	xfs_trans_cancel(tp);
619 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
620 out:
621 	trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
622 	return error;
623 }
624 
625 /*
626  * Remap parts of a file's data fork after a successful CoW.
627  */
628 int
629 xfs_reflink_end_cow(
630 	struct xfs_inode		*ip,
631 	xfs_off_t			offset,
632 	xfs_off_t			count)
633 {
634 	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
635 	struct xfs_bmbt_irec		got, del;
636 	struct xfs_trans		*tp;
637 	xfs_fileoff_t			offset_fsb;
638 	xfs_fileoff_t			end_fsb;
639 	int				error;
640 	unsigned int			resblks;
641 	xfs_filblks_t			rlen;
642 	struct xfs_iext_cursor		icur;
643 
644 	trace_xfs_reflink_end_cow(ip, offset, count);
645 
646 	/* No COW extents?  That's easy! */
647 	if (ifp->if_bytes == 0)
648 		return 0;
649 
650 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
651 	end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
652 
653 	/*
654 	 * Start a rolling transaction to switch the mappings.  We're
655 	 * unlikely ever to have to remap 16T worth of single-block
656 	 * extents, so just cap the worst case extent count to 2^32-1.
657 	 * Stick a warning in just in case, and avoid 64-bit division.
658 	 */
659 	BUILD_BUG_ON(MAX_RW_COUNT > UINT_MAX);
660 	if (end_fsb - offset_fsb > UINT_MAX) {
661 		error = -EFSCORRUPTED;
662 		xfs_force_shutdown(ip->i_mount, SHUTDOWN_CORRUPT_INCORE);
663 		ASSERT(0);
664 		goto out;
665 	}
666 	resblks = XFS_NEXTENTADD_SPACE_RES(ip->i_mount,
667 			(unsigned int)(end_fsb - offset_fsb),
668 			XFS_DATA_FORK);
669 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
670 			resblks, 0, XFS_TRANS_RESERVE | XFS_TRANS_NOFS, &tp);
671 	if (error)
672 		goto out;
673 
674 	xfs_ilock(ip, XFS_ILOCK_EXCL);
675 	xfs_trans_ijoin(tp, ip, 0);
676 
677 	/*
678 	 * In case of racing, overlapping AIO writes no COW extents might be
679 	 * left by the time I/O completes for the loser of the race.  In that
680 	 * case we are done.
681 	 */
682 	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
683 		goto out_cancel;
684 
685 	/* Walk backwards until we're out of the I/O range... */
686 	while (got.br_startoff + got.br_blockcount > offset_fsb) {
687 		del = got;
688 		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
689 
690 		/* Extent delete may have bumped ext forward */
691 		if (!del.br_blockcount)
692 			goto prev_extent;
693 
694 		/*
695 		 * Only remap real extent that contain data.  With AIO
696 		 * speculatively preallocations can leak into the range we
697 		 * are called upon, and we need to skip them.
698 		 */
699 		if (!xfs_bmap_is_real_extent(&got))
700 			goto prev_extent;
701 
702 		/* Unmap the old blocks in the data fork. */
703 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
704 		rlen = del.br_blockcount;
705 		error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
706 		if (error)
707 			goto out_cancel;
708 
709 		/* Trim the extent to whatever got unmapped. */
710 		if (rlen) {
711 			xfs_trim_extent(&del, del.br_startoff + rlen,
712 				del.br_blockcount - rlen);
713 		}
714 		trace_xfs_reflink_cow_remap(ip, &del);
715 
716 		/* Free the CoW orphan record. */
717 		error = xfs_refcount_free_cow_extent(tp, del.br_startblock,
718 				del.br_blockcount);
719 		if (error)
720 			goto out_cancel;
721 
722 		/* Map the new blocks into the data fork. */
723 		error = xfs_bmap_map_extent(tp, ip, &del);
724 		if (error)
725 			goto out_cancel;
726 
727 		/* Charge this new data fork mapping to the on-disk quota. */
728 		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
729 				(long)del.br_blockcount);
730 
731 		/* Remove the mapping from the CoW fork. */
732 		xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
733 
734 		error = xfs_defer_finish(&tp);
735 		if (error)
736 			goto out_cancel;
737 		if (!xfs_iext_get_extent(ifp, &icur, &got))
738 			break;
739 		continue;
740 prev_extent:
741 		if (!xfs_iext_prev_extent(ifp, &icur, &got))
742 			break;
743 	}
744 
745 	error = xfs_trans_commit(tp);
746 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
747 	if (error)
748 		goto out;
749 	return 0;
750 
751 out_cancel:
752 	xfs_trans_cancel(tp);
753 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
754 out:
755 	trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
756 	return error;
757 }
758 
759 /*
760  * Free leftover CoW reservations that didn't get cleaned out.
761  */
762 int
763 xfs_reflink_recover_cow(
764 	struct xfs_mount	*mp)
765 {
766 	xfs_agnumber_t		agno;
767 	int			error = 0;
768 
769 	if (!xfs_sb_version_hasreflink(&mp->m_sb))
770 		return 0;
771 
772 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
773 		error = xfs_refcount_recover_cow_leftovers(mp, agno);
774 		if (error)
775 			break;
776 	}
777 
778 	return error;
779 }
780 
781 /*
782  * Reflinking (Block) Ranges of Two Files Together
783  *
784  * First, ensure that the reflink flag is set on both inodes.  The flag is an
785  * optimization to avoid unnecessary refcount btree lookups in the write path.
786  *
787  * Now we can iteratively remap the range of extents (and holes) in src to the
788  * corresponding ranges in dest.  Let drange and srange denote the ranges of
789  * logical blocks in dest and src touched by the reflink operation.
790  *
791  * While the length of drange is greater than zero,
792  *    - Read src's bmbt at the start of srange ("imap")
793  *    - If imap doesn't exist, make imap appear to start at the end of srange
794  *      with zero length.
795  *    - If imap starts before srange, advance imap to start at srange.
796  *    - If imap goes beyond srange, truncate imap to end at the end of srange.
797  *    - Punch (imap start - srange start + imap len) blocks from dest at
798  *      offset (drange start).
799  *    - If imap points to a real range of pblks,
800  *         > Increase the refcount of the imap's pblks
801  *         > Map imap's pblks into dest at the offset
802  *           (drange start + imap start - srange start)
803  *    - Advance drange and srange by (imap start - srange start + imap len)
804  *
805  * Finally, if the reflink made dest longer, update both the in-core and
806  * on-disk file sizes.
807  *
808  * ASCII Art Demonstration:
809  *
810  * Let's say we want to reflink this source file:
811  *
812  * ----SSSSSSS-SSSSS----SSSSSS (src file)
813  *   <-------------------->
814  *
815  * into this destination file:
816  *
817  * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
818  *        <-------------------->
819  * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
820  * Observe that the range has different logical offsets in either file.
821  *
822  * Consider that the first extent in the source file doesn't line up with our
823  * reflink range.  Unmapping  and remapping are separate operations, so we can
824  * unmap more blocks from the destination file than we remap.
825  *
826  * ----SSSSSSS-SSSSS----SSSSSS
827  *   <------->
828  * --DDDDD---------DDDDD--DDD
829  *        <------->
830  *
831  * Now remap the source extent into the destination file:
832  *
833  * ----SSSSSSS-SSSSS----SSSSSS
834  *   <------->
835  * --DDDDD--SSSSSSSDDDDD--DDD
836  *        <------->
837  *
838  * Do likewise with the second hole and extent in our range.  Holes in the
839  * unmap range don't affect our operation.
840  *
841  * ----SSSSSSS-SSSSS----SSSSSS
842  *            <---->
843  * --DDDDD--SSSSSSS-SSSSS-DDD
844  *                 <---->
845  *
846  * Finally, unmap and remap part of the third extent.  This will increase the
847  * size of the destination file.
848  *
849  * ----SSSSSSS-SSSSS----SSSSSS
850  *                  <----->
851  * --DDDDD--SSSSSSS-SSSSS----SSS
852  *                       <----->
853  *
854  * Once we update the destination file's i_size, we're done.
855  */
856 
857 /*
858  * Ensure the reflink bit is set in both inodes.
859  */
860 STATIC int
861 xfs_reflink_set_inode_flag(
862 	struct xfs_inode	*src,
863 	struct xfs_inode	*dest)
864 {
865 	struct xfs_mount	*mp = src->i_mount;
866 	int			error;
867 	struct xfs_trans	*tp;
868 
869 	if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
870 		return 0;
871 
872 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
873 	if (error)
874 		goto out_error;
875 
876 	/* Lock both files against IO */
877 	if (src->i_ino == dest->i_ino)
878 		xfs_ilock(src, XFS_ILOCK_EXCL);
879 	else
880 		xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
881 
882 	if (!xfs_is_reflink_inode(src)) {
883 		trace_xfs_reflink_set_inode_flag(src);
884 		xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
885 		src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
886 		xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
887 		xfs_ifork_init_cow(src);
888 	} else
889 		xfs_iunlock(src, XFS_ILOCK_EXCL);
890 
891 	if (src->i_ino == dest->i_ino)
892 		goto commit_flags;
893 
894 	if (!xfs_is_reflink_inode(dest)) {
895 		trace_xfs_reflink_set_inode_flag(dest);
896 		xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
897 		dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
898 		xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
899 		xfs_ifork_init_cow(dest);
900 	} else
901 		xfs_iunlock(dest, XFS_ILOCK_EXCL);
902 
903 commit_flags:
904 	error = xfs_trans_commit(tp);
905 	if (error)
906 		goto out_error;
907 	return error;
908 
909 out_error:
910 	trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
911 	return error;
912 }
913 
914 /*
915  * Update destination inode size & cowextsize hint, if necessary.
916  */
917 int
918 xfs_reflink_update_dest(
919 	struct xfs_inode	*dest,
920 	xfs_off_t		newlen,
921 	xfs_extlen_t		cowextsize,
922 	unsigned int		remap_flags)
923 {
924 	struct xfs_mount	*mp = dest->i_mount;
925 	struct xfs_trans	*tp;
926 	int			error;
927 
928 	if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
929 		return 0;
930 
931 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
932 	if (error)
933 		goto out_error;
934 
935 	xfs_ilock(dest, XFS_ILOCK_EXCL);
936 	xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
937 
938 	if (newlen > i_size_read(VFS_I(dest))) {
939 		trace_xfs_reflink_update_inode_size(dest, newlen);
940 		i_size_write(VFS_I(dest), newlen);
941 		dest->i_d.di_size = newlen;
942 	}
943 
944 	if (cowextsize) {
945 		dest->i_d.di_cowextsize = cowextsize;
946 		dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
947 	}
948 
949 	xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
950 
951 	error = xfs_trans_commit(tp);
952 	if (error)
953 		goto out_error;
954 	return error;
955 
956 out_error:
957 	trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
958 	return error;
959 }
960 
961 /*
962  * Do we have enough reserve in this AG to handle a reflink?  The refcount
963  * btree already reserved all the space it needs, but the rmap btree can grow
964  * infinitely, so we won't allow more reflinks when the AG is down to the
965  * btree reserves.
966  */
967 static int
968 xfs_reflink_ag_has_free_space(
969 	struct xfs_mount	*mp,
970 	xfs_agnumber_t		agno)
971 {
972 	struct xfs_perag	*pag;
973 	int			error = 0;
974 
975 	if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
976 		return 0;
977 
978 	pag = xfs_perag_get(mp, agno);
979 	if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
980 	    xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
981 		error = -ENOSPC;
982 	xfs_perag_put(pag);
983 	return error;
984 }
985 
986 /*
987  * Unmap a range of blocks from a file, then map other blocks into the hole.
988  * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
989  * The extent irec is mapped into dest at irec->br_startoff.
990  */
991 STATIC int
992 xfs_reflink_remap_extent(
993 	struct xfs_inode	*ip,
994 	struct xfs_bmbt_irec	*irec,
995 	xfs_fileoff_t		destoff,
996 	xfs_off_t		new_isize)
997 {
998 	struct xfs_mount	*mp = ip->i_mount;
999 	bool			real_extent = xfs_bmap_is_real_extent(irec);
1000 	struct xfs_trans	*tp;
1001 	unsigned int		resblks;
1002 	struct xfs_bmbt_irec	uirec;
1003 	xfs_filblks_t		rlen;
1004 	xfs_filblks_t		unmap_len;
1005 	xfs_off_t		newlen;
1006 	int			error;
1007 
1008 	unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
1009 	trace_xfs_reflink_punch_range(ip, destoff, unmap_len);
1010 
1011 	/* No reflinking if we're low on space */
1012 	if (real_extent) {
1013 		error = xfs_reflink_ag_has_free_space(mp,
1014 				XFS_FSB_TO_AGNO(mp, irec->br_startblock));
1015 		if (error)
1016 			goto out;
1017 	}
1018 
1019 	/* Start a rolling transaction to switch the mappings */
1020 	resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
1021 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1022 	if (error)
1023 		goto out;
1024 
1025 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1026 	xfs_trans_ijoin(tp, ip, 0);
1027 
1028 	/* If we're not just clearing space, then do we have enough quota? */
1029 	if (real_extent) {
1030 		error = xfs_trans_reserve_quota_nblks(tp, ip,
1031 				irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS);
1032 		if (error)
1033 			goto out_cancel;
1034 	}
1035 
1036 	trace_xfs_reflink_remap(ip, irec->br_startoff,
1037 				irec->br_blockcount, irec->br_startblock);
1038 
1039 	/* Unmap the old blocks in the data fork. */
1040 	rlen = unmap_len;
1041 	while (rlen) {
1042 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1043 		error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1);
1044 		if (error)
1045 			goto out_cancel;
1046 
1047 		/*
1048 		 * Trim the extent to whatever got unmapped.
1049 		 * Remember, bunmapi works backwards.
1050 		 */
1051 		uirec.br_startblock = irec->br_startblock + rlen;
1052 		uirec.br_startoff = irec->br_startoff + rlen;
1053 		uirec.br_blockcount = unmap_len - rlen;
1054 		unmap_len = rlen;
1055 
1056 		/* If this isn't a real mapping, we're done. */
1057 		if (!real_extent || uirec.br_blockcount == 0)
1058 			goto next_extent;
1059 
1060 		trace_xfs_reflink_remap(ip, uirec.br_startoff,
1061 				uirec.br_blockcount, uirec.br_startblock);
1062 
1063 		/* Update the refcount tree */
1064 		error = xfs_refcount_increase_extent(tp, &uirec);
1065 		if (error)
1066 			goto out_cancel;
1067 
1068 		/* Map the new blocks into the data fork. */
1069 		error = xfs_bmap_map_extent(tp, ip, &uirec);
1070 		if (error)
1071 			goto out_cancel;
1072 
1073 		/* Update quota accounting. */
1074 		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
1075 				uirec.br_blockcount);
1076 
1077 		/* Update dest isize if needed. */
1078 		newlen = XFS_FSB_TO_B(mp,
1079 				uirec.br_startoff + uirec.br_blockcount);
1080 		newlen = min_t(xfs_off_t, newlen, new_isize);
1081 		if (newlen > i_size_read(VFS_I(ip))) {
1082 			trace_xfs_reflink_update_inode_size(ip, newlen);
1083 			i_size_write(VFS_I(ip), newlen);
1084 			ip->i_d.di_size = newlen;
1085 			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1086 		}
1087 
1088 next_extent:
1089 		/* Process all the deferred stuff. */
1090 		error = xfs_defer_finish(&tp);
1091 		if (error)
1092 			goto out_cancel;
1093 	}
1094 
1095 	error = xfs_trans_commit(tp);
1096 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1097 	if (error)
1098 		goto out;
1099 	return 0;
1100 
1101 out_cancel:
1102 	xfs_trans_cancel(tp);
1103 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1104 out:
1105 	trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1106 	return error;
1107 }
1108 
1109 /*
1110  * Iteratively remap one file's extents (and holes) to another's.
1111  */
1112 int
1113 xfs_reflink_remap_blocks(
1114 	struct xfs_inode	*src,
1115 	loff_t			pos_in,
1116 	struct xfs_inode	*dest,
1117 	loff_t			pos_out,
1118 	loff_t			remap_len,
1119 	loff_t			*remapped)
1120 {
1121 	struct xfs_bmbt_irec	imap;
1122 	xfs_fileoff_t		srcoff;
1123 	xfs_fileoff_t		destoff;
1124 	xfs_filblks_t		len;
1125 	xfs_filblks_t		range_len;
1126 	xfs_filblks_t		remapped_len = 0;
1127 	xfs_off_t		new_isize = pos_out + remap_len;
1128 	int			nimaps;
1129 	int			error = 0;
1130 
1131 	destoff = XFS_B_TO_FSBT(src->i_mount, pos_out);
1132 	srcoff = XFS_B_TO_FSBT(src->i_mount, pos_in);
1133 	len = XFS_B_TO_FSB(src->i_mount, remap_len);
1134 
1135 	/* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
1136 	while (len) {
1137 		uint		lock_mode;
1138 
1139 		trace_xfs_reflink_remap_blocks_loop(src, srcoff, len,
1140 				dest, destoff);
1141 
1142 		/* Read extent from the source file */
1143 		nimaps = 1;
1144 		lock_mode = xfs_ilock_data_map_shared(src);
1145 		error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1146 		xfs_iunlock(src, lock_mode);
1147 		if (error)
1148 			break;
1149 		ASSERT(nimaps == 1);
1150 
1151 		trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_IO_OVERWRITE,
1152 				&imap);
1153 
1154 		/* Translate imap into the destination file. */
1155 		range_len = imap.br_startoff + imap.br_blockcount - srcoff;
1156 		imap.br_startoff += destoff - srcoff;
1157 
1158 		/* Clear dest from destoff to the end of imap and map it in. */
1159 		error = xfs_reflink_remap_extent(dest, &imap, destoff,
1160 				new_isize);
1161 		if (error)
1162 			break;
1163 
1164 		if (fatal_signal_pending(current)) {
1165 			error = -EINTR;
1166 			break;
1167 		}
1168 
1169 		/* Advance drange/srange */
1170 		srcoff += range_len;
1171 		destoff += range_len;
1172 		len -= range_len;
1173 		remapped_len += range_len;
1174 	}
1175 
1176 	if (error)
1177 		trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1178 	*remapped = min_t(loff_t, remap_len,
1179 			  XFS_FSB_TO_B(src->i_mount, remapped_len));
1180 	return error;
1181 }
1182 
1183 /*
1184  * Grab the exclusive iolock for a data copy from src to dest, making
1185  * sure to abide vfs locking order (lowest pointer value goes first) and
1186  * breaking the pnfs layout leases on dest before proceeding.  The loop
1187  * is needed because we cannot call the blocking break_layout() with the
1188  * src iolock held, and therefore have to back out both locks.
1189  */
1190 static int
1191 xfs_iolock_two_inodes_and_break_layout(
1192 	struct inode		*src,
1193 	struct inode		*dest)
1194 {
1195 	int			error;
1196 
1197 retry:
1198 	if (src < dest) {
1199 		inode_lock_shared(src);
1200 		inode_lock_nested(dest, I_MUTEX_NONDIR2);
1201 	} else {
1202 		/* src >= dest */
1203 		inode_lock(dest);
1204 	}
1205 
1206 	error = break_layout(dest, false);
1207 	if (error == -EWOULDBLOCK) {
1208 		inode_unlock(dest);
1209 		if (src < dest)
1210 			inode_unlock_shared(src);
1211 		error = break_layout(dest, true);
1212 		if (error)
1213 			return error;
1214 		goto retry;
1215 	}
1216 	if (error) {
1217 		inode_unlock(dest);
1218 		if (src < dest)
1219 			inode_unlock_shared(src);
1220 		return error;
1221 	}
1222 	if (src > dest)
1223 		inode_lock_shared_nested(src, I_MUTEX_NONDIR2);
1224 	return 0;
1225 }
1226 
1227 /* Unlock both inodes after they've been prepped for a range clone. */
1228 void
1229 xfs_reflink_remap_unlock(
1230 	struct file		*file_in,
1231 	struct file		*file_out)
1232 {
1233 	struct inode		*inode_in = file_inode(file_in);
1234 	struct xfs_inode	*src = XFS_I(inode_in);
1235 	struct inode		*inode_out = file_inode(file_out);
1236 	struct xfs_inode	*dest = XFS_I(inode_out);
1237 	bool			same_inode = (inode_in == inode_out);
1238 
1239 	xfs_iunlock(dest, XFS_MMAPLOCK_EXCL);
1240 	if (!same_inode)
1241 		xfs_iunlock(src, XFS_MMAPLOCK_SHARED);
1242 	inode_unlock(inode_out);
1243 	if (!same_inode)
1244 		inode_unlock_shared(inode_in);
1245 }
1246 
1247 /*
1248  * If we're reflinking to a point past the destination file's EOF, we must
1249  * zero any speculative post-EOF preallocations that sit between the old EOF
1250  * and the destination file offset.
1251  */
1252 static int
1253 xfs_reflink_zero_posteof(
1254 	struct xfs_inode	*ip,
1255 	loff_t			pos)
1256 {
1257 	loff_t			isize = i_size_read(VFS_I(ip));
1258 
1259 	if (pos <= isize)
1260 		return 0;
1261 
1262 	trace_xfs_zero_eof(ip, isize, pos - isize);
1263 	return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL,
1264 			&xfs_iomap_ops);
1265 }
1266 
1267 /*
1268  * Prepare two files for range cloning.  Upon a successful return both inodes
1269  * will have the iolock and mmaplock held, the page cache of the out file will
1270  * be truncated, and any leases on the out file will have been broken.  This
1271  * function borrows heavily from xfs_file_aio_write_checks.
1272  *
1273  * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1274  * checked that the bytes beyond EOF physically match. Hence we cannot use the
1275  * EOF block in the source dedupe range because it's not a complete block match,
1276  * hence can introduce a corruption into the file that has it's block replaced.
1277  *
1278  * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1279  * "block aligned" for the purposes of cloning entire files.  However, if the
1280  * source file range includes the EOF block and it lands within the existing EOF
1281  * of the destination file, then we can expose stale data from beyond the source
1282  * file EOF in the destination file.
1283  *
1284  * XFS doesn't support partial block sharing, so in both cases we have check
1285  * these cases ourselves. For dedupe, we can simply round the length to dedupe
1286  * down to the previous whole block and ignore the partial EOF block. While this
1287  * means we can't dedupe the last block of a file, this is an acceptible
1288  * tradeoff for simplicity on implementation.
1289  *
1290  * For cloning, we want to share the partial EOF block if it is also the new EOF
1291  * block of the destination file. If the partial EOF block lies inside the
1292  * existing destination EOF, then we have to abort the clone to avoid exposing
1293  * stale data in the destination file. Hence we reject these clone attempts with
1294  * -EINVAL in this case.
1295  */
1296 int
1297 xfs_reflink_remap_prep(
1298 	struct file		*file_in,
1299 	loff_t			pos_in,
1300 	struct file		*file_out,
1301 	loff_t			pos_out,
1302 	loff_t			*len,
1303 	unsigned int		remap_flags)
1304 {
1305 	struct inode		*inode_in = file_inode(file_in);
1306 	struct xfs_inode	*src = XFS_I(inode_in);
1307 	struct inode		*inode_out = file_inode(file_out);
1308 	struct xfs_inode	*dest = XFS_I(inode_out);
1309 	bool			same_inode = (inode_in == inode_out);
1310 	ssize_t			ret;
1311 
1312 	/* Lock both files against IO */
1313 	ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out);
1314 	if (ret)
1315 		return ret;
1316 	if (same_inode)
1317 		xfs_ilock(src, XFS_MMAPLOCK_EXCL);
1318 	else
1319 		xfs_lock_two_inodes(src, XFS_MMAPLOCK_SHARED, dest,
1320 				XFS_MMAPLOCK_EXCL);
1321 
1322 	/* Check file eligibility and prepare for block sharing. */
1323 	ret = -EINVAL;
1324 	/* Don't reflink realtime inodes */
1325 	if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1326 		goto out_unlock;
1327 
1328 	/* Don't share DAX file data for now. */
1329 	if (IS_DAX(inode_in) || IS_DAX(inode_out))
1330 		goto out_unlock;
1331 
1332 	ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
1333 			len, remap_flags);
1334 	if (ret < 0 || *len == 0)
1335 		goto out_unlock;
1336 
1337 	/* Attach dquots to dest inode before changing block map */
1338 	ret = xfs_qm_dqattach(dest);
1339 	if (ret)
1340 		goto out_unlock;
1341 
1342 	/*
1343 	 * Zero existing post-eof speculative preallocations in the destination
1344 	 * file.
1345 	 */
1346 	ret = xfs_reflink_zero_posteof(dest, pos_out);
1347 	if (ret)
1348 		goto out_unlock;
1349 
1350 	/* Set flags and remap blocks. */
1351 	ret = xfs_reflink_set_inode_flag(src, dest);
1352 	if (ret)
1353 		goto out_unlock;
1354 
1355 	/*
1356 	 * If pos_out > EOF, we may have dirtied blocks between EOF and
1357 	 * pos_out. In that case, we need to extend the flush and unmap to cover
1358 	 * from EOF to the end of the copy length.
1359 	 */
1360 	if (pos_out > XFS_ISIZE(dest)) {
1361 		loff_t	flen = *len + (pos_out - XFS_ISIZE(dest));
1362 		ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1363 	} else {
1364 		ret = xfs_flush_unmap_range(dest, pos_out, *len);
1365 	}
1366 	if (ret)
1367 		goto out_unlock;
1368 
1369 	return 1;
1370 out_unlock:
1371 	xfs_reflink_remap_unlock(file_in, file_out);
1372 	return ret;
1373 }
1374 
1375 /*
1376  * The user wants to preemptively CoW all shared blocks in this file,
1377  * which enables us to turn off the reflink flag.  Iterate all
1378  * extents which are not prealloc/delalloc to see which ranges are
1379  * mentioned in the refcount tree, then read those blocks into the
1380  * pagecache, dirty them, fsync them back out, and then we can update
1381  * the inode flag.  What happens if we run out of memory? :)
1382  */
1383 STATIC int
1384 xfs_reflink_dirty_extents(
1385 	struct xfs_inode	*ip,
1386 	xfs_fileoff_t		fbno,
1387 	xfs_filblks_t		end,
1388 	xfs_off_t		isize)
1389 {
1390 	struct xfs_mount	*mp = ip->i_mount;
1391 	xfs_agnumber_t		agno;
1392 	xfs_agblock_t		agbno;
1393 	xfs_extlen_t		aglen;
1394 	xfs_agblock_t		rbno;
1395 	xfs_extlen_t		rlen;
1396 	xfs_off_t		fpos;
1397 	xfs_off_t		flen;
1398 	struct xfs_bmbt_irec	map[2];
1399 	int			nmaps;
1400 	int			error = 0;
1401 
1402 	while (end - fbno > 0) {
1403 		nmaps = 1;
1404 		/*
1405 		 * Look for extents in the file.  Skip holes, delalloc, or
1406 		 * unwritten extents; they can't be reflinked.
1407 		 */
1408 		error = xfs_bmapi_read(ip, fbno, end - fbno, map, &nmaps, 0);
1409 		if (error)
1410 			goto out;
1411 		if (nmaps == 0)
1412 			break;
1413 		if (!xfs_bmap_is_real_extent(&map[0]))
1414 			goto next;
1415 
1416 		map[1] = map[0];
1417 		while (map[1].br_blockcount) {
1418 			agno = XFS_FSB_TO_AGNO(mp, map[1].br_startblock);
1419 			agbno = XFS_FSB_TO_AGBNO(mp, map[1].br_startblock);
1420 			aglen = map[1].br_blockcount;
1421 
1422 			error = xfs_reflink_find_shared(mp, NULL, agno, agbno,
1423 					aglen, &rbno, &rlen, true);
1424 			if (error)
1425 				goto out;
1426 			if (rbno == NULLAGBLOCK)
1427 				break;
1428 
1429 			/* Dirty the pages */
1430 			xfs_iunlock(ip, XFS_ILOCK_EXCL);
1431 			fpos = XFS_FSB_TO_B(mp, map[1].br_startoff +
1432 					(rbno - agbno));
1433 			flen = XFS_FSB_TO_B(mp, rlen);
1434 			if (fpos + flen > isize)
1435 				flen = isize - fpos;
1436 			error = iomap_file_dirty(VFS_I(ip), fpos, flen,
1437 					&xfs_iomap_ops);
1438 			xfs_ilock(ip, XFS_ILOCK_EXCL);
1439 			if (error)
1440 				goto out;
1441 
1442 			map[1].br_blockcount -= (rbno - agbno + rlen);
1443 			map[1].br_startoff += (rbno - agbno + rlen);
1444 			map[1].br_startblock += (rbno - agbno + rlen);
1445 		}
1446 
1447 next:
1448 		fbno = map[0].br_startoff + map[0].br_blockcount;
1449 	}
1450 out:
1451 	return error;
1452 }
1453 
1454 /* Does this inode need the reflink flag? */
1455 int
1456 xfs_reflink_inode_has_shared_extents(
1457 	struct xfs_trans		*tp,
1458 	struct xfs_inode		*ip,
1459 	bool				*has_shared)
1460 {
1461 	struct xfs_bmbt_irec		got;
1462 	struct xfs_mount		*mp = ip->i_mount;
1463 	struct xfs_ifork		*ifp;
1464 	xfs_agnumber_t			agno;
1465 	xfs_agblock_t			agbno;
1466 	xfs_extlen_t			aglen;
1467 	xfs_agblock_t			rbno;
1468 	xfs_extlen_t			rlen;
1469 	struct xfs_iext_cursor		icur;
1470 	bool				found;
1471 	int				error;
1472 
1473 	ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1474 	if (!(ifp->if_flags & XFS_IFEXTENTS)) {
1475 		error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1476 		if (error)
1477 			return error;
1478 	}
1479 
1480 	*has_shared = false;
1481 	found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1482 	while (found) {
1483 		if (isnullstartblock(got.br_startblock) ||
1484 		    got.br_state != XFS_EXT_NORM)
1485 			goto next;
1486 		agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1487 		agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1488 		aglen = got.br_blockcount;
1489 
1490 		error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1491 				&rbno, &rlen, false);
1492 		if (error)
1493 			return error;
1494 		/* Is there still a shared block here? */
1495 		if (rbno != NULLAGBLOCK) {
1496 			*has_shared = true;
1497 			return 0;
1498 		}
1499 next:
1500 		found = xfs_iext_next_extent(ifp, &icur, &got);
1501 	}
1502 
1503 	return 0;
1504 }
1505 
1506 /*
1507  * Clear the inode reflink flag if there are no shared extents.
1508  *
1509  * The caller is responsible for joining the inode to the transaction passed in.
1510  * The inode will be joined to the transaction that is returned to the caller.
1511  */
1512 int
1513 xfs_reflink_clear_inode_flag(
1514 	struct xfs_inode	*ip,
1515 	struct xfs_trans	**tpp)
1516 {
1517 	bool			needs_flag;
1518 	int			error = 0;
1519 
1520 	ASSERT(xfs_is_reflink_inode(ip));
1521 
1522 	error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1523 	if (error || needs_flag)
1524 		return error;
1525 
1526 	/*
1527 	 * We didn't find any shared blocks so turn off the reflink flag.
1528 	 * First, get rid of any leftover CoW mappings.
1529 	 */
1530 	error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF, true);
1531 	if (error)
1532 		return error;
1533 
1534 	/* Clear the inode flag. */
1535 	trace_xfs_reflink_unset_inode_flag(ip);
1536 	ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1537 	xfs_inode_clear_cowblocks_tag(ip);
1538 	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1539 
1540 	return error;
1541 }
1542 
1543 /*
1544  * Clear the inode reflink flag if there are no shared extents and the size
1545  * hasn't changed.
1546  */
1547 STATIC int
1548 xfs_reflink_try_clear_inode_flag(
1549 	struct xfs_inode	*ip)
1550 {
1551 	struct xfs_mount	*mp = ip->i_mount;
1552 	struct xfs_trans	*tp;
1553 	int			error = 0;
1554 
1555 	/* Start a rolling transaction to remove the mappings */
1556 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1557 	if (error)
1558 		return error;
1559 
1560 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1561 	xfs_trans_ijoin(tp, ip, 0);
1562 
1563 	error = xfs_reflink_clear_inode_flag(ip, &tp);
1564 	if (error)
1565 		goto cancel;
1566 
1567 	error = xfs_trans_commit(tp);
1568 	if (error)
1569 		goto out;
1570 
1571 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1572 	return 0;
1573 cancel:
1574 	xfs_trans_cancel(tp);
1575 out:
1576 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1577 	return error;
1578 }
1579 
1580 /*
1581  * Pre-COW all shared blocks within a given byte range of a file and turn off
1582  * the reflink flag if we unshare all of the file's blocks.
1583  */
1584 int
1585 xfs_reflink_unshare(
1586 	struct xfs_inode	*ip,
1587 	xfs_off_t		offset,
1588 	xfs_off_t		len)
1589 {
1590 	struct xfs_mount	*mp = ip->i_mount;
1591 	xfs_fileoff_t		fbno;
1592 	xfs_filblks_t		end;
1593 	xfs_off_t		isize;
1594 	int			error;
1595 
1596 	if (!xfs_is_reflink_inode(ip))
1597 		return 0;
1598 
1599 	trace_xfs_reflink_unshare(ip, offset, len);
1600 
1601 	inode_dio_wait(VFS_I(ip));
1602 
1603 	/* Try to CoW the selected ranges */
1604 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1605 	fbno = XFS_B_TO_FSBT(mp, offset);
1606 	isize = i_size_read(VFS_I(ip));
1607 	end = XFS_B_TO_FSB(mp, offset + len);
1608 	error = xfs_reflink_dirty_extents(ip, fbno, end, isize);
1609 	if (error)
1610 		goto out_unlock;
1611 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1612 
1613 	/* Wait for the IO to finish */
1614 	error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1615 	if (error)
1616 		goto out;
1617 
1618 	/* Turn off the reflink flag if possible. */
1619 	error = xfs_reflink_try_clear_inode_flag(ip);
1620 	if (error)
1621 		goto out;
1622 
1623 	return 0;
1624 
1625 out_unlock:
1626 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1627 out:
1628 	trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1629 	return error;
1630 }
1631