xref: /openbmc/linux/fs/xfs/xfs_reflink.c (revision 3ce311af)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_btree.h"
21 #include "xfs_refcount_btree.h"
22 #include "xfs_refcount.h"
23 #include "xfs_bmap_btree.h"
24 #include "xfs_trans_space.h"
25 #include "xfs_bit.h"
26 #include "xfs_alloc.h"
27 #include "xfs_quota.h"
28 #include "xfs_reflink.h"
29 #include "xfs_iomap.h"
30 #include "xfs_sb.h"
31 #include "xfs_ag_resv.h"
32 
33 /*
34  * Copy on Write of Shared Blocks
35  *
36  * XFS must preserve "the usual" file semantics even when two files share
37  * the same physical blocks.  This means that a write to one file must not
38  * alter the blocks in a different file; the way that we'll do that is
39  * through the use of a copy-on-write mechanism.  At a high level, that
40  * means that when we want to write to a shared block, we allocate a new
41  * block, write the data to the new block, and if that succeeds we map the
42  * new block into the file.
43  *
44  * XFS provides a "delayed allocation" mechanism that defers the allocation
45  * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
46  * possible.  This reduces fragmentation by enabling the filesystem to ask
47  * for bigger chunks less often, which is exactly what we want for CoW.
48  *
49  * The delalloc mechanism begins when the kernel wants to make a block
50  * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
51  * create a delalloc mapping, which is a regular in-core extent, but without
52  * a real startblock.  (For delalloc mappings, the startblock encodes both
53  * a flag that this is a delalloc mapping, and a worst-case estimate of how
54  * many blocks might be required to put the mapping into the BMBT.)  delalloc
55  * mappings are a reservation against the free space in the filesystem;
56  * adjacent mappings can also be combined into fewer larger mappings.
57  *
58  * As an optimization, the CoW extent size hint (cowextsz) creates
59  * outsized aligned delalloc reservations in the hope of landing out of
60  * order nearby CoW writes in a single extent on disk, thereby reducing
61  * fragmentation and improving future performance.
62  *
63  * D: --RRRRRRSSSRRRRRRRR--- (data fork)
64  * C: ------DDDDDDD--------- (CoW fork)
65  *
66  * When dirty pages are being written out (typically in writepage), the
67  * delalloc reservations are converted into unwritten mappings by
68  * allocating blocks and replacing the delalloc mapping with real ones.
69  * A delalloc mapping can be replaced by several unwritten ones if the
70  * free space is fragmented.
71  *
72  * D: --RRRRRRSSSRRRRRRRR---
73  * C: ------UUUUUUU---------
74  *
75  * We want to adapt the delalloc mechanism for copy-on-write, since the
76  * write paths are similar.  The first two steps (creating the reservation
77  * and allocating the blocks) are exactly the same as delalloc except that
78  * the mappings must be stored in a separate CoW fork because we do not want
79  * to disturb the mapping in the data fork until we're sure that the write
80  * succeeded.  IO completion in this case is the process of removing the old
81  * mapping from the data fork and moving the new mapping from the CoW fork to
82  * the data fork.  This will be discussed shortly.
83  *
84  * For now, unaligned directio writes will be bounced back to the page cache.
85  * Block-aligned directio writes will use the same mechanism as buffered
86  * writes.
87  *
88  * Just prior to submitting the actual disk write requests, we convert
89  * the extents representing the range of the file actually being written
90  * (as opposed to extra pieces created for the cowextsize hint) to real
91  * extents.  This will become important in the next step:
92  *
93  * D: --RRRRRRSSSRRRRRRRR---
94  * C: ------UUrrUUU---------
95  *
96  * CoW remapping must be done after the data block write completes,
97  * because we don't want to destroy the old data fork map until we're sure
98  * the new block has been written.  Since the new mappings are kept in a
99  * separate fork, we can simply iterate these mappings to find the ones
100  * that cover the file blocks that we just CoW'd.  For each extent, simply
101  * unmap the corresponding range in the data fork, map the new range into
102  * the data fork, and remove the extent from the CoW fork.  Because of
103  * the presence of the cowextsize hint, however, we must be careful
104  * only to remap the blocks that we've actually written out --  we must
105  * never remap delalloc reservations nor CoW staging blocks that have
106  * yet to be written.  This corresponds exactly to the real extents in
107  * the CoW fork:
108  *
109  * D: --RRRRRRrrSRRRRRRRR---
110  * C: ------UU--UUU---------
111  *
112  * Since the remapping operation can be applied to an arbitrary file
113  * range, we record the need for the remap step as a flag in the ioend
114  * instead of declaring a new IO type.  This is required for direct io
115  * because we only have ioend for the whole dio, and we have to be able to
116  * remember the presence of unwritten blocks and CoW blocks with a single
117  * ioend structure.  Better yet, the more ground we can cover with one
118  * ioend, the better.
119  */
120 
121 /*
122  * Given an AG extent, find the lowest-numbered run of shared blocks
123  * within that range and return the range in fbno/flen.  If
124  * find_end_of_shared is true, return the longest contiguous extent of
125  * shared blocks.  If there are no shared extents, fbno and flen will
126  * be set to NULLAGBLOCK and 0, respectively.
127  */
128 int
129 xfs_reflink_find_shared(
130 	struct xfs_mount	*mp,
131 	struct xfs_trans	*tp,
132 	xfs_agnumber_t		agno,
133 	xfs_agblock_t		agbno,
134 	xfs_extlen_t		aglen,
135 	xfs_agblock_t		*fbno,
136 	xfs_extlen_t		*flen,
137 	bool			find_end_of_shared)
138 {
139 	struct xfs_buf		*agbp;
140 	struct xfs_btree_cur	*cur;
141 	int			error;
142 
143 	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
144 	if (error)
145 		return error;
146 	if (!agbp)
147 		return -ENOMEM;
148 
149 	cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno);
150 
151 	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
152 			find_end_of_shared);
153 
154 	xfs_btree_del_cursor(cur, error);
155 
156 	xfs_trans_brelse(tp, agbp);
157 	return error;
158 }
159 
160 /*
161  * Trim the mapping to the next block where there's a change in the
162  * shared/unshared status.  More specifically, this means that we
163  * find the lowest-numbered extent of shared blocks that coincides with
164  * the given block mapping.  If the shared extent overlaps the start of
165  * the mapping, trim the mapping to the end of the shared extent.  If
166  * the shared region intersects the mapping, trim the mapping to the
167  * start of the shared extent.  If there are no shared regions that
168  * overlap, just return the original extent.
169  */
170 int
171 xfs_reflink_trim_around_shared(
172 	struct xfs_inode	*ip,
173 	struct xfs_bmbt_irec	*irec,
174 	bool			*shared)
175 {
176 	xfs_agnumber_t		agno;
177 	xfs_agblock_t		agbno;
178 	xfs_extlen_t		aglen;
179 	xfs_agblock_t		fbno;
180 	xfs_extlen_t		flen;
181 	int			error = 0;
182 
183 	/* Holes, unwritten, and delalloc extents cannot be shared */
184 	if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_real_extent(irec)) {
185 		*shared = false;
186 		return 0;
187 	}
188 
189 	trace_xfs_reflink_trim_around_shared(ip, irec);
190 
191 	agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
192 	agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
193 	aglen = irec->br_blockcount;
194 
195 	error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
196 			aglen, &fbno, &flen, true);
197 	if (error)
198 		return error;
199 
200 	*shared = false;
201 	if (fbno == NULLAGBLOCK) {
202 		/* No shared blocks at all. */
203 		return 0;
204 	} else if (fbno == agbno) {
205 		/*
206 		 * The start of this extent is shared.  Truncate the
207 		 * mapping at the end of the shared region so that a
208 		 * subsequent iteration starts at the start of the
209 		 * unshared region.
210 		 */
211 		irec->br_blockcount = flen;
212 		*shared = true;
213 		return 0;
214 	} else {
215 		/*
216 		 * There's a shared extent midway through this extent.
217 		 * Truncate the mapping at the start of the shared
218 		 * extent so that a subsequent iteration starts at the
219 		 * start of the shared region.
220 		 */
221 		irec->br_blockcount = fbno - agbno;
222 		return 0;
223 	}
224 }
225 
226 bool
227 xfs_inode_need_cow(
228 	struct xfs_inode	*ip,
229 	struct xfs_bmbt_irec	*imap,
230 	bool			*shared)
231 {
232 	/* We can't update any real extents in always COW mode. */
233 	if (xfs_is_always_cow_inode(ip) &&
234 	    !isnullstartblock(imap->br_startblock)) {
235 		*shared = true;
236 		return 0;
237 	}
238 
239 	/* Trim the mapping to the nearest shared extent boundary. */
240 	return xfs_reflink_trim_around_shared(ip, imap, shared);
241 }
242 
243 static int
244 xfs_reflink_convert_cow_locked(
245 	struct xfs_inode	*ip,
246 	xfs_fileoff_t		offset_fsb,
247 	xfs_filblks_t		count_fsb)
248 {
249 	struct xfs_iext_cursor	icur;
250 	struct xfs_bmbt_irec	got;
251 	struct xfs_btree_cur	*dummy_cur = NULL;
252 	int			dummy_logflags;
253 	int			error = 0;
254 
255 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
256 		return 0;
257 
258 	do {
259 		if (got.br_startoff >= offset_fsb + count_fsb)
260 			break;
261 		if (got.br_state == XFS_EXT_NORM)
262 			continue;
263 		if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
264 			return -EIO;
265 
266 		xfs_trim_extent(&got, offset_fsb, count_fsb);
267 		if (!got.br_blockcount)
268 			continue;
269 
270 		got.br_state = XFS_EXT_NORM;
271 		error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
272 				XFS_COW_FORK, &icur, &dummy_cur, &got,
273 				&dummy_logflags);
274 		if (error)
275 			return error;
276 	} while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
277 
278 	return error;
279 }
280 
281 /* Convert all of the unwritten CoW extents in a file's range to real ones. */
282 int
283 xfs_reflink_convert_cow(
284 	struct xfs_inode	*ip,
285 	xfs_off_t		offset,
286 	xfs_off_t		count)
287 {
288 	struct xfs_mount	*mp = ip->i_mount;
289 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
290 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
291 	xfs_filblks_t		count_fsb = end_fsb - offset_fsb;
292 	int			error;
293 
294 	ASSERT(count != 0);
295 
296 	xfs_ilock(ip, XFS_ILOCK_EXCL);
297 	error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
298 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
299 	return error;
300 }
301 
302 /*
303  * Find the extent that maps the given range in the COW fork. Even if the extent
304  * is not shared we might have a preallocation for it in the COW fork. If so we
305  * use it that rather than trigger a new allocation.
306  */
307 static int
308 xfs_find_trim_cow_extent(
309 	struct xfs_inode	*ip,
310 	struct xfs_bmbt_irec	*imap,
311 	struct xfs_bmbt_irec	*cmap,
312 	bool			*shared,
313 	bool			*found)
314 {
315 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
316 	xfs_filblks_t		count_fsb = imap->br_blockcount;
317 	struct xfs_iext_cursor	icur;
318 
319 	*found = false;
320 
321 	/*
322 	 * If we don't find an overlapping extent, trim the range we need to
323 	 * allocate to fit the hole we found.
324 	 */
325 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap))
326 		cmap->br_startoff = offset_fsb + count_fsb;
327 	if (cmap->br_startoff > offset_fsb) {
328 		xfs_trim_extent(imap, imap->br_startoff,
329 				cmap->br_startoff - imap->br_startoff);
330 		return xfs_inode_need_cow(ip, imap, shared);
331 	}
332 
333 	*shared = true;
334 	if (isnullstartblock(cmap->br_startblock)) {
335 		xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount);
336 		return 0;
337 	}
338 
339 	/* real extent found - no need to allocate */
340 	xfs_trim_extent(cmap, offset_fsb, count_fsb);
341 	*found = true;
342 	return 0;
343 }
344 
345 /* Allocate all CoW reservations covering a range of blocks in a file. */
346 int
347 xfs_reflink_allocate_cow(
348 	struct xfs_inode	*ip,
349 	struct xfs_bmbt_irec	*imap,
350 	struct xfs_bmbt_irec	*cmap,
351 	bool			*shared,
352 	uint			*lockmode,
353 	bool			convert_now)
354 {
355 	struct xfs_mount	*mp = ip->i_mount;
356 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
357 	xfs_filblks_t		count_fsb = imap->br_blockcount;
358 	struct xfs_trans	*tp;
359 	int			nimaps, error = 0;
360 	bool			found;
361 	xfs_filblks_t		resaligned;
362 	xfs_extlen_t		resblks = 0;
363 
364 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
365 	if (!ip->i_cowfp) {
366 		ASSERT(!xfs_is_reflink_inode(ip));
367 		xfs_ifork_init_cow(ip);
368 	}
369 
370 	error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
371 	if (error || !*shared)
372 		return error;
373 	if (found)
374 		goto convert;
375 
376 	resaligned = xfs_aligned_fsb_count(imap->br_startoff,
377 		imap->br_blockcount, xfs_get_cowextsz_hint(ip));
378 	resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
379 
380 	xfs_iunlock(ip, *lockmode);
381 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
382 	*lockmode = XFS_ILOCK_EXCL;
383 	xfs_ilock(ip, *lockmode);
384 
385 	if (error)
386 		return error;
387 
388 	error = xfs_qm_dqattach_locked(ip, false);
389 	if (error)
390 		goto out_trans_cancel;
391 
392 	/*
393 	 * Check for an overlapping extent again now that we dropped the ilock.
394 	 */
395 	error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
396 	if (error || !*shared)
397 		goto out_trans_cancel;
398 	if (found) {
399 		xfs_trans_cancel(tp);
400 		goto convert;
401 	}
402 
403 	error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0,
404 			XFS_QMOPT_RES_REGBLKS);
405 	if (error)
406 		goto out_trans_cancel;
407 
408 	xfs_trans_ijoin(tp, ip, 0);
409 
410 	/* Allocate the entire reservation as unwritten blocks. */
411 	nimaps = 1;
412 	error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
413 			XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap,
414 			&nimaps);
415 	if (error)
416 		goto out_unreserve;
417 
418 	xfs_inode_set_cowblocks_tag(ip);
419 	error = xfs_trans_commit(tp);
420 	if (error)
421 		return error;
422 
423 	/*
424 	 * Allocation succeeded but the requested range was not even partially
425 	 * satisfied?  Bail out!
426 	 */
427 	if (nimaps == 0)
428 		return -ENOSPC;
429 convert:
430 	xfs_trim_extent(cmap, offset_fsb, count_fsb);
431 	/*
432 	 * COW fork extents are supposed to remain unwritten until we're ready
433 	 * to initiate a disk write.  For direct I/O we are going to write the
434 	 * data and need the conversion, but for buffered writes we're done.
435 	 */
436 	if (!convert_now || cmap->br_state == XFS_EXT_NORM)
437 		return 0;
438 	trace_xfs_reflink_convert_cow(ip, cmap);
439 	return xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
440 
441 out_unreserve:
442 	xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0,
443 			XFS_QMOPT_RES_REGBLKS);
444 out_trans_cancel:
445 	xfs_trans_cancel(tp);
446 	return error;
447 }
448 
449 /*
450  * Cancel CoW reservations for some block range of an inode.
451  *
452  * If cancel_real is true this function cancels all COW fork extents for the
453  * inode; if cancel_real is false, real extents are not cleared.
454  *
455  * Caller must have already joined the inode to the current transaction. The
456  * inode will be joined to the transaction returned to the caller.
457  */
458 int
459 xfs_reflink_cancel_cow_blocks(
460 	struct xfs_inode		*ip,
461 	struct xfs_trans		**tpp,
462 	xfs_fileoff_t			offset_fsb,
463 	xfs_fileoff_t			end_fsb,
464 	bool				cancel_real)
465 {
466 	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
467 	struct xfs_bmbt_irec		got, del;
468 	struct xfs_iext_cursor		icur;
469 	int				error = 0;
470 
471 	if (!xfs_inode_has_cow_data(ip))
472 		return 0;
473 	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
474 		return 0;
475 
476 	/* Walk backwards until we're out of the I/O range... */
477 	while (got.br_startoff + got.br_blockcount > offset_fsb) {
478 		del = got;
479 		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
480 
481 		/* Extent delete may have bumped ext forward */
482 		if (!del.br_blockcount) {
483 			xfs_iext_prev(ifp, &icur);
484 			goto next_extent;
485 		}
486 
487 		trace_xfs_reflink_cancel_cow(ip, &del);
488 
489 		if (isnullstartblock(del.br_startblock)) {
490 			error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
491 					&icur, &got, &del);
492 			if (error)
493 				break;
494 		} else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
495 			ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
496 
497 			/* Free the CoW orphan record. */
498 			xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
499 					del.br_blockcount);
500 
501 			xfs_bmap_add_free(*tpp, del.br_startblock,
502 					  del.br_blockcount, NULL);
503 
504 			/* Roll the transaction */
505 			error = xfs_defer_finish(tpp);
506 			if (error)
507 				break;
508 
509 			/* Remove the mapping from the CoW fork. */
510 			xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
511 
512 			/* Remove the quota reservation */
513 			error = xfs_trans_reserve_quota_nblks(NULL, ip,
514 					-(long)del.br_blockcount, 0,
515 					XFS_QMOPT_RES_REGBLKS);
516 			if (error)
517 				break;
518 		} else {
519 			/* Didn't do anything, push cursor back. */
520 			xfs_iext_prev(ifp, &icur);
521 		}
522 next_extent:
523 		if (!xfs_iext_get_extent(ifp, &icur, &got))
524 			break;
525 	}
526 
527 	/* clear tag if cow fork is emptied */
528 	if (!ifp->if_bytes)
529 		xfs_inode_clear_cowblocks_tag(ip);
530 	return error;
531 }
532 
533 /*
534  * Cancel CoW reservations for some byte range of an inode.
535  *
536  * If cancel_real is true this function cancels all COW fork extents for the
537  * inode; if cancel_real is false, real extents are not cleared.
538  */
539 int
540 xfs_reflink_cancel_cow_range(
541 	struct xfs_inode	*ip,
542 	xfs_off_t		offset,
543 	xfs_off_t		count,
544 	bool			cancel_real)
545 {
546 	struct xfs_trans	*tp;
547 	xfs_fileoff_t		offset_fsb;
548 	xfs_fileoff_t		end_fsb;
549 	int			error;
550 
551 	trace_xfs_reflink_cancel_cow_range(ip, offset, count);
552 	ASSERT(ip->i_cowfp);
553 
554 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
555 	if (count == NULLFILEOFF)
556 		end_fsb = NULLFILEOFF;
557 	else
558 		end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
559 
560 	/* Start a rolling transaction to remove the mappings */
561 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
562 			0, 0, 0, &tp);
563 	if (error)
564 		goto out;
565 
566 	xfs_ilock(ip, XFS_ILOCK_EXCL);
567 	xfs_trans_ijoin(tp, ip, 0);
568 
569 	/* Scrape out the old CoW reservations */
570 	error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
571 			cancel_real);
572 	if (error)
573 		goto out_cancel;
574 
575 	error = xfs_trans_commit(tp);
576 
577 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
578 	return error;
579 
580 out_cancel:
581 	xfs_trans_cancel(tp);
582 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
583 out:
584 	trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
585 	return error;
586 }
587 
588 /*
589  * Remap part of the CoW fork into the data fork.
590  *
591  * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
592  * into the data fork; this function will remap what it can (at the end of the
593  * range) and update @end_fsb appropriately.  Each remap gets its own
594  * transaction because we can end up merging and splitting bmbt blocks for
595  * every remap operation and we'd like to keep the block reservation
596  * requirements as low as possible.
597  */
598 STATIC int
599 xfs_reflink_end_cow_extent(
600 	struct xfs_inode	*ip,
601 	xfs_fileoff_t		offset_fsb,
602 	xfs_fileoff_t		*end_fsb)
603 {
604 	struct xfs_bmbt_irec	got, del;
605 	struct xfs_iext_cursor	icur;
606 	struct xfs_mount	*mp = ip->i_mount;
607 	struct xfs_trans	*tp;
608 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
609 	xfs_filblks_t		rlen;
610 	unsigned int		resblks;
611 	int			error;
612 
613 	/* No COW extents?  That's easy! */
614 	if (ifp->if_bytes == 0) {
615 		*end_fsb = offset_fsb;
616 		return 0;
617 	}
618 
619 	resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
620 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
621 			XFS_TRANS_RESERVE, &tp);
622 	if (error)
623 		return error;
624 
625 	/*
626 	 * Lock the inode.  We have to ijoin without automatic unlock because
627 	 * the lead transaction is the refcountbt record deletion; the data
628 	 * fork update follows as a deferred log item.
629 	 */
630 	xfs_ilock(ip, XFS_ILOCK_EXCL);
631 	xfs_trans_ijoin(tp, ip, 0);
632 
633 	/*
634 	 * In case of racing, overlapping AIO writes no COW extents might be
635 	 * left by the time I/O completes for the loser of the race.  In that
636 	 * case we are done.
637 	 */
638 	if (!xfs_iext_lookup_extent_before(ip, ifp, end_fsb, &icur, &got) ||
639 	    got.br_startoff + got.br_blockcount <= offset_fsb) {
640 		*end_fsb = offset_fsb;
641 		goto out_cancel;
642 	}
643 
644 	/*
645 	 * Structure copy @got into @del, then trim @del to the range that we
646 	 * were asked to remap.  We preserve @got for the eventual CoW fork
647 	 * deletion; from now on @del represents the mapping that we're
648 	 * actually remapping.
649 	 */
650 	del = got;
651 	xfs_trim_extent(&del, offset_fsb, *end_fsb - offset_fsb);
652 
653 	ASSERT(del.br_blockcount > 0);
654 
655 	/*
656 	 * Only remap real extents that contain data.  With AIO, speculative
657 	 * preallocations can leak into the range we are called upon, and we
658 	 * need to skip them.
659 	 */
660 	if (!xfs_bmap_is_real_extent(&got)) {
661 		*end_fsb = del.br_startoff;
662 		goto out_cancel;
663 	}
664 
665 	/* Unmap the old blocks in the data fork. */
666 	rlen = del.br_blockcount;
667 	error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
668 	if (error)
669 		goto out_cancel;
670 
671 	/* Trim the extent to whatever got unmapped. */
672 	xfs_trim_extent(&del, del.br_startoff + rlen, del.br_blockcount - rlen);
673 	trace_xfs_reflink_cow_remap(ip, &del);
674 
675 	/* Free the CoW orphan record. */
676 	xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
677 
678 	/* Map the new blocks into the data fork. */
679 	xfs_bmap_map_extent(tp, ip, &del);
680 
681 	/* Charge this new data fork mapping to the on-disk quota. */
682 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
683 			(long)del.br_blockcount);
684 
685 	/* Remove the mapping from the CoW fork. */
686 	xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
687 
688 	error = xfs_trans_commit(tp);
689 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
690 	if (error)
691 		return error;
692 
693 	/* Update the caller about how much progress we made. */
694 	*end_fsb = del.br_startoff;
695 	return 0;
696 
697 out_cancel:
698 	xfs_trans_cancel(tp);
699 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
700 	return error;
701 }
702 
703 /*
704  * Remap parts of a file's data fork after a successful CoW.
705  */
706 int
707 xfs_reflink_end_cow(
708 	struct xfs_inode		*ip,
709 	xfs_off_t			offset,
710 	xfs_off_t			count)
711 {
712 	xfs_fileoff_t			offset_fsb;
713 	xfs_fileoff_t			end_fsb;
714 	int				error = 0;
715 
716 	trace_xfs_reflink_end_cow(ip, offset, count);
717 
718 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
719 	end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
720 
721 	/*
722 	 * Walk backwards until we're out of the I/O range.  The loop function
723 	 * repeatedly cycles the ILOCK to allocate one transaction per remapped
724 	 * extent.
725 	 *
726 	 * If we're being called by writeback then the the pages will still
727 	 * have PageWriteback set, which prevents races with reflink remapping
728 	 * and truncate.  Reflink remapping prevents races with writeback by
729 	 * taking the iolock and mmaplock before flushing the pages and
730 	 * remapping, which means there won't be any further writeback or page
731 	 * cache dirtying until the reflink completes.
732 	 *
733 	 * We should never have two threads issuing writeback for the same file
734 	 * region.  There are also have post-eof checks in the writeback
735 	 * preparation code so that we don't bother writing out pages that are
736 	 * about to be truncated.
737 	 *
738 	 * If we're being called as part of directio write completion, the dio
739 	 * count is still elevated, which reflink and truncate will wait for.
740 	 * Reflink remapping takes the iolock and mmaplock and waits for
741 	 * pending dio to finish, which should prevent any directio until the
742 	 * remap completes.  Multiple concurrent directio writes to the same
743 	 * region are handled by end_cow processing only occurring for the
744 	 * threads which succeed; the outcome of multiple overlapping direct
745 	 * writes is not well defined anyway.
746 	 *
747 	 * It's possible that a buffered write and a direct write could collide
748 	 * here (the buffered write stumbles in after the dio flushes and
749 	 * invalidates the page cache and immediately queues writeback), but we
750 	 * have never supported this 100%.  If either disk write succeeds the
751 	 * blocks will be remapped.
752 	 */
753 	while (end_fsb > offset_fsb && !error)
754 		error = xfs_reflink_end_cow_extent(ip, offset_fsb, &end_fsb);
755 
756 	if (error)
757 		trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
758 	return error;
759 }
760 
761 /*
762  * Free leftover CoW reservations that didn't get cleaned out.
763  */
764 int
765 xfs_reflink_recover_cow(
766 	struct xfs_mount	*mp)
767 {
768 	xfs_agnumber_t		agno;
769 	int			error = 0;
770 
771 	if (!xfs_sb_version_hasreflink(&mp->m_sb))
772 		return 0;
773 
774 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
775 		error = xfs_refcount_recover_cow_leftovers(mp, agno);
776 		if (error)
777 			break;
778 	}
779 
780 	return error;
781 }
782 
783 /*
784  * Reflinking (Block) Ranges of Two Files Together
785  *
786  * First, ensure that the reflink flag is set on both inodes.  The flag is an
787  * optimization to avoid unnecessary refcount btree lookups in the write path.
788  *
789  * Now we can iteratively remap the range of extents (and holes) in src to the
790  * corresponding ranges in dest.  Let drange and srange denote the ranges of
791  * logical blocks in dest and src touched by the reflink operation.
792  *
793  * While the length of drange is greater than zero,
794  *    - Read src's bmbt at the start of srange ("imap")
795  *    - If imap doesn't exist, make imap appear to start at the end of srange
796  *      with zero length.
797  *    - If imap starts before srange, advance imap to start at srange.
798  *    - If imap goes beyond srange, truncate imap to end at the end of srange.
799  *    - Punch (imap start - srange start + imap len) blocks from dest at
800  *      offset (drange start).
801  *    - If imap points to a real range of pblks,
802  *         > Increase the refcount of the imap's pblks
803  *         > Map imap's pblks into dest at the offset
804  *           (drange start + imap start - srange start)
805  *    - Advance drange and srange by (imap start - srange start + imap len)
806  *
807  * Finally, if the reflink made dest longer, update both the in-core and
808  * on-disk file sizes.
809  *
810  * ASCII Art Demonstration:
811  *
812  * Let's say we want to reflink this source file:
813  *
814  * ----SSSSSSS-SSSSS----SSSSSS (src file)
815  *   <-------------------->
816  *
817  * into this destination file:
818  *
819  * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
820  *        <-------------------->
821  * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
822  * Observe that the range has different logical offsets in either file.
823  *
824  * Consider that the first extent in the source file doesn't line up with our
825  * reflink range.  Unmapping  and remapping are separate operations, so we can
826  * unmap more blocks from the destination file than we remap.
827  *
828  * ----SSSSSSS-SSSSS----SSSSSS
829  *   <------->
830  * --DDDDD---------DDDDD--DDD
831  *        <------->
832  *
833  * Now remap the source extent into the destination file:
834  *
835  * ----SSSSSSS-SSSSS----SSSSSS
836  *   <------->
837  * --DDDDD--SSSSSSSDDDDD--DDD
838  *        <------->
839  *
840  * Do likewise with the second hole and extent in our range.  Holes in the
841  * unmap range don't affect our operation.
842  *
843  * ----SSSSSSS-SSSSS----SSSSSS
844  *            <---->
845  * --DDDDD--SSSSSSS-SSSSS-DDD
846  *                 <---->
847  *
848  * Finally, unmap and remap part of the third extent.  This will increase the
849  * size of the destination file.
850  *
851  * ----SSSSSSS-SSSSS----SSSSSS
852  *                  <----->
853  * --DDDDD--SSSSSSS-SSSSS----SSS
854  *                       <----->
855  *
856  * Once we update the destination file's i_size, we're done.
857  */
858 
859 /*
860  * Ensure the reflink bit is set in both inodes.
861  */
862 STATIC int
863 xfs_reflink_set_inode_flag(
864 	struct xfs_inode	*src,
865 	struct xfs_inode	*dest)
866 {
867 	struct xfs_mount	*mp = src->i_mount;
868 	int			error;
869 	struct xfs_trans	*tp;
870 
871 	if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
872 		return 0;
873 
874 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
875 	if (error)
876 		goto out_error;
877 
878 	/* Lock both files against IO */
879 	if (src->i_ino == dest->i_ino)
880 		xfs_ilock(src, XFS_ILOCK_EXCL);
881 	else
882 		xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
883 
884 	if (!xfs_is_reflink_inode(src)) {
885 		trace_xfs_reflink_set_inode_flag(src);
886 		xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
887 		src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
888 		xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
889 		xfs_ifork_init_cow(src);
890 	} else
891 		xfs_iunlock(src, XFS_ILOCK_EXCL);
892 
893 	if (src->i_ino == dest->i_ino)
894 		goto commit_flags;
895 
896 	if (!xfs_is_reflink_inode(dest)) {
897 		trace_xfs_reflink_set_inode_flag(dest);
898 		xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
899 		dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
900 		xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
901 		xfs_ifork_init_cow(dest);
902 	} else
903 		xfs_iunlock(dest, XFS_ILOCK_EXCL);
904 
905 commit_flags:
906 	error = xfs_trans_commit(tp);
907 	if (error)
908 		goto out_error;
909 	return error;
910 
911 out_error:
912 	trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
913 	return error;
914 }
915 
916 /*
917  * Update destination inode size & cowextsize hint, if necessary.
918  */
919 int
920 xfs_reflink_update_dest(
921 	struct xfs_inode	*dest,
922 	xfs_off_t		newlen,
923 	xfs_extlen_t		cowextsize,
924 	unsigned int		remap_flags)
925 {
926 	struct xfs_mount	*mp = dest->i_mount;
927 	struct xfs_trans	*tp;
928 	int			error;
929 
930 	if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
931 		return 0;
932 
933 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
934 	if (error)
935 		goto out_error;
936 
937 	xfs_ilock(dest, XFS_ILOCK_EXCL);
938 	xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
939 
940 	if (newlen > i_size_read(VFS_I(dest))) {
941 		trace_xfs_reflink_update_inode_size(dest, newlen);
942 		i_size_write(VFS_I(dest), newlen);
943 		dest->i_d.di_size = newlen;
944 	}
945 
946 	if (cowextsize) {
947 		dest->i_d.di_cowextsize = cowextsize;
948 		dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
949 	}
950 
951 	xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
952 
953 	error = xfs_trans_commit(tp);
954 	if (error)
955 		goto out_error;
956 	return error;
957 
958 out_error:
959 	trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
960 	return error;
961 }
962 
963 /*
964  * Do we have enough reserve in this AG to handle a reflink?  The refcount
965  * btree already reserved all the space it needs, but the rmap btree can grow
966  * infinitely, so we won't allow more reflinks when the AG is down to the
967  * btree reserves.
968  */
969 static int
970 xfs_reflink_ag_has_free_space(
971 	struct xfs_mount	*mp,
972 	xfs_agnumber_t		agno)
973 {
974 	struct xfs_perag	*pag;
975 	int			error = 0;
976 
977 	if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
978 		return 0;
979 
980 	pag = xfs_perag_get(mp, agno);
981 	if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
982 	    xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
983 		error = -ENOSPC;
984 	xfs_perag_put(pag);
985 	return error;
986 }
987 
988 /*
989  * Unmap a range of blocks from a file, then map other blocks into the hole.
990  * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
991  * The extent irec is mapped into dest at irec->br_startoff.
992  */
993 STATIC int
994 xfs_reflink_remap_extent(
995 	struct xfs_inode	*ip,
996 	struct xfs_bmbt_irec	*irec,
997 	xfs_fileoff_t		destoff,
998 	xfs_off_t		new_isize)
999 {
1000 	struct xfs_mount	*mp = ip->i_mount;
1001 	bool			real_extent = xfs_bmap_is_real_extent(irec);
1002 	struct xfs_trans	*tp;
1003 	unsigned int		resblks;
1004 	struct xfs_bmbt_irec	uirec;
1005 	xfs_filblks_t		rlen;
1006 	xfs_filblks_t		unmap_len;
1007 	xfs_off_t		newlen;
1008 	int			error;
1009 
1010 	unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
1011 	trace_xfs_reflink_punch_range(ip, destoff, unmap_len);
1012 
1013 	/* No reflinking if we're low on space */
1014 	if (real_extent) {
1015 		error = xfs_reflink_ag_has_free_space(mp,
1016 				XFS_FSB_TO_AGNO(mp, irec->br_startblock));
1017 		if (error)
1018 			goto out;
1019 	}
1020 
1021 	/* Start a rolling transaction to switch the mappings */
1022 	resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
1023 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1024 	if (error)
1025 		goto out;
1026 
1027 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1028 	xfs_trans_ijoin(tp, ip, 0);
1029 
1030 	/* If we're not just clearing space, then do we have enough quota? */
1031 	if (real_extent) {
1032 		error = xfs_trans_reserve_quota_nblks(tp, ip,
1033 				irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS);
1034 		if (error)
1035 			goto out_cancel;
1036 	}
1037 
1038 	trace_xfs_reflink_remap(ip, irec->br_startoff,
1039 				irec->br_blockcount, irec->br_startblock);
1040 
1041 	/* Unmap the old blocks in the data fork. */
1042 	rlen = unmap_len;
1043 	while (rlen) {
1044 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1045 		error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1);
1046 		if (error)
1047 			goto out_cancel;
1048 
1049 		/*
1050 		 * Trim the extent to whatever got unmapped.
1051 		 * Remember, bunmapi works backwards.
1052 		 */
1053 		uirec.br_startblock = irec->br_startblock + rlen;
1054 		uirec.br_startoff = irec->br_startoff + rlen;
1055 		uirec.br_blockcount = unmap_len - rlen;
1056 		unmap_len = rlen;
1057 
1058 		/* If this isn't a real mapping, we're done. */
1059 		if (!real_extent || uirec.br_blockcount == 0)
1060 			goto next_extent;
1061 
1062 		trace_xfs_reflink_remap(ip, uirec.br_startoff,
1063 				uirec.br_blockcount, uirec.br_startblock);
1064 
1065 		/* Update the refcount tree */
1066 		xfs_refcount_increase_extent(tp, &uirec);
1067 
1068 		/* Map the new blocks into the data fork. */
1069 		xfs_bmap_map_extent(tp, ip, &uirec);
1070 
1071 		/* Update quota accounting. */
1072 		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
1073 				uirec.br_blockcount);
1074 
1075 		/* Update dest isize if needed. */
1076 		newlen = XFS_FSB_TO_B(mp,
1077 				uirec.br_startoff + uirec.br_blockcount);
1078 		newlen = min_t(xfs_off_t, newlen, new_isize);
1079 		if (newlen > i_size_read(VFS_I(ip))) {
1080 			trace_xfs_reflink_update_inode_size(ip, newlen);
1081 			i_size_write(VFS_I(ip), newlen);
1082 			ip->i_d.di_size = newlen;
1083 			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1084 		}
1085 
1086 next_extent:
1087 		/* Process all the deferred stuff. */
1088 		error = xfs_defer_finish(&tp);
1089 		if (error)
1090 			goto out_cancel;
1091 	}
1092 
1093 	error = xfs_trans_commit(tp);
1094 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1095 	if (error)
1096 		goto out;
1097 	return 0;
1098 
1099 out_cancel:
1100 	xfs_trans_cancel(tp);
1101 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1102 out:
1103 	trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1104 	return error;
1105 }
1106 
1107 /*
1108  * Iteratively remap one file's extents (and holes) to another's.
1109  */
1110 int
1111 xfs_reflink_remap_blocks(
1112 	struct xfs_inode	*src,
1113 	loff_t			pos_in,
1114 	struct xfs_inode	*dest,
1115 	loff_t			pos_out,
1116 	loff_t			remap_len,
1117 	loff_t			*remapped)
1118 {
1119 	struct xfs_bmbt_irec	imap;
1120 	xfs_fileoff_t		srcoff;
1121 	xfs_fileoff_t		destoff;
1122 	xfs_filblks_t		len;
1123 	xfs_filblks_t		range_len;
1124 	xfs_filblks_t		remapped_len = 0;
1125 	xfs_off_t		new_isize = pos_out + remap_len;
1126 	int			nimaps;
1127 	int			error = 0;
1128 
1129 	destoff = XFS_B_TO_FSBT(src->i_mount, pos_out);
1130 	srcoff = XFS_B_TO_FSBT(src->i_mount, pos_in);
1131 	len = XFS_B_TO_FSB(src->i_mount, remap_len);
1132 
1133 	/* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
1134 	while (len) {
1135 		uint		lock_mode;
1136 
1137 		trace_xfs_reflink_remap_blocks_loop(src, srcoff, len,
1138 				dest, destoff);
1139 
1140 		/* Read extent from the source file */
1141 		nimaps = 1;
1142 		lock_mode = xfs_ilock_data_map_shared(src);
1143 		error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1144 		xfs_iunlock(src, lock_mode);
1145 		if (error)
1146 			break;
1147 		ASSERT(nimaps == 1);
1148 
1149 		trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_DATA_FORK,
1150 				&imap);
1151 
1152 		/* Translate imap into the destination file. */
1153 		range_len = imap.br_startoff + imap.br_blockcount - srcoff;
1154 		imap.br_startoff += destoff - srcoff;
1155 
1156 		/* Clear dest from destoff to the end of imap and map it in. */
1157 		error = xfs_reflink_remap_extent(dest, &imap, destoff,
1158 				new_isize);
1159 		if (error)
1160 			break;
1161 
1162 		if (fatal_signal_pending(current)) {
1163 			error = -EINTR;
1164 			break;
1165 		}
1166 
1167 		/* Advance drange/srange */
1168 		srcoff += range_len;
1169 		destoff += range_len;
1170 		len -= range_len;
1171 		remapped_len += range_len;
1172 	}
1173 
1174 	if (error)
1175 		trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1176 	*remapped = min_t(loff_t, remap_len,
1177 			  XFS_FSB_TO_B(src->i_mount, remapped_len));
1178 	return error;
1179 }
1180 
1181 /*
1182  * Grab the exclusive iolock for a data copy from src to dest, making sure to
1183  * abide vfs locking order (lowest pointer value goes first) and breaking the
1184  * layout leases before proceeding.  The loop is needed because we cannot call
1185  * the blocking break_layout() with the iolocks held, and therefore have to
1186  * back out both locks.
1187  */
1188 static int
1189 xfs_iolock_two_inodes_and_break_layout(
1190 	struct inode		*src,
1191 	struct inode		*dest)
1192 {
1193 	int			error;
1194 
1195 	if (src > dest)
1196 		swap(src, dest);
1197 
1198 retry:
1199 	/* Wait to break both inodes' layouts before we start locking. */
1200 	error = break_layout(src, true);
1201 	if (error)
1202 		return error;
1203 	if (src != dest) {
1204 		error = break_layout(dest, true);
1205 		if (error)
1206 			return error;
1207 	}
1208 
1209 	/* Lock one inode and make sure nobody got in and leased it. */
1210 	inode_lock(src);
1211 	error = break_layout(src, false);
1212 	if (error) {
1213 		inode_unlock(src);
1214 		if (error == -EWOULDBLOCK)
1215 			goto retry;
1216 		return error;
1217 	}
1218 
1219 	if (src == dest)
1220 		return 0;
1221 
1222 	/* Lock the other inode and make sure nobody got in and leased it. */
1223 	inode_lock_nested(dest, I_MUTEX_NONDIR2);
1224 	error = break_layout(dest, false);
1225 	if (error) {
1226 		inode_unlock(src);
1227 		inode_unlock(dest);
1228 		if (error == -EWOULDBLOCK)
1229 			goto retry;
1230 		return error;
1231 	}
1232 
1233 	return 0;
1234 }
1235 
1236 /* Unlock both inodes after they've been prepped for a range clone. */
1237 void
1238 xfs_reflink_remap_unlock(
1239 	struct file		*file_in,
1240 	struct file		*file_out)
1241 {
1242 	struct inode		*inode_in = file_inode(file_in);
1243 	struct xfs_inode	*src = XFS_I(inode_in);
1244 	struct inode		*inode_out = file_inode(file_out);
1245 	struct xfs_inode	*dest = XFS_I(inode_out);
1246 	bool			same_inode = (inode_in == inode_out);
1247 
1248 	xfs_iunlock(dest, XFS_MMAPLOCK_EXCL);
1249 	if (!same_inode)
1250 		xfs_iunlock(src, XFS_MMAPLOCK_EXCL);
1251 	inode_unlock(inode_out);
1252 	if (!same_inode)
1253 		inode_unlock(inode_in);
1254 }
1255 
1256 /*
1257  * If we're reflinking to a point past the destination file's EOF, we must
1258  * zero any speculative post-EOF preallocations that sit between the old EOF
1259  * and the destination file offset.
1260  */
1261 static int
1262 xfs_reflink_zero_posteof(
1263 	struct xfs_inode	*ip,
1264 	loff_t			pos)
1265 {
1266 	loff_t			isize = i_size_read(VFS_I(ip));
1267 
1268 	if (pos <= isize)
1269 		return 0;
1270 
1271 	trace_xfs_zero_eof(ip, isize, pos - isize);
1272 	return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL,
1273 			&xfs_buffered_write_iomap_ops);
1274 }
1275 
1276 /*
1277  * Prepare two files for range cloning.  Upon a successful return both inodes
1278  * will have the iolock and mmaplock held, the page cache of the out file will
1279  * be truncated, and any leases on the out file will have been broken.  This
1280  * function borrows heavily from xfs_file_aio_write_checks.
1281  *
1282  * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1283  * checked that the bytes beyond EOF physically match. Hence we cannot use the
1284  * EOF block in the source dedupe range because it's not a complete block match,
1285  * hence can introduce a corruption into the file that has it's block replaced.
1286  *
1287  * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1288  * "block aligned" for the purposes of cloning entire files.  However, if the
1289  * source file range includes the EOF block and it lands within the existing EOF
1290  * of the destination file, then we can expose stale data from beyond the source
1291  * file EOF in the destination file.
1292  *
1293  * XFS doesn't support partial block sharing, so in both cases we have check
1294  * these cases ourselves. For dedupe, we can simply round the length to dedupe
1295  * down to the previous whole block and ignore the partial EOF block. While this
1296  * means we can't dedupe the last block of a file, this is an acceptible
1297  * tradeoff for simplicity on implementation.
1298  *
1299  * For cloning, we want to share the partial EOF block if it is also the new EOF
1300  * block of the destination file. If the partial EOF block lies inside the
1301  * existing destination EOF, then we have to abort the clone to avoid exposing
1302  * stale data in the destination file. Hence we reject these clone attempts with
1303  * -EINVAL in this case.
1304  */
1305 int
1306 xfs_reflink_remap_prep(
1307 	struct file		*file_in,
1308 	loff_t			pos_in,
1309 	struct file		*file_out,
1310 	loff_t			pos_out,
1311 	loff_t			*len,
1312 	unsigned int		remap_flags)
1313 {
1314 	struct inode		*inode_in = file_inode(file_in);
1315 	struct xfs_inode	*src = XFS_I(inode_in);
1316 	struct inode		*inode_out = file_inode(file_out);
1317 	struct xfs_inode	*dest = XFS_I(inode_out);
1318 	bool			same_inode = (inode_in == inode_out);
1319 	ssize_t			ret;
1320 
1321 	/* Lock both files against IO */
1322 	ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out);
1323 	if (ret)
1324 		return ret;
1325 	if (same_inode)
1326 		xfs_ilock(src, XFS_MMAPLOCK_EXCL);
1327 	else
1328 		xfs_lock_two_inodes(src, XFS_MMAPLOCK_EXCL, dest,
1329 				XFS_MMAPLOCK_EXCL);
1330 
1331 	/* Check file eligibility and prepare for block sharing. */
1332 	ret = -EINVAL;
1333 	/* Don't reflink realtime inodes */
1334 	if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1335 		goto out_unlock;
1336 
1337 	/* Don't share DAX file data for now. */
1338 	if (IS_DAX(inode_in) || IS_DAX(inode_out))
1339 		goto out_unlock;
1340 
1341 	ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
1342 			len, remap_flags);
1343 	if (ret < 0 || *len == 0)
1344 		goto out_unlock;
1345 
1346 	/* Attach dquots to dest inode before changing block map */
1347 	ret = xfs_qm_dqattach(dest);
1348 	if (ret)
1349 		goto out_unlock;
1350 
1351 	/*
1352 	 * Zero existing post-eof speculative preallocations in the destination
1353 	 * file.
1354 	 */
1355 	ret = xfs_reflink_zero_posteof(dest, pos_out);
1356 	if (ret)
1357 		goto out_unlock;
1358 
1359 	/* Set flags and remap blocks. */
1360 	ret = xfs_reflink_set_inode_flag(src, dest);
1361 	if (ret)
1362 		goto out_unlock;
1363 
1364 	/*
1365 	 * If pos_out > EOF, we may have dirtied blocks between EOF and
1366 	 * pos_out. In that case, we need to extend the flush and unmap to cover
1367 	 * from EOF to the end of the copy length.
1368 	 */
1369 	if (pos_out > XFS_ISIZE(dest)) {
1370 		loff_t	flen = *len + (pos_out - XFS_ISIZE(dest));
1371 		ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1372 	} else {
1373 		ret = xfs_flush_unmap_range(dest, pos_out, *len);
1374 	}
1375 	if (ret)
1376 		goto out_unlock;
1377 
1378 	return 1;
1379 out_unlock:
1380 	xfs_reflink_remap_unlock(file_in, file_out);
1381 	return ret;
1382 }
1383 
1384 /* Does this inode need the reflink flag? */
1385 int
1386 xfs_reflink_inode_has_shared_extents(
1387 	struct xfs_trans		*tp,
1388 	struct xfs_inode		*ip,
1389 	bool				*has_shared)
1390 {
1391 	struct xfs_bmbt_irec		got;
1392 	struct xfs_mount		*mp = ip->i_mount;
1393 	struct xfs_ifork		*ifp;
1394 	xfs_agnumber_t			agno;
1395 	xfs_agblock_t			agbno;
1396 	xfs_extlen_t			aglen;
1397 	xfs_agblock_t			rbno;
1398 	xfs_extlen_t			rlen;
1399 	struct xfs_iext_cursor		icur;
1400 	bool				found;
1401 	int				error;
1402 
1403 	ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1404 	if (!(ifp->if_flags & XFS_IFEXTENTS)) {
1405 		error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1406 		if (error)
1407 			return error;
1408 	}
1409 
1410 	*has_shared = false;
1411 	found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1412 	while (found) {
1413 		if (isnullstartblock(got.br_startblock) ||
1414 		    got.br_state != XFS_EXT_NORM)
1415 			goto next;
1416 		agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1417 		agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1418 		aglen = got.br_blockcount;
1419 
1420 		error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1421 				&rbno, &rlen, false);
1422 		if (error)
1423 			return error;
1424 		/* Is there still a shared block here? */
1425 		if (rbno != NULLAGBLOCK) {
1426 			*has_shared = true;
1427 			return 0;
1428 		}
1429 next:
1430 		found = xfs_iext_next_extent(ifp, &icur, &got);
1431 	}
1432 
1433 	return 0;
1434 }
1435 
1436 /*
1437  * Clear the inode reflink flag if there are no shared extents.
1438  *
1439  * The caller is responsible for joining the inode to the transaction passed in.
1440  * The inode will be joined to the transaction that is returned to the caller.
1441  */
1442 int
1443 xfs_reflink_clear_inode_flag(
1444 	struct xfs_inode	*ip,
1445 	struct xfs_trans	**tpp)
1446 {
1447 	bool			needs_flag;
1448 	int			error = 0;
1449 
1450 	ASSERT(xfs_is_reflink_inode(ip));
1451 
1452 	error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1453 	if (error || needs_flag)
1454 		return error;
1455 
1456 	/*
1457 	 * We didn't find any shared blocks so turn off the reflink flag.
1458 	 * First, get rid of any leftover CoW mappings.
1459 	 */
1460 	error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF, true);
1461 	if (error)
1462 		return error;
1463 
1464 	/* Clear the inode flag. */
1465 	trace_xfs_reflink_unset_inode_flag(ip);
1466 	ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1467 	xfs_inode_clear_cowblocks_tag(ip);
1468 	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1469 
1470 	return error;
1471 }
1472 
1473 /*
1474  * Clear the inode reflink flag if there are no shared extents and the size
1475  * hasn't changed.
1476  */
1477 STATIC int
1478 xfs_reflink_try_clear_inode_flag(
1479 	struct xfs_inode	*ip)
1480 {
1481 	struct xfs_mount	*mp = ip->i_mount;
1482 	struct xfs_trans	*tp;
1483 	int			error = 0;
1484 
1485 	/* Start a rolling transaction to remove the mappings */
1486 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1487 	if (error)
1488 		return error;
1489 
1490 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1491 	xfs_trans_ijoin(tp, ip, 0);
1492 
1493 	error = xfs_reflink_clear_inode_flag(ip, &tp);
1494 	if (error)
1495 		goto cancel;
1496 
1497 	error = xfs_trans_commit(tp);
1498 	if (error)
1499 		goto out;
1500 
1501 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1502 	return 0;
1503 cancel:
1504 	xfs_trans_cancel(tp);
1505 out:
1506 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1507 	return error;
1508 }
1509 
1510 /*
1511  * Pre-COW all shared blocks within a given byte range of a file and turn off
1512  * the reflink flag if we unshare all of the file's blocks.
1513  */
1514 int
1515 xfs_reflink_unshare(
1516 	struct xfs_inode	*ip,
1517 	xfs_off_t		offset,
1518 	xfs_off_t		len)
1519 {
1520 	struct inode		*inode = VFS_I(ip);
1521 	int			error;
1522 
1523 	if (!xfs_is_reflink_inode(ip))
1524 		return 0;
1525 
1526 	trace_xfs_reflink_unshare(ip, offset, len);
1527 
1528 	inode_dio_wait(inode);
1529 
1530 	error = iomap_file_unshare(inode, offset, len,
1531 			&xfs_buffered_write_iomap_ops);
1532 	if (error)
1533 		goto out;
1534 	error = filemap_write_and_wait(inode->i_mapping);
1535 	if (error)
1536 		goto out;
1537 
1538 	/* Turn off the reflink flag if possible. */
1539 	error = xfs_reflink_try_clear_inode_flag(ip);
1540 	if (error)
1541 		goto out;
1542 	return 0;
1543 
1544 out:
1545 	trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1546 	return error;
1547 }
1548